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1 Successive measurements of spin components

We have seen that the three spin operators may be written in terms of the Pauli matrices,
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or, equivalently, in bra-ket notation as
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Consider the evolution of a beam of electrons, prepared in the normalized state,
l[4) = al+) + Bl-)
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where |a|” 4 |8]° = 1, as we measure successive components of spin. If we make a measurement of the
z-component of spin,
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then the probablility that we measure the value +%, and therefore find the state to be |+) is
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while the probability of measuring —% is
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The expectation value of the spin, essentially the average of many measurements, is
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ie., —&—% times the probability of measuring spin up, plus —g times the probability of measuring spin down.



Suppose we measure a given electron to have z-component of spin —&—%. Then the subsequent state must
reflect this, and is therefore
A"y = a|+)

for the resulting spin-up beam. This state no longer has the same normalization, because we have eliminated
the spin-down portion of the beam of electrons. If we make another measurement of the z-component of this
state, the result is
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This corresponds to measuring the value +g every time, and we see that |A’) is already an eigenstate of S..
The state is unchanged by the subsequent measurement of the same observable.
On the other hand, suppose we measure the z-component of spin for |A’),
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The state is altered by the measurement, so it is not an eigenstate of S,. To find the probabilities for
measuring the z-component up or down, we need to write |A’) in terms of the eigenstates of S,. These are
not hard to find. They satisfy
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Expanding in terms of the z-basis,
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the eigenvector equation becomes
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so that, equating like components,
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Solving the second, we have
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and substituting this into the first gives
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With these values for A, we find two states, having b = Fa. Normalizing by requiring a? + b> = 1, the
eigenstates are
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Now return to the state |A’) = o|+). We may write this in terms of the eigenstates of Sy, as
[4) = alt)

- \;‘5(Sz+§> + SI—Z>>

and now we see that the probability of measuring the x-component of spin to be +% is

. h 2 N
ZA bt
(g )] = [(8es

2

2

al+)

I
)

The probability of measuring spin down is also 3 la|?, where the factor |a|? reflects the dimunition of the
beam by the original z measurement. Therefore, a state which has its z-component of spin in the spin up
state has equal probability of finding the x-component of spin in either the spin up or spin down state.

2 (Generic spin state

It is useful to have an expression for the eigenstates of an arbitrary direction, n, of the spin operators, which
we may write as the linear combination
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If we write the unit vector n in spherical coordinates,

n, = sinfcosyp
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then
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The eigenvalues satisfy
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as expected. Then for A = —l—%, the eigenvalue equation is
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so that
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and we solve for f3, ,
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Alternatively, as a check, the first equation gives
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These are equal provided
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which clearly holds.
We now use «a to normalize the state. It helps to write the trig functions using half angle formulas,
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so that
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We have
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The norm is
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so choosing « real,
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Then we have the normalized eigenstate,
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For the negative eigenvalue, the equation becomes
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so that
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and therefore 00
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The state is then



Alternatively, notice that the eigenstate corresponding to the negative eigenvalue, g , must be orthogonal
to the —% state, so if we let

the inner product is
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As a check, write n - S using half angles,
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The spin up and spin down eigenkets of n - S are therefore,
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where |+) and |—) are the eigenkets in the z-direction.



