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1 Successive measurements of spin components
We have seen that the three spin operators may be written in terms of the Pauli matrices,

Ŝi =
~
2
σ̂i

or, equivalently, in bra-ket notation as

Ŝx =
~
2
(|+〉 〈−| + |−〉 〈+|)

Ŝy =
i~
2
(|−〉 〈+| − |+〉 〈−|)

Ŝz =
~
2
(|+〉 〈+| − |−〉 〈−|)

Consider the evolution of a beam of electrons, prepared in the normalized state,

|A〉 = α |+〉 + β |−〉

where |α|2 + |β|2 = 1, as we measure successive components of spin. If we make a measurement of the
z-component of spin,

Ŝz |A〉 =

(
~
2
(|+〉 〈+| − |−〉 〈−|)

)
(α |+〉 + β |−〉)

=
α~
2
|+〉 − β~

2
|−〉

then the probablility that we measure the value +~
2 , and therefore find the state to be |+〉 is

|〈+|A〉|2 = |〈+| (α |+〉 − β |−〉)|2

= |α|2

while the probability of measuring −~
2 is

|〈−|A〉|2 = |β|2

The expectation value of the spin, essentially the average of many measurements, is

〈A| Ŝz |A〉 = (〈+|α∗ − 〈−|β∗)
(
α~
2
|+〉 − β~

2
|−〉
)

=
~
2
α∗α − ~

2
β∗β

i.e., +~
2 times the probability of measuring spin up, plus −~

2 times the probability of measuring spin down.
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Suppose we measure a given electron to have z-component of spin +~
2 . Then the subsequent state must

reflect this, and is therefore
|A′〉 = α |+〉

for the resulting spin-up beam. This state no longer has the same normalization, because we have eliminated
the spin-down portion of the beam of electrons. If we make another measurement of the z-component of this
state, the result is

Ŝz |A′〉 =

(
~
2
(|+〉 〈+| − |−〉 〈−|)

)
α |+〉

=
~
2
α |+〉

This corresponds to measuring the value +~
2 every time, and we see that |A′〉 is already an eigenstate of Ŝz.

The state is unchanged by the subsequent measurement of the same observable.
On the other hand, suppose we measure the x-component of spin for |A′〉,

Ŝx |A′〉 =
~
2
(|+〉 〈−| + |−〉 〈+|)α |+〉

=
α~
2
|−〉

The state is altered by the measurement, so it is not an eigenstate of Ŝx. To find the probabilities for
measuring the x-component up or down, we need to write |A′〉 in terms of the eigenstates of Ŝx. These are
not hard to find. They satisfy

Ŝx

∣∣∣Ŝx, λ〉 = λ
∣∣∣Ŝx, λ〉

Expanding in terms of the z-basis, ∣∣∣Ŝx, λ〉 = a |+〉 − b |−〉

the eigenvector equation becomes

~
2
(|+〉 〈−| + |−〉 〈+|) (a |+〉 − b |−〉) = λ (a |+〉 − b |−〉)

−~
2
b |+〉 +

~
2
a |−〉 = λ (a |+〉 − b |−〉)

so that, equating like components,

−~
2
b |+〉 = aλ |+〉

~
2
a |−〉 = −λb |−〉

Solving the second, we have

b = − ~
2λ
a

and substituting this into the first gives

~
2

~
2λ
a = aλ(

~
2

)2

= λ2

λ = ±~
2
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With these values for λ, we find two states, having b = ∓a. Normalizing by requiring a2 + b2 = 1, the
eigenstates are ∣∣∣∣Ŝx, ~2

〉
=

1√
2
(|+〉 − |−〉)∣∣∣∣Ŝx,−~

2

〉
=

1√
2
(|+〉 + |−〉)

Now return to the state |A′〉 = α |+〉. We may write this in terms of the eigenstates of Ŝx, as

|A′〉 = α |+〉

=
α√
2

(∣∣∣∣Ŝx,+~
2

〉
+

∣∣∣∣Ŝx,−~
2

〉)
and now we see that the probability of measuring the x-component of spin to be +~

2 is∣∣∣∣〈Ŝx,+~
2
| A′

〉∣∣∣∣2 =

∣∣∣∣〈Ŝx,+~
2

∣∣∣∣α |+〉∣∣∣∣2
=

∣∣∣∣ α√2
∣∣∣∣2

=
1

2
|α|2

The probability of measuring spin down is also 1
2 |α|

2, where the factor |α|2 reflects the dimunition of the
beam by the original z measurement. Therefore, a state which has its z-component of spin in the spin up
state has equal probability of finding the x-component of spin in either the spin up or spin down state.

2 Generic spin state
It is useful to have an expression for the eigenstates of an arbitrary direction, n, of the spin operators, which
we may write as the linear combination

n · Ŝ = nxŜx + nyŜy + nzŜz

=
~
2
(nxσx + nyσy + nzσz)

=
~
2

(
nz nx − iny

nx + iny −nz

)
If we write the unit vector n in spherical coordinates,

nx = sin θ cosϕ

ny = sin θ sinϕ

ny = cos θ

then

n · Ŝ =
~
2

(
cos θ e−iϕ sin θ

eiϕ sin θ − cos θ

)
The eigenvalues satisfy

det
(
n · Ŝ − λ1̂

)
= 0
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det

( ~
2 cos θ − λ

~
2 e
−iϕ sin θ

~
2 e
iϕ sin θ −~

2 cos θ − λ

)
= 0

λ2 − ~2

4
cos2 θ − ~2

4
sin2 θ = 0

λ = ±~
2

as expected. Then for λ = +~
2 , the eigenvalue equation is

~
2

(
cos θ e−iϕ sin θ

eiϕ sin θ − cos θ

)(
α
β

)
=

~
2

(
α
β

)
so that

α cos θ + βe−iϕ sin θ = α

αeiϕ sin θ − β cos θ = β

and we solve for β,

β =
αeiϕ sin θ

1 + cos θ

Alternatively, as a check, the first equation gives

βe−iϕ sin θ = α (1− cos θ)

β =
α (1− cos θ)

e−iϕ sin θ

=
αeiϕ (1− cos θ)

sin θ

These are equal provided

1− cos θ

sin θ
=

sin θ

1 + cos θ

1− cos2 θ = sin2 θ

which clearly holds.
We now use α to normalize the state. It helps to write the trig functions using half angle formulas,

1 + cos θ = 2 cos2
θ

2

sin θ = 2 sin
θ

2
cos

θ

2

so that

β = α

(
eiϕ sin θ

1 + cos θ

)
= α

(
eiϕ2 sin θ

2 cos
θ
2

2 cos2 θ2

)

= α

(
eiϕ sin θ

2

cos θ2

)
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We have (
α
β

)
=

(
α

αeiϕ sin θ
1+cos θ

)
= α

(
1

eiϕ sin θ
2

cos θ2

)

The norm is

1 = αα∗ + ββ∗

= αα∗

(
1 +

eiϕ sin θ
2

cos θ2

e−iϕ sin θ
2

cos θ2

)

= αα∗

(
1 +

sin2 θ2
cos2 θ2

)

=
αα∗

cos2 θ2

(
cos2

θ

2
+ sin2

θ

2

)
cos2

θ

2
= αα∗

so choosing α real,

α = cos
θ

2

Then we have the normalized eigenstate,(
α
β

)
+

=

(
cos θ2

eiϕ sin θ
2

)
For the negative eigenvalue, the equation becomes

~
2

(
cos θ e−iϕ sin θ

eiϕ sin θ − cos θ

)(
α
β

)
= −~

2

(
α
β

)
(
α cos θ + βe−iϕ sin θ
αeiϕ sin θ − β cos θ

)
= −

(
α
β

)
so that

α cos θ + βe−iϕ sin θ = −α
αeiϕ sin θ − β cos θ = −β

and therefore
β = −αeiϕ sin θ

1− cos θ

The state is then (
α
β

)
−

= α

(
1

−eiϕ sin θ
1−cos θ

)
= α

(
1

−eiϕ 2 sin θ
2 cos θ2

2 sin2 θ
2

)

=

(
sin θ

2

−eiϕ cos θ2

)
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Alternatively, notice that the eigenstate corresponding to the negative eigenvalue, −~
2 , must be orthogonal

to the −~
2 state, so if we let (

α−
β−

)
=

(
sin θ

2

−eiϕ cos θ2

)
(
α+

β+

)
=

(
cos θ2

eiϕ sin θ
2

)
the inner product is

α+α
∗
− + β+β

∗
− = sin

θ

2
cos

θ

2
− eiϕe−iϕ sin θ

2
cos

θ

2
= 0

As a check, write n · Ŝ using half angles,

~
2

(
cos θ e−iϕ sin θ

eiϕ sin θ − cos θ

)
=

~
2

(
2 cos2 θ2 − 1 e−iϕ2 sin θ

2 cos
θ
2

eiϕ2 sin θ
2 cos

θ
2 −2 cos2 θ2 + 1

)
Then,

~
2

(
cos θ e−iϕ sin θ

eiϕ sin θ − cos θ

)(
α
β

)
−

=
~
2

(
2 cos2 θ2 − 1 e−iϕ2 sin θ

2 cos
θ
2

eiϕ2 sin θ
2 cos

θ
2 −2 cos2 θ2 + 1

)(
sin θ

2

−eiϕ cos θ2

)
=

~
2

( (
2 cos2 θ2 − 1

)
sin θ

2 −
(
e−iϕ2 sin θ

2 cos
θ
2

)
eiϕ cos θ2

eiϕ2 sin2 θ2 cos
θ
2 − e

iϕ cos θ2
(
−2 cos2 θ2 + 1

) )
=

~
2

(
2 cos2 θ2 sin

θ
2 − sin θ

2 − 2 sin θ
2 cos

2 θ
2

2eiϕ sin2 θ2 cos
θ
2 + 2eiϕ cos3 θ2 − e

iϕ cos θ2

)
=

~
2

(
− sin θ

2

2eiϕ cos θ2 − e
iϕ cos θ2

)
= −~

2

(
sin θ

2

−eiϕ cos θ2

)
The spin up and spin down eigenkets of n · Ŝ are therefore,∣∣∣n · Ŝ,+〉 = cos

θ

2
|+〉+ eiϕ sin

θ

2
|−〉∣∣∣n · Ŝ,−〉 = sin

θ

2
|+〉 − eiϕ cos θ

2
|−〉

where |+〉 and |−〉 are the eigenkets in the z-direction.
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