Simple Harmonic Oscillator

February 23, 2015

One of the most important problems in quantum mechanics is the simple harmonic oscillator, in part because its properties are directly applicable to field theory.

1 Hamiltonian

Writing the potential $\frac{1}{2}kx^2$ in terms of the classical frequency, $\omega = \sqrt{\frac{k}{m}}$, puts the Hamiltonian in the form

$$H = \frac{p^2}{2m} + \frac{m\omega^2 x^2}{2}$$

resulting in the Hamiltonian operator,

$$\hat{H} = \frac{\hat{P}^2}{2m} + \frac{m\omega^2 \hat{X}^2}{2}$$

We make no choice of basis.

2 Raising and lowering operators

Notice that

$$\begin{pmatrix} x + \frac{ip}{m\omega} \end{pmatrix} \begin{pmatrix} x - \frac{ip}{m\omega} \end{pmatrix} = x^2 + \frac{p^2}{m^2\omega^2}$$
$$= \frac{2}{m\omega^2} \left(\frac{1}{2}m\omega^2 x^2 + \frac{p^2}{2m} \right)$$

so that we may write the classical Hamiltonian as

$$H = \frac{m\omega^2}{2} \left(x + \frac{ip}{m\omega} \right) \left(x - \frac{ip}{m\omega} \right)$$

We can write the quantum Hamiltonian in a similar way. Choosing our normalization with a bit of foresight, we define two conjugate operators,

$$\hat{a} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{X} + \frac{i}{m\omega} \hat{P} \right)$$
$$\hat{a}^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{X} - \frac{i}{m\omega} \hat{P} \right)$$

The operator \hat{a}^{\dagger} is called the raising operator and \hat{a} is called the lowering operator. In taking the product of these, we must be careful with ordering since \hat{X} and \hat{P}

$$\hat{a}^{\dagger}\hat{a} = \frac{m\omega}{2\hbar}\left(\hat{X} - \frac{i\hat{P}}{m\omega}\right)\left(\hat{X} + \frac{i\hat{P}}{m\omega}\right)$$

$$= \frac{m\omega}{2\hbar} \left(\hat{X}^2 + \frac{i}{m\omega} \hat{X}\hat{P} - \frac{i}{m\omega} \hat{P}\hat{X} + \frac{\hat{P}^2}{m^2\omega^2} \right)$$
$$= \frac{m\omega}{2\hbar} \left(\hat{X}^2 + \frac{i}{m\omega} \left[\hat{X}, \hat{P} \right] + \frac{\hat{P}^2}{m^2\omega^2} \right)$$

Using the commutator, $\left[\hat{X}, \hat{P}\right] = i\hbar\hat{1}$, this becomes

$$\hat{a}^{\dagger}\hat{a} = \left(\frac{1}{\hbar\omega}\right)\left(\frac{1}{2}m\omega^{2}\right)\left(\hat{X}^{2} - \frac{\hbar}{m\omega} + \frac{\hat{P}^{2}}{m^{2}\omega^{2}}\right)$$
$$= \frac{1}{\hbar\omega}\left(\frac{1}{2}m\omega^{2}\hat{X}^{2} - \frac{1}{2}\hbar\omega + \frac{\hat{P}^{2}}{2m}\right)$$
$$= \frac{1}{\hbar\omega}\left(\hat{H} - \frac{1}{2}\hbar\omega\right)$$

and therefore,

$$\hat{H} = \hbar\omega \left(\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right)$$

3 The number operator

This turns out to be a very convenient form for the Hamiltonian because \hat{a} and a^{\dagger} have very simple properties. First, their commutator is simply

$$\begin{bmatrix} \hat{a}, \hat{a}^{\dagger} \end{bmatrix} = \frac{m\omega}{2\hbar} \left[\left(\hat{X} + \frac{i\hat{P}}{m\omega} \right), \left(\hat{X} - \frac{i\hat{P}}{m\omega} \right) \right]$$

$$= \frac{m\omega}{2\hbar} \left(\left[\hat{X}, -\frac{i}{m\omega} \hat{P} \right] + \left[\frac{i}{m\omega} \hat{P}, \hat{X} \right] \right)$$

$$= -\frac{2i}{m\omega} \frac{m\omega}{2\hbar} \left[\hat{X}, \hat{P} \right]$$

$$= -\frac{i}{\hbar} i\hbar$$

$$= 1$$

Consider one further set of commutation relations. Defining $\hat{N} \equiv \hat{a}^{\dagger} \hat{a} = \hat{N}^{\dagger}$, called the number operator, we have

$$\begin{bmatrix} \hat{N}, \hat{a} \end{bmatrix} = \begin{bmatrix} \hat{a}^{\dagger} \hat{a}, \hat{a} \end{bmatrix}$$

$$= \hat{a}^{\dagger} \begin{bmatrix} \hat{a}, \hat{a} \end{bmatrix} + \begin{bmatrix} \hat{a}^{\dagger}, \hat{a} \end{bmatrix} \hat{a}$$

$$= -\hat{a}$$

and

$$\begin{split} \begin{bmatrix} \hat{N}, \hat{a}^{\dagger} \end{bmatrix} &= \begin{bmatrix} \hat{a}^{\dagger} \hat{a}, \hat{a}^{\dagger} \end{bmatrix} \\ &= \hat{a} \begin{bmatrix} \hat{a}^{\dagger}, \hat{a}^{\dagger} \end{bmatrix} + \hat{a}^{\dagger} \begin{bmatrix} \hat{a}, \hat{a}^{\dagger} \end{bmatrix} \\ &= \hat{a}^{\dagger} \end{split}$$

Notice that \hat{N} is Hermitian, hence observable, and that $\hat{H} = \hbar \omega \left(\hat{N} + \frac{1}{2} \right)$.

4 Energy eigenkets

4.1 Positivity of the energy

Consider an arbitrary expectation value of the Hamiltonian,

$$\begin{split} \langle \psi | \, \hat{H} \, | \psi \rangle &= \langle \psi | \, \hbar \omega \left(\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right) | \psi \rangle \\ &= \hbar \omega \left(\langle \psi | \, \hat{a}^{\dagger} \hat{a} \, | \psi \rangle + \frac{1}{2} \langle \psi \, | \psi \rangle \right) \end{split}$$

Since $\langle \psi | \psi \rangle > 0$ for any state

$$\begin{split} \left\langle \psi \right| \hat{H} \left| \psi \right\rangle &= \hbar \omega \left(\left\langle \psi \right| \hat{a}^{\dagger} \hat{a} \left| \psi \right\rangle + \frac{1}{2} \left\langle \psi \right| \psi \right\rangle \right) \\ &> \hbar \omega \left\langle \psi \right| \hat{a}^{\dagger} \hat{a} \left| \psi \right\rangle \end{split}$$

and if we define $|\beta\rangle \equiv \hat{a} |\psi\rangle$ we see that the remaining term is also positive definite,

$$\langle \psi | \hat{a}^{\dagger} \hat{a} | \psi \rangle = \langle \beta | \beta \rangle > 0$$

This means that all expectation values of the Hamiltonian are positive definite, and in particular, all energies are positive, since for any normalized energy eigenket,

$$\langle E | \hat{H} | E \rangle = E > 0$$

4.2 The lowest energy

Now suppose $|E\rangle$ is any normalized energy eigenket. Then consider the new ket found by acting on this state with the lowering operator, \hat{a} . Applying the Hamiltonian operator to $\hat{a} |E\rangle$,

$$\begin{split} \hat{H}\left(\hat{a}\left|E\right\rangle\right) &= \hbar\omega\left(\hat{N}+\frac{1}{2}\right)\left(\hat{a}\left|E\right\rangle\right) \\ &= \hbar\omega\hat{N}\hat{a}\left|E\right\rangle + \frac{1}{2}\hbar\omega\hat{a}\left|E\right\rangle \\ &= \hbar\omega\left(\left[\hat{N},\hat{a}\right]+\hat{a}\hat{N}\right)\left|E\right\rangle + \hat{a}\frac{1}{2}\hbar\omega\left(\left|E\right\rangle\right) \\ &= \hbar\omega\left(-\hat{a}+\hat{a}\hat{N}\right)\left|E\right\rangle + \hat{a}\frac{1}{2}\hbar\omega\left|E\right\rangle \\ &= -\hbar\omega\hat{a}\left|E\right\rangle + \hat{a}\hbar\omega\left(\hat{N}+\frac{1}{2}\right)\left|E\right\rangle \\ &= -\hbar\omega\hat{a}\left|E\right\rangle + \hat{a}\hat{H}\left|E\right\rangle \\ &= -\hbar\omega\hat{a}\left|E\right\rangle + \hat{a}\hat{E}\left|E\right\rangle \\ &= (E-\hbar\omega)\left(\hat{a}\left|E\right\rangle\right) \end{split}$$

This means that $\hat{a} |E\rangle$ is also an energy eigenket, with energy $E - \hbar\omega$. Since $\hat{a} |E\rangle$ is an energy eigenket, we may repeat this procedure to show that $\hat{a}^2 |E\rangle$ is an energy eigenket with energy $E - 2\hbar\omega$. Continuing in this way, we find that $\hat{a}^k |E\rangle$ will have energy $E - k\hbar\omega$. This process cannot continue indefinitely, because the energy must remain positive. Let k be the largest integer for which $E - k\hbar\omega$ is positive,

$$\hat{H}\hat{a}^{k}\left|E\right\rangle = \left(E - k\hbar\omega\right)\hat{a}^{k}\left|E\right\rangle$$

with corresponding state $\hat{a}^k | E \rangle$. Then applying the lowering operator one more time cannot give a new state. The only other possibility is zero. Rename the lowest energy state $|0\rangle = A_0 \hat{a}^k | E \rangle$, where we choose A_0 so that $|0\rangle$ is normalized. We then must have

$$\hat{a} \left| 0 \right\rangle = 0$$

and therefore,

$$\hat{H} |0\rangle = \hbar\omega \left(\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right) |0\rangle$$

$$= \frac{1}{2} \hbar\omega |0\rangle$$

This is the lowest energy state of the oscillator.

To see that it is unique, suppose we had chosen a different energy eigenket, $|E'\rangle$, to start with. Then we would find a new ground state, $|0'\rangle$, also satisfying $\hat{a} |0'\rangle = 0$. However, as we show in the Section 5, the condition $\hat{a} |0\rangle = 0$ in a coordinate basis leads to a differential equation with a unique solution for the ground state wave function. Thus, there is only one state satisfying $\hat{a} |0\rangle = 0$.

4.3 The complete spectrum

Now that we have the ground state, we reverse the process, acting instead with the raising operator. Acting on any energy eigenket, we have

$$\begin{split} \hat{H}\left(\hat{a}^{\dagger}\left|E\right\rangle\right) &= \hbar\omega\left(\hat{N}+\frac{1}{2}\right)\left(\hat{a}^{\dagger}\left|E\right\rangle\right) \\ &= \hbar\omega\hat{N}\hat{a}^{\dagger}\left|E\right\rangle + \frac{1}{2}\hbar\omega\hat{a}^{\dagger}\left|E\right\rangle \\ &= \hbar\omega\left(\left[\hat{N},\hat{a}^{\dagger}\right]+\hat{a}^{\dagger}\hat{N}\right)\left|E\right\rangle + \hat{a}^{\dagger}\frac{1}{2}\hbar\omega\left|E\right\rangle \\ &= \hbar\omega\hat{a}^{\dagger}\left|E\right\rangle + \hat{a}^{\dagger}\left(\hbar\omega\hat{N}+\frac{1}{2}\hbar\omega\right)\left|E\right\rangle \\ &= \hbar\omega\hat{a}^{\dagger}\left|E\right\rangle + \hat{a}^{\dagger}\hat{H}\left|E\right\rangle \\ &= \hbar\omega\hat{a}^{\dagger}\left|E\right\rangle + \hat{a}^{\dagger}E\left|E\right\rangle \\ &= \hbar\omega\hat{a}^{\dagger}\left|E\right\rangle + \hat{a}^{\dagger}E\left|E\right\rangle \\ &= (E+\hbar\omega)\left(\hat{a}^{\dagger}\left|E\right\rangle\right) \end{split}$$

Therefore, beginning with this lowest state, we have

$$\hat{H} \left(\hat{a}^{\dagger} | 0 \right) = \left(\hbar \omega + \frac{1}{2} \hbar \omega \right) \left(\hat{a}^{\dagger} | 0 \right)$$

$$= \frac{3}{2} \hbar \omega \left(\hat{a}^{\dagger} | E \right)$$

and we define the normalized state to be

$$|1\rangle = A_1 \hat{a}^{\dagger} |0\rangle$$

There is nothing to prevent us continuing this procedure indefinitely. Continuing, we have states

$$|n\rangle = A_n \left(\hat{a}^{\dagger}\right)^n |0\rangle$$

satisfying

$$\hat{H} \left| n
ight
angle \;\;=\;\; \left(n + rac{1}{2}
ight) \hbar \omega \left| n
ight
angle$$

This gives the complete set of energy eigenkets.

Normalization 4.4

We have defined the lowest ket, $|0\rangle$, to be normalized. For the next level, we require

$$1 = \langle 1 | 1 \rangle = |A_1|^2 \langle 0 | \hat{a} \hat{a}^{\dagger} | 0 \rangle = |A_1|^2 \langle 0 | ([\hat{a}, \hat{a}^{\dagger}] + \hat{a}^{\dagger} \hat{a}) | 0 \rangle = |A_1|^2 \langle 0 | (1 + \hat{a}^{\dagger} \hat{a}) | 0 \rangle = |A_1|^2 \langle 0 | 0 \rangle$$

so that choosing the phase so that A_1 is real, we have $A_1 = 1$. Now, consider the expectation of \hat{N} in the n^{th} state. We see from the energy that the eigenvalues of the number operator are integers, n, so that for the normalized state $|n\rangle$,

$$1 = \langle n | n \rangle$$

$$= |A_n|^2 \langle 0 | \hat{a}^n (\hat{a}^{\dagger})^n | 0 \rangle$$

$$= |A_n|^2 \langle 0 | \hat{a}^{n-1} \hat{a} \hat{a}^{\dagger} (\hat{a}^{\dagger})^{n-1} | 0 \rangle$$

$$= |A_n|^2 \langle 0 | \hat{a}^{n-1} (\hat{a}^{\dagger} \hat{a} + [\hat{a}, \hat{a}^{\dagger}]) (\hat{a}^{\dagger})^{n-1} | 0 \rangle$$

$$= |A_n|^2 \langle 0 | \hat{a}^{n-1} (\hat{N} + 1) (\hat{a}^{\dagger})^{n-1} | 0 \rangle$$

$$= |A_n|^2 (\langle n-1 | \frac{1}{A_{n-1}^*}) (\hat{N} + 1) (\frac{1}{A_{n-1}} | n-1 \rangle)$$

$$= \frac{|A_n|^2}{|A_{n-1}|^2} \langle n-1 | (\hat{N} + 1) | n-1 \rangle$$

$$= \frac{|A_n|^2}{|A_{n-1}|^2} (n-1+1)$$

Therefore, $|A_{n-1}|^2 = n |A_n|^2$, so iterating,

$$|A_n|^2 = \frac{1}{n} |A_{n-1}|^2$$

= $\frac{1}{n(n-1)} |A_{n-2}|^2$
:
= $\frac{1}{n!} |A_1|^2$

so that, choosing all of the coefficients real, we have

$$\left|n\right\rangle = \frac{1}{\sqrt{n!}} \left(\hat{a}^{\dagger}\right)^{n} \left|0\right\rangle$$

Wave function $\mathbf{5}$

Now consider the wave function, $\psi_n(x)$, for the eigenstates. For the lowest state, we know that

$$\hat{a} \left| 0 \right\rangle = 0$$

so in a coordinate basis, we compute

$$\begin{array}{lll} 0 &=& \langle x | \, \hat{a} \, | 0 \rangle \\ &=& \sqrt{\frac{m\omega}{2\hbar}} \, \langle x | \left(\hat{X} + \frac{i}{m\omega} \hat{P} \right) | 0 \rangle \\ &=& \sqrt{\frac{m\omega}{2\hbar}} \left(\langle x | \, \hat{X} \, | 0 \rangle + \frac{i}{m\omega} \hat{P} \, | 0 \rangle \right) \\ &=& \sqrt{\frac{m\omega}{2\hbar}} \left(x \, \langle x \, | 0 \rangle + \frac{i}{m\omega} \, \langle x | \, \hat{P} \, | 0 \rangle \right) \end{array}$$

where, inserting an identity,

$$\begin{aligned} \langle x | \hat{P} | 0 \rangle &= \int dx' \langle x | \hat{P} | x' \rangle \langle x' | 0 \rangle \\ &= \int dx' \left(i\hbar \frac{\partial}{\partial x'} \delta^3 \left(x - x' \right) \right) \langle x' | 0 \rangle \\ &= -i\hbar \int dx' \delta^3 \left(x - x' \right) \frac{\partial}{\partial x'} \langle x' | 0 \rangle \\ &= -i\hbar \frac{d}{dx} \langle x | 0 \rangle \end{aligned}$$

Therefore, setting $\psi_{0}(x) = \langle x | 0 \rangle$ and substituting,

$$0 = x \langle x | 0 \rangle + \frac{i}{m\omega} \langle x | \hat{P} | 0 \rangle$$
$$= x \psi_0 (x) + \frac{i}{m\omega} \left(-i\hbar \frac{d}{dx} \psi_0 (x) \right)$$
$$= x \psi_0 (x) + \frac{\hbar}{m\omega} \frac{d}{dx} \psi_0 (x)$$
$$\frac{d}{dx} \psi_0 (x) = -\frac{m\omega x}{\hbar} \psi_0 (x)$$
$$\psi_0 (x) = A e^{-\frac{m\omega x^2}{2\hbar}}$$

so the wave function of the ground state is a Gaussian.

To find the wave functions of the higher energy states, consider

$$\begin{split} \psi_{n}\left(x\right) &= \langle x \mid n \rangle \\ &= \langle x \mid \frac{1}{\sqrt{n!}} \left(\hat{a}^{\dagger} \right)^{n} \mid 0 \rangle \\ &= \frac{1}{\sqrt{n}} \langle x \mid \hat{a}^{\dagger} \frac{1}{\sqrt{(n-1)!}} \left(\hat{a}^{\dagger} \right)^{n-1} \mid 0 \rangle \\ &= \frac{1}{\sqrt{n}} \sqrt{\frac{m\omega}{2\hbar}} \langle x \mid \left(\hat{X} - \frac{i}{m\omega} \hat{P} \right) \mid n-1 \rangle \\ &= \frac{1}{\sqrt{n}} \sqrt{\frac{m\omega}{2\hbar}} \left(x \langle x \mid n-1 \rangle - \frac{i}{m\omega} \int dx' \langle x \mid \hat{P} \mid x' \rangle \langle x' \mid n-1 \rangle \right) \\ &= \frac{1}{\sqrt{n}} \sqrt{\frac{m\omega}{2\hbar}} \left(x \psi_{n-1}\left(x \right) - \frac{i}{m\omega} \int dx' \left(i\hbar \frac{\partial}{\partial x'} \delta^{3}\left(x - x' \right) \right) \psi_{n-1}\left(x' \right) \right) \\ &= \frac{1}{\sqrt{n}} \sqrt{\frac{m\omega}{2\hbar}} \left(x \psi_{n-1}\left(x \right) - \frac{\hbar}{m\omega} \int dx' \delta^{3}\left(x - x' \right) \frac{\partial}{\partial x'} \psi_{n-1}\left(x' \right) \right) \\ &= \sqrt{\frac{m\omega}{2n\hbar}} \left(x - \frac{\hbar}{m\omega} \frac{d}{dx} \right) \psi_{n-1}\left(x \right) \end{split}$$

Therefore, we can find all states by iterating this operator,

$$\psi_n(x') = \sqrt{\frac{m\omega}{2n!\hbar}} \left(x - \frac{\hbar}{m\omega}\frac{\partial}{\partial x}\right)^n \psi_0(x)$$

The result is a series of polynomials, the Hermite polynomials, times the Gaussian factor.

Exercise: Find $\psi_1(x)$ and $\psi_2(x)$.

6 Time evolution of a mixed state of the oscillator

Consider the time evolution of a state of the harmonic oscillator given by the most general superposition of the lowest two eigenstates

$$|\psi\rangle = \cos\theta \,|0\rangle + e^{i\varphi}\sin\theta \,|1\rangle$$

The time evolution is given by

$$\begin{split} \psi, t \rangle &= \mathcal{U}\left(t\right) |\psi\rangle \\ &= e^{-\frac{i}{\hbar}\hat{H}t} |\psi\rangle \\ &= \cos\theta e^{-\frac{i}{\hbar}\hat{H}t} |0\rangle + e^{i\varphi}\sin\theta e^{-\frac{i}{\hbar}\hat{H}t} |1\rangle \\ &= \cos\theta e^{-\frac{i}{\hbar}E_{0}t} |0\rangle + e^{i\varphi}\sin\theta e^{-\frac{i}{\hbar}E_{1}t} |1\rangle \\ &= \cos\theta e^{-\frac{i}{2}\omega t} |0\rangle + e^{i\varphi}\sin\theta e^{-\frac{3}{2}i\omega t} |1\rangle \\ &= e^{-\frac{i}{2}\omega t} \left(\cos\theta |0\rangle + e^{i\varphi}\sin\theta e^{-i\omega t} |1\rangle\right) \end{split}$$

Now look at the time dependence of the expectation value of the position operator, which we write in terms of raising and lowering operators as $\hat{X} = \sqrt{\frac{\hbar}{2m\omega}} \left(\hat{a} + \hat{a}^{\dagger} \right)$:

$$\begin{aligned} \langle \psi, t | \, \hat{X} \, | \psi, t \rangle &= \left(\cos \theta \, \langle 0 | + e^{-i\varphi} \sin \theta e^{i\omega t} \, \langle 1 | \right) e^{\frac{i}{2}\omega t} \hat{X} e^{-\frac{i}{2}\omega t} \left(\cos \theta \, | 0 \rangle + e^{i\varphi} \sin \theta e^{-i\omega t} \, | 1 \rangle \right) \\ &= \sqrt{\frac{\hbar}{2m\omega}} \left(\cos \theta \, \langle 0 | + e^{-i\varphi} \sin \theta e^{i\omega t} \, \langle 1 | \right) \left(\hat{a} + \hat{a}^{\dagger} \right) \left(\cos \theta \, | 0 \rangle + e^{i\varphi} \sin \theta e^{-i\omega t} \, | 1 \rangle \right) \\ &= \sqrt{\frac{\hbar}{2m\omega}} \left(\cos \theta \, \langle 0 | + e^{-i\varphi} \sin \theta e^{i\omega t} \, \langle 1 | \right) \left(\cos \theta \, | 1 \rangle + e^{i\varphi} \sin \theta e^{-i\omega t} \left(| 0 \rangle + \sqrt{2} \, | 2 \rangle \right) \right) \\ &= \sqrt{\frac{\hbar}{2m\omega}} \left(\cos \theta \sin \theta e^{-i(\omega t - \varphi)} + \sin \theta \cos \theta e^{i(\omega t - \varphi)} \right) \\ &= \sqrt{\frac{\hbar}{2m\omega}} \sin 2\theta \cos \left(\omega t - \varphi \right) \end{aligned}$$

where we have used $\hat{a} |0\rangle = 0$, $\hat{a} |1\rangle = |0\rangle$, $\hat{a}^{\dagger} |0\rangle = |1\rangle$ and $\hat{a}^{\dagger} |1\rangle = \sqrt{2} |2\rangle$. We see that the expected position oscillates back and forth between $\pm \sqrt{\frac{\hbar}{2m\omega}} \sin 2\theta$ with frequency ω . Superpositions involving higher excited states will bring in harmonics, $n\omega$, and will then allow for varied traveling waveforms.

7 Coherent states

We define a coherent state of the harmonic oscillator to be an eigenstate of the lowering operator,

$$\hat{a} \left| \lambda \right\rangle = \lambda \left| \lambda \right\rangle$$

To find this state, let

$$\left|\lambda\right\rangle = \sum_{n} c_{n} \left|n\right\rangle$$

then require

$$\hat{a} \sum_{n} c_{n} |n\rangle = \lambda \sum_{n} c_{n} |n\rangle$$

$$\sum_{n} \frac{c_{n}}{\sqrt{n!}} \hat{a} \left(\hat{a}^{\dagger}\right)^{n} |0\rangle = \lambda \sum_{n} c_{n} |n\rangle$$

$$\sum_{n} \frac{c_{n}}{\sqrt{n!}} \left(\left[\hat{a}, \left(\hat{a}^{\dagger}\right)^{n}\right] + \left(\hat{a}^{\dagger}\right)^{n} \hat{a} \right) |0\rangle = \lambda \sum_{n} c_{n} |n\rangle$$

$$\sum_{n} \frac{c_{n}}{\sqrt{n!}} \left[\hat{a}, \left(\hat{a}^{\dagger}\right)^{n}\right] |0\rangle = \lambda \sum_{n} c_{n} |n\rangle$$

7.1 Computing the commutators

Now find the commutators $\hat{A}_n \equiv [\hat{a}, (\hat{a}^{\dagger})^n]$. To begin, look at the first few. Since $\hat{A}_1 = [\hat{a}, \hat{a}^{\dagger}] = 1$,

$$\hat{A}_{1} = [\hat{a}, \hat{a}^{\dagger}] = 1
\hat{A}_{2} = [\hat{a}, (\hat{a}^{\dagger})^{2}]
= \hat{a}^{\dagger} [\hat{a}, \hat{a}^{\dagger}] + [\hat{a}, \hat{a}^{\dagger}] \hat{a}^{\dagger}
= 2\hat{a}^{\dagger}
\hat{A}_{3} = [\hat{a}, (\hat{a}^{\dagger})^{3}]
= \hat{a}^{\dagger} [\hat{a}, (\hat{a}^{\dagger})^{2}] + [\hat{a}, \hat{a}^{\dagger}] (\hat{a}^{\dagger})^{2}
= 2 (\hat{a}^{\dagger})^{2} + (\hat{a}^{\dagger})^{2}
= 3 (\hat{a}^{\dagger})^{2}$$

This suggests that $\hat{A}_n = n \left(\hat{a}^{\dagger} \right)^{n-1}$. We prove it by induction. First, the relation is true for n = 1. Now, assume it holds for n-1, and try to prove that it must hold for n. If it holds for n-1, then

$$\hat{A}_{n-1} = (n-1) \left(\hat{a}^{\dagger} \right)^{n-2}$$

and we compute \hat{A}_n :

$$\hat{A}_{n} \equiv \left[\hat{a}, \left(\hat{a}^{\dagger}\right)^{n}\right] \\
= \hat{a}^{\dagger} \left[\hat{a}, \left(\hat{a}^{\dagger}\right)^{n-1}\right] + \left[\hat{a}, \hat{a}^{\dagger}\right] \left(\hat{a}^{\dagger}\right)^{n-1} \\
= \hat{a}^{\dagger} \hat{A}_{n-1} + \left(\hat{a}^{\dagger}\right)^{n-1} \\
= \hat{a}^{\dagger} \left(n-1\right) \left(\hat{a}^{\dagger}\right)^{n-2} + \left(\hat{a}^{\dagger}\right)^{n-1} \\
= n \left(\hat{a}^{\dagger}\right)^{n-1}$$

which is the anticipated result for n. Since the supposition is true for n = 1, and is true for n whenever it holds for n - 1, it holds for all integers.

7.2 A recursion relation for coherent states

Now return to our condition for coherence,

$$\sum_{n} \frac{c_{n}}{\sqrt{n!}} \left[\hat{a}, \left(\hat{a}^{\dagger} \right)^{n} \right] \left| 0 \right\rangle = \lambda \sum_{n} c_{n} \left| n \right\rangle$$

Substituting for the commutators, we have

$$\sum_{n=0}^{\infty} \frac{c_n}{\sqrt{n!}} n \left(\hat{a}^{\dagger} \right)^{n-1} |0\rangle = \lambda \sum_{n=0}^{\infty} c_n |n\rangle$$
$$\sum_{n=1}^{\infty} \frac{c_n}{\sqrt{n!}} n \left(\hat{a}^{\dagger} \right)^{n-1} |0\rangle = \lambda \sum_{n=0}^{\infty} c_n |n\rangle$$
$$\sum_{n=1}^{\infty} \frac{c_n}{\sqrt{n!}} n \sqrt{(n-1)!} |n-1\rangle = \lambda \sum_{n=0}^{\infty} c_n |n\rangle$$
$$\sum_{n=1}^{\infty} c_n \sqrt{n} |n-1\rangle = \lambda \sum_{n=0}^{\infty} c_n |n\rangle$$

Now rewrite the sum on the left, letting $n-1 \rightarrow n$,

$$\sum_{n=1}^{\infty} c_n \sqrt{n} |n-1\rangle = \sum_{n=0}^{\infty} c_{n+1} \sqrt{n+1} |n\rangle$$

The sums now match provided

$$c_{n+1}\sqrt{n+1} = \lambda c_n$$

Iterating this recursion relationship, we find

$$c_n = \frac{\lambda^n}{\sqrt{n!}}$$

for all n. The coherent state is therefore given by

$$\begin{aligned} |\lambda\rangle &= \sum_{n} \frac{\lambda^{n}}{\sqrt{n!}} |n\rangle \\ &= \sum_{n} \frac{\lambda^{n}}{n!} \left(\hat{a}^{\dagger}\right)^{n} |0\rangle \\ &= e^{\lambda \hat{a}^{\dagger}} |0\rangle \end{aligned}$$

7.3 Time dependence

The time dependence is given by

$$\begin{aligned} |\lambda,t\rangle &= U(t,t_0) |\lambda,t_0\rangle \\ &e^{-\frac{i}{\hbar}\hat{H}t} \sum_n \frac{\lambda^n}{\sqrt{n!}} |n\rangle \\ &= \sum_n \frac{\lambda^n}{\sqrt{n!}} e^{-\frac{i}{\hbar}\hat{H}t} |n\rangle \\ &= \sum_n \frac{\lambda^n}{\sqrt{n!}} e^{-i\left(n+\frac{1}{2}\right)\omega t} |n\rangle \end{aligned}$$

$$= e^{-\frac{i\omega t}{2}} \sum_{n} \frac{\lambda^{n}}{\sqrt{n!}} e^{-in\omega t} |n\rangle$$
$$= e^{-\frac{i\omega t}{2}} \sum_{n} \frac{\left(\lambda e^{-i\omega t}\right)^{n}}{\sqrt{n!}} |n\rangle$$
$$= e^{-\frac{i\omega t}{2}} |\lambda e^{-i\omega t}, t_{0}\rangle$$

so the complex parameter λ is just replaced by $\lambda e^{-i\omega t}$ in the original state.