Problems in Wave Mechanics

February 1, 2017

1. We found that for a Gaussian distribution for k, the normalized, square integrable amplitude is
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Let p = hk so that this becomes a distribution in momentum, with the density
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a normalized Gaussian momentum distribution. Let Ap be the standard deviation of this distribution.
Similarly, the wave function turns out to be Gaussian as well,
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Let Az be the standard deviation of this Gaussian and compute AzAp.
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2. The wave function
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may seem like a plane wave e , but it is not — it is a superposition of many plane waves,
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where the integral extends over all k. Since the time dependence of each plane wave Noris is given
by
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the full time-dependent wave function is given by
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(a) Integrate to find the explicit form of U (z,t).




(b) Compute the probability density, ¥*W¥ to show that it is a Gaussian centered on the moving point,
T — %t. Comment on the qualitative features of the time evolution of the particle position.

3. Solve the stationary state Schrodinger equation for an attractive J-function potential,
V =-WLj (z)

for states with energy —Vp < E < 0. You will need to rederive the boundary conditions at z = 0,
following the general considerations in the Notes.



