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One of the most important problems in quantum mechanics is the simple harmonic oscillator, in part
because its properties are directly applicable to field theory.

1 Hamiltonian

Writing the potential 1
2kx

2 in terms of the classical frequency, ω =
√

k
m , puts the Hamiltonian in the form

H =
p2

2m
+
mω2x2

2

resulting in the Hamiltonian operator,

Ĥ =
P̂ 2

2m
+
mω2X̂2

2
We make no choice of basis.

2 Raising and lowering operators
Notice that (

x+
ip

mω

)(
x− ip

mω

)
= x2 +

p2

m2ω2

=
2

mω2

(
1

2
mω2x2 +

p2

2m

)
so that we may write the classical Hamiltonian as

H =
mω2

2

(
x+

ip

mω

)(
x− ip

mω

)
We can write the quantum Hamiltonian in a similar way. Choosing our normalization with a bit of

foresight, we define two conjugate operators,

â =

√
mω

2~

(
X̂ +

i

mω
P̂

)
â† =

√
mω

2~

(
X̂ − i

mω
P̂

)
The operator â† is called the raising operator and â is called the lowering operator. In taking the product
of these, we must be careful with ordering since X̂ and P̂

â†â =
mω

2~

(
X̂ − iP̂

mω

)(
X̂ +

iP̂

mω

)
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=
mω

2~

(
X̂2 +

i

mω
X̂P̂ − i

mω
P̂ X̂ +

P̂ 2

m2ω2

)

=
mω

2~

(
X̂2 +

i

mω

[
X̂, P̂

]
+

P̂ 2

m2ω2

)

Using the commutator,
[
X̂, P̂

]
= i~1̂, this becomes

â†â =

(
1

~ω

)(
1

2
mω2

)(
X̂2 − ~

mω
+

P̂ 2

m2ω2

)

=
1

~ω

(
1

2
mω2X̂2 − 1

2
~ω +

P̂ 2

2m

)

=
1

~ω

(
Ĥ − 1

2
~ω
)

and therefore,

Ĥ = ~ω
(
â†â+

1

2

)

3 The number operator
This turns out to be a very convenient form for the Hamiltonian because â and a† have very simple properties.
First, their commutator is simply

[
â, â†

]
=

mω

2~

[(
X̂ +

iP̂

mω

)
,

(
X̂ − iP̂

mω

)]

=
mω

2~

([
X̂,− i

mω
P̂

]
+

[
i

mω
P̂ , X̂

])
= − 2i

mω

mω

2~

[
X̂, P̂

]
= − i

~
i~

= 1

Consider one further set of commutation relations. Defining N̂ ≡ â†â = N̂†, called the number operator,
we have [

N̂ , â
]

=
[
â†â, â

]
= â† [â, â] +

[
â†, â

]
â

= −â

and [
N̂ , â†

]
=

[
â†â, â†

]
= â

[
â†, â†

]
+ â†

[
â, â†

]
= â†

Notice that N̂ is Hermitian, hence observable, and that Ĥ = ~ω
(
N̂ + 1

2

)
.
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4 Energy eigenkets

4.1 Positivity of the energy
Consider an arbitrary expectation value of the Hamiltonian,

〈ψ| Ĥ |ψ〉 = 〈ψ| ~ω
(
â†â+

1

2

)
|ψ〉

= ~ω
(
〈ψ| â†â |ψ〉+ 1

2
〈ψ |ψ〉

)
Since 〈ψ |ψ〉 > 0 for any state

〈ψ| Ĥ |ψ〉 = ~ω
(
〈ψ| â†â |ψ〉+ 1

2
〈ψ |ψ〉

)
> ~ω 〈ψ| â†â |ψ〉

and if we define |β〉 ≡ â |ψ〉 we see that the remaining term is also positive definite,

〈ψ| â†â |ψ〉 = 〈β |β〉 > 0

This means that all expectation values of the Hamiltonian are positive definite, and in particular, all energies
are positive, since for any normalized energy eigenket,

〈E| Ĥ |E〉 = E > 0

4.2 The lowest energy
Now suppose |E〉 is any normalized energy eigenket. Then consider the new ket found by acting on this state
with the lowering operator, â. Applying the Hamiltonian operator to â |E〉,

Ĥ (â |E〉) = ~ω
(
N̂ +

1

2

)
(â |E〉)

= ~ωN̂â |E〉+ 1

2
~ωâ |E〉

= ~ω
([
N̂ , â

]
+ âN̂

)
|E〉+ â

1

2
~ω (|E〉)

= ~ω
(
−â+ âN̂

)
|E〉+ â

1

2
~ω |E〉

= −~ωâ |E〉+ â~ω
(
N̂ +

1

2

)
|E〉

= −~ωâ |E〉+ âĤ |E〉
= −~ωâ |E〉+ âE |E〉
= (E − ~ω) (â |E〉)

This means that â |E〉 is also an energy eigenket, with energy E − ~ω. Since â |E〉 is an energy eigenket, we
may repeat this procedure to show that â2 |E〉 is an energy eigenket with energy E − 2~ω. Continuing in
this way, we find that âk |E〉 will have energy E − k~ω. This process cannot continue indefinitely, because
the energy must remain positive. Let k be the largest integer for which E − k~ω is positive,

Ĥâk |E〉 = (E − k~ω) âk |E〉
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with corresponding state âk |E〉. Then applying the lowering operator one more time cannot give a new
state. The only other possibility is zero. Rename the lowest energy state |0〉 = A0â

k |E〉, where we choose
A0 so that |0〉 is normalized. We then must have

â |0〉 = 0

and therefore,

Ĥ |0〉 = ~ω
(
â†â+

1

2

)
|0〉

=
1

2
~ω |0〉

This is the lowest energy state of the oscillator.
To see that it is unique, suppose we had chosen a different energy eigenket, |E′〉, to start with. Then

we would find a new ground state, |0′〉, also satisfying â |0′〉 = 0. However, as we show in the Section 5,
the condition â |0〉 = 0 in a coordinate basis leads to a differential equation with a unique solution for the
ground state wave function. Thus, there is only one state satisfying â |0〉 = 0.

4.3 The complete spectrum
Now that we have the ground state, we reverse the process, acting instead with the raising operator. Acting
on any energy eigenket, we have

Ĥ
(
â† |E〉

)
= ~ω

(
N̂ +

1

2

)(
â† |E〉

)
= ~ωN̂â† |E〉+ 1

2
~ωâ† |E〉

= ~ω
([
N̂ , â†

]
+ â†N̂

)
|E〉+ â†

1

2
~ω |E〉

= ~ωâ† |E〉+ â†
(
~ωN̂ +

1

2
~ω
)
|E〉

= ~ωâ† |E〉+ â†Ĥ |E〉
= ~ωâ† |E〉+ â†E |E〉
= (E + ~ω)

(
â† |E〉

)
Therefore, beginning with this lowest state, we have

Ĥ
(
â† |0〉

)
=

(
~ω +

1

2
~ω
)(

â† |0〉
)

=
3

2
~ω
(
â† |E〉

)
and we define the normalized state to be

|1〉 = A1â
† |0〉

There is nothing to prevent us continuing this procedure indefintely. Continuing, we have states

|n〉 = An
(
â†
)n |0〉

satisfying

Ĥ |n〉 =

(
n+

1

2

)
~ω |n〉

This gives the complete set of energy eigenkets.
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4.4 Normalization
We have defined the lowest ket, |0〉, to be normalized. For the next level, we require

1 = 〈1 |1〉
= |A1|2 〈0| ââ† |0〉
= |A1|2 〈0|

([
â, â†

]
+ â†â

)
|0〉

= |A1|2 〈0|
(
1 + â†â

)
|0〉

= |A1|2 〈0 |0〉

so that choosing the phase so that A1 is real, we have A1 = 1.
Now, consider the expectation of N̂ in the nth state. We see from the energy that the eigenvalues of the

number operator are integers, n, so that for the normalized state |n〉,

1 = 〈n |n〉
= |An|2 〈0| ân

(
â†
)n |0〉

= |An|2 〈0| ân−1ââ†
(
â†
)n−1 |0〉

= |An|2 〈0| ân−1
(
â†â+

[
â, â†

]) (
â†
)n−1 |0〉

= |An|2 〈0| ân−1
(
N̂ + 1

) (
â†
)n−1 |0〉

= |An|2
(
〈n− 1| 1

A∗n−1

)(
N̂ + 1

)( 1

An−1
|n− 1〉

)
=

|An|2

|An−1|2
〈n− 1|

(
N̂ + 1

)
|n− 1〉

=
|An|2

|An−1|2
(n− 1 + 1)

Therefore, |An−1|2 = n |An|2, so iterating,

|An|2 =
1

n
|An−1|2

=
1

n (n− 1)
|An−2|2

...

=
1

n!
|A1|2

so that, choosing all of the coefficients real, we have

|n〉 = 1√
n!

(
â†
)n |0〉

5 Wave function
Now consider the wave function, ψn (x), for the eigenstates. For the lowest state, we know that

â |0〉 = 0
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so in a coordinate basis, we compute

0 = 〈x| â |0〉

=

√
mω

2~
〈x|
(
X̂ +

i

mω
P̂

)
|0〉

=

√
mω

2~

(
〈x| X̂ |0〉+ i

mω
P̂ |0〉

)
=

√
mω

2~

(
x 〈x |0〉+ i

mω
〈x| P̂ |0〉

)
where, inserting an identity,

〈x| P̂ |0〉 =

ˆ
dx′ 〈x| P̂ |x′〉 〈x′ |0〉

=

ˆ
dx′
(
i~

∂

∂x′
δ3 (x− x′)

)
〈x′ |0〉

= −i~
ˆ
dx′δ3 (x− x′) ∂

∂x′
〈x′ |0〉

= −i~ d

dx
〈x |0〉

Therefore, setting ψ0 (x) = 〈x |0〉 and substituting,

0 = x 〈x |0〉+ i

mω
〈x| P̂ |0〉

= xψ0 (x) +
i

mω

(
−i~ d

dx
ψ0 (x)

)
= xψ0 (x) +

~
mω

d

dx
ψ0 (x)

d

dx
ψ0 (x) = −mωx

~
ψ0 (x)

ψ0 (x) = Ae−
mωx2

2~

so the wave function of the ground state is a Gaussian.
To find the wave functions of the higher energy states, consider

ψn (x) = 〈x |n〉

= 〈x| 1√
n!

(
â†
)n |0〉

=
1√
n
〈x| â† 1√

(n− 1)!

(
â†
)n−1 |0〉

=
1√
n

√
mω

2~
〈x|
(
X̂ − i

mω
P̂

)
|n− 1〉

=
1√
n

√
mω

2~

(
x 〈x |n− 1〉 − i

mω

ˆ
dx′ 〈x| P̂ |x′〉 〈x′ |n− 1〉

)
=

1√
n

√
mω

2~

(
xψn−1 (x)−

i

mω

ˆ
dx′
(
i~

∂

∂x′
δ3 (x− x′)

)
ψn−1 (x

′)

)
=

1√
n

√
mω

2~

(
xψn−1 (x)−

~
mω

ˆ
dx′δ3 (x− x′) ∂

∂x′
ψn−1 (x

′)

)
=

√
mω

2n~

(
x− ~

mω

d

dx

)
ψn−1 (x)
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Therefore, we can find all states by iterating this operator,

ψn (x
′) =

√
mω

2n!~

(
x− ~

mω

∂

∂x

)n
ψ0 (x)

The result is a series of polynomials, the Hermite polynomials, times the Gaussian factor.

Exercise: Find ψ1 (x) and ψ2 (x).

6 Time evolution of a mixed state of the oscillator
Consider the time evolution of a state of the harmonic oscillator given by the most general superposition of
the lowest two eigenstates

|ψ〉 = cos θ |0〉+ eiϕ sin θ |1〉

The time evolution is given by

|ψ, t〉 = U (t) |ψ〉

= e−
i
~ Ĥt |ψ〉

= cos θe−
i
~ Ĥt |0〉+ eiϕ sin θe−

i
~ Ĥt |1〉

= cos θe−
i
~E0t |0〉+ eiϕ sin θe−

i
~E1t |1〉

= cos θe−
i
2ωt |0〉+ eiϕ sin θe−

3
2 iωt |1〉

= e−
i
2ωt
(
cos θ |0〉+ eiϕ sin θe−iωt |1〉

)
Now look at the time dependence of the expectation value of the position operator, which we write in terms
of raising and lowering operators as X̂ =

√
~

2mω

(
â+ â†

)
:

〈ψ, t| X̂ |ψ, t〉 =
(
cos θ 〈0|+ e−iϕ sin θeiωt 〈1|

)
e

i
2ωtX̂e−

i
2ωt
(
cos θ |0〉+ eiϕ sin θe−iωt |1〉

)
=

√
~

2mω

(
cos θ 〈0|+ e−iϕ sin θeiωt 〈1|

) (
â+ â†

) (
cos θ |0〉+ eiϕ sin θe−iωt |1〉

)
=

√
~

2mω

(
cos θ 〈0|+ e−iϕ sin θeiωt 〈1|

) (
cos θ |1〉+ eiϕ sin θe−iωt

(
|0〉+

√
2 |2〉

))
=

√
~

2mω

(
cos θ sin θe−i(ωt−ϕ) + sin θ cos θei(ωt−ϕ)

)
=

√
~

2mω
sin 2θ cos (ωt− ϕ)

where we have used â |0〉 = 0, â |1〉 = |0〉 , â† |0〉 = |1〉 and â† |1〉 =
√
2 |2〉. We see that the expected position

oscillates back and forth between ±
√

~
2mω sin 2θ with frequency ω. Superpositions involving higher excited

states will bring in harmonics, nω, and will then allow for varied traveling waveforms.

7 Coherent states
We define a coherent state of the harmonic oscillator to be an eigenstate of the lowering operator,

â |λ〉 = λ |λ〉
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To find this state, let
|λ〉 =

∑
n

cn |n〉

then require

â
∑
n

cn |n〉 = λ
∑
n

cn |n〉∑
n

cn√
n!
â
(
â†
)n |0〉 = λ

∑
n

cn |n〉∑
n

cn√
n!

([
â,
(
â†
)n]

+
(
â†
)n
â
)
|0〉 = λ

∑
n

cn |n〉∑
n

cn√
n!

[
â,
(
â†
)n] |0〉 = λ

∑
n

cn |n〉

7.1 Computing the commutators
Now find the commutators Ân ≡

[
â,
(
â†
)n]. To begin, look at the first few. Since Â1 =

[
â, â†

]
= 1,

Â1 =
[
â, â†

]
= 1

Â2 =
[
â,
(
â†
)2]

= â†
[
â, â†

]
+
[
â, â†

]
â†

= 2â†

Â3 =
[
â,
(
â†
)3]

= â†
[
â,
(
â†
)2]

+
[
â, â†

] (
â†
)2

= 2
(
â†
)2

+
(
â†
)2

= 3
(
â†
)2

This suggests that Ân = n
(
â†
)n−1. We prove it by induction. First, the relation is true for n = 1. Now,

assume it holds for n− 1, and try to prove that it must hold for n. If it holds for n− 1, then

Ân−1 = (n− 1)
(
â†
)n−2

and we compute Ân:

Ân ≡
[
â,
(
â†
)n]

= â†
[
â,
(
â†
)n−1]

+
[
â, â†

] (
â†
)n−1

= â†Ân−1 +
(
â†
)n−1

= â† (n− 1)
(
â†
)n−2

+
(
â†
)n−1

= n
(
â†
)n−1

which is the anticipated result for n. Since the supposition is true for n = 1, and is true for n whenever it
holds for n− 1, it holds for all integers.
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7.2 A recursion relation for coherent states
Now return to our condition for coherence,∑

n

cn√
n!

[
â,
(
â†
)n] |0〉 = λ

∑
n

cn |n〉

Substituting for the commutators, we have

∞∑
n=0

cn√
n!
n
(
â†
)n−1 |0〉 = λ

∞∑
n=0

cn |n〉

∞∑
n=1

cn√
n!
n
(
â†
)n−1 |0〉 = λ

∞∑
n=0

cn |n〉

∞∑
n=1

cn√
n!
n
√
(n− 1)! |n− 1〉 = λ

∞∑
n=0

cn |n〉

∞∑
n=1

cn
√
n |n− 1〉 = λ

∞∑
n=0

cn |n〉

Now rewrite the sum on the left, letting n− 1→ n,

∞∑
n=1

cn
√
n |n− 1〉 =

∞∑
n=0

cn+1

√
n+ 1 |n〉

The sums now match provided
cn+1

√
n+ 1 = λcn

Iterating this recursion relationship, we find

cn =
λn√
n!

for all n. The coherent state is therefore given by

|λ〉 =
∑
n

λn√
n!
|n〉

=
∑
n

λn

n!

(
â†
)n |0〉

= eλâ
†
|0〉

7.3 Time dependence
The time dependence is given by

|λ, t〉 = Û (t, t0) |λ, t0〉

e−
i
~ Ĥt

∑
n

λn√
n!
|n〉

=
∑
n

λn√
n!
e−

i
~ Ĥt |n〉

=
∑
n

λn√
n!
e−i(n+

1
2 )ωt |n〉
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= e−
iωt
2

∑
n

λn√
n!
e−inωt |n〉

= e−
iωt
2

∑
n

(
λe−iωt

)n
√
n!

|n〉

= e−
iωt
2

∣∣λe−iωt, t0〉
so the complex parameter λ is just replaced by λe−iωt in the original state.
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