Midterm Exam Review

February 27, 2013

Chapter I

Basics of bra-ket notation

1. Kets and bras; dual space, inner products $\langle\alpha \mid \beta\rangle$, conjugation $\langle\alpha \mid \beta\rangle=\langle\beta \mid \alpha\rangle^{*}$
2. Basis bras, discrete and continuous $\langle a|,\langle x|$
3. Conversion between vectors and kets, and between operators and matrices

$$
\begin{aligned}
\langle a \mid \beta\rangle & \left(\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{n}
\end{array}\right) \\
\left|a_{2}\right\rangle\left\langle a_{3}\right| & \leftrightarrow \\
& \left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0
\end{array}\right)
\end{aligned}
$$

Identity operator (completeness),

$$
\begin{aligned}
& \hat{1}=\sum_{i}\left|a_{i}\right\rangle\left\langle a_{i}\right| \\
& \hat{1}=\int d p|p\rangle\langle p|
\end{aligned}
$$

Orthonormality,

$$
\begin{aligned}
\left\langle a_{i} \mid a_{j}\right\rangle & =\delta_{i j} \\
\left\langle p \mid p^{\prime}\right\rangle & =\delta\left(p-p^{\prime}\right)
\end{aligned}
$$

Quantum interpretation

Measurements, observables, eigenstates. Hermiticity, diagonalization, compatible observables. Probability and probability density.

*Diagonalization and eigenkets

Find the eigenvalues and eigenkets for a three-state system

*Spin operators; Stern-Gerlach; sequential measurement

Anything to do with $\hat{S}_{x}, \hat{S}_{y}, \hat{S}_{z}$, and their eigenkets; use of general eigenkets, $\left|\mathbf{n} \cdot \hat{\mathbf{S}}, \pm \frac{1}{2}\right\rangle$

Continuous bases

Conversion between $\langle x|,\langle p|$ as needed $\langle x \mid p\rangle=\frac{1}{\sqrt{2 \pi \hbar}} e^{\frac{i}{\hbar} p x}$; inserting identity to evaluate operators, e.g.

$$
\hat{P}|\alpha\rangle=\int d p \hat{P}|p\rangle\langle p \mid \alpha\rangle
$$

etc. Use of

$$
\left\langle x^{\prime}\right| \hat{P}|x\rangle=-i \hbar \frac{\partial}{\partial x^{\prime}} \delta\left(x^{\prime}-x\right)
$$

Chapter II

Time evolution

Time evolution operator $\hat{\mathcal{U}}\left(t, t_{0}\right)$ and its generator, \hat{H}. Schrödinger equation. Use of

$$
\hat{\mathcal{U}}\left(t, t_{0}\right)=e^{-\frac{i}{\hbar} \hat{H} t}
$$

Energy eigenkets. Time evolution of a two-state system.

$$
\begin{aligned}
\hat{\mathcal{U}}\left(t, t_{0}\right)\left(a\left|E_{1}\right\rangle+b\left|E_{2}\right\rangle\right) & =e^{-\frac{i}{\hbar} \hat{H} t}\left(a\left|E_{1}\right\rangle+b\left|E_{2}\right\rangle\right) \\
& =a e^{-\frac{i}{\hbar} E_{1} t}\left|E_{1}\right\rangle+b e^{-\frac{i}{\hbar} E_{1} t}\left|E_{2}\right\rangle
\end{aligned}
$$

Solving the Schrödinger equation

*Simple harmonic oscillator

Everything about $\hat{a}, \hat{a}^{\dagger}, \hat{N}, \hat{H}$ operators and the $|n\rangle$ eigenkets. Time evolution.

*Schrödinger equation

The time dependent and time independent Schrödinger wave equations. Solutions for piecewise constant potentials. Probability interpretation. Conservation of probability.

