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1 The spin-statistics theorem
Bosons are particles which obey Bose-Einstein statistics. This is the usual thermal distribution, particles
with low energy being favored and the number in higher energy states tapering quickly as the energy exceeds
the average. For a nondegenerate bosonic state, the expected number of particles in energy state Ei is

ni (Ei) =
1

e(Ei−µ)/kT − 1

There is no limit on the magnitude of ni. By contrast, fermions are particles which obey Fermi-Dirac
statistics, given for large numbers of fermions by

〈ni (Ei)〉 =
1

e(Ei−µ)/kT + 1

with the restriction of the exclusion principle, that no two fermions may occupy the same state at the same
time. This means that we must always have 〈ni (Ei)〉 ≤ 1.

In quantum field theory it is possible to prove that particles with integer spin (0, 1, 2, . . .) must be bosons
and particles with half-integer spin

(
1
2 ,

3
2 ,

5
2 , . . .

)
must be fermions.

It is also found in quantum field theory that fermion fields must always anticommute. For two fermion
fields,

u1u2 = −u2u1
While arising from other considerations, antisymmetry under pairwise exchange enforces the exclusion prin-
ciple, since for two particles in the same state, u1 (x) = u2 (x) = u (x), the relation u1u2 = −u2u1 implies
u (x) = 0.

2 A two-electron states
In hydrogen, we saw that the wave function was made up of a product of three parts,

Ψ = ψ (r)⊗ |l,ml〉 ⊗
∣∣∣∣12 ,ms

〉
= ψ (x)

∣∣∣∣12 ,ms

〉
describing the radial wave function, the orbital angular momentum state and the spin state.

Electrons are identical particles, and the combined state for multiple electrons must include terms for
every possible interchange of pairs. Thus, while a two-electron state is built from products of 1-particle
states, where

ψA (x1)

∣∣∣∣12 ,ms1

〉
A

ψB (x2)

∣∣∣∣12 ,ms2

〉
B
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describes particle A at position x1 with spin component ms1 and particle B at position x2 with spin com-
ponent ms2, we must also include a term ψA (x2)

∣∣ 1
2 ,ms2

〉
A
ψB (x1)

∣∣ 1
2 ,ms1

〉
B

where the positions and spins
are interchanged. The spin-statistics theorem tells us that the total wave function, Φ (x1,x2)χ (ms1,ms2)
must be antisymmetric under the interchange of the identical electrons.

The total spin wave function is the combination of two spin- 12 states,∣∣∣∣12 ,ms1

〉
A

∣∣∣∣12 ,ms2

〉
B

and we know how to add these. If the spins align, we have a triplet state, χtriplet = |1,m〉:

|1, 1〉 =

∣∣∣∣12 , 1

2

〉
A

∣∣∣∣12 , 1

2

〉
B

|1, 0〉 =
1√
2

(∣∣∣∣12 ,−1

2

〉
A

∣∣∣∣12 , 1

2

〉
B

+

∣∣∣∣12 , 1

2

〉
A

∣∣∣∣12 ,−1

2

〉
B

)
|1,−1〉 =

∣∣∣∣12 ,−1

2

〉
A

∣∣∣∣12 ,−1

2

〉
B

while the remaining combination is a singlet:

χsinglet = |0, 0〉 =
1√
2

(∣∣∣∣12 ,−1

2

〉
A

∣∣∣∣12 , 1

2

〉
B

−
∣∣∣∣12 , 1

2

〉
A

∣∣∣∣12 ,−1

2

〉
B

)
Notice that the triplet is symmetric under the interchange of particles, A⇔ B, while the singlet is antisym-
metric.

Similarly, the spatial wave function of the state may be symmetric,

ψA (x1)ψB (x2) + ψA (x2)ψB (x1)

or antisymmetric
ψA (x1)ψB (x2)− ψA (x2)ψB (x1)

The total state is therefore either

1√
2

[ψA (x1)ψB (x2) + ψA (x2)ψB (x1)] |0, 0〉

or
1√
2

[ψA (x1)ψB (x2)− ψA (x2)ψB (x1)] |1,m〉

to have the right total symmetry.

3 Example: Helium
For Helium, the spatial Hamiltonian is

Ĥ =
p̂2
1

2m
+

p̂2
2

2m
− 2e2

r1
− 2e2

r2
+

e2

r12

= Ĥ0 +
e2

r12

where the potential terms give the potential energy due to the nucleus at position x1, the nuclear potential
energy at position x2 and finally the potential between the two electrons. We start by ignoring the interaction
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of the two electrons and just looking at Ĥ0, which is just the sum of two hydrogenic Hamiltonians. For this
we have the simple products of hydrogen solutions with the product of the electric charges replaced by 2e2:

ψtotal (x1,x2) = ψnlm (x1)ψnlm (x2)

For the ground state, this is necessarily symmetric so the spin state must be the (antisymmetric) singlet,

χsinglet = |0, 0〉

from above,
Ψ = ψ100 (x1)ψ100 (x2)χsinglet

For one electron in an excited state this becomes either

Ψ =
1√
2

(ψ100 (x1)ψnlm (x2) + ψ100 (x2)ψnlm (x1))χsinglet

= ψsym (x1,x2)χsinglet

or

Ψ =
1√
2

(ψ100 (x1)ψnlm (x2)− ψ100 (x2)ψnlm (x1))χtriplet

= ψantisym (x1,x2)χtriplet

Now consider excited states, with the interaction term included as a perturbation. The perturbation
energy takes the form

∆E± =

〈
e2

r12

〉
±

=
1

2

ˆ
d3x1d

3x2
e2

r12
|(ψ100 (x1)ψnlm (x2)± ψ100 (x2)ψnlm (x1))|2

=
1

2

ˆ
d3x1d

3x2
e2

r12
((ψ100 (x1)ψnlm (x2)± ψ100 (x2)ψnlm (x1)) (ψ∗

100 (x1)ψ∗
nlm (x2)± ψ∗

100 (x2)ψ∗
nlm (x1)))

=
1

2

ˆ
d3x1d

3x2
e2

r12
(ψ100 (x1)ψnlm (x2)ψ∗

100 (x1)ψ∗
nlm (x2) + ψ100 (x2)ψnlm (x1)ψ∗

100 (x2)ψ∗
nlm (x1))

±1

2

ˆ
d3x1d

3x2
e2

r12
(ψ100 (x2)ψnlm (x1)ψ∗

100 (x1)ψ∗
nlm (x2) + ψ100 (x1)ψnlm (x2)ψ∗

100 (x2)ψ∗
nlm (x1))

=

ˆ
d3x1d

3x2
e2

r12
|ψ100 (x1)|2 |ψnlm (x2)|2

±
ˆ
d3x1d

3x2
e2

r12
ψ100 (x2)ψ∗

100 (x1)ψnlm (x1)ψ∗
nlm (x2)

The highest contribution to the energy comes from the plus sign, since the second integral turns out to be
positive,

∆E+ > ∆E−

Since ∆E+ arises with the electrons in a symmetric state. As a result the electrons of the symmetric spatial
configuration will be in the singlet spin state,

Ψ+ = ψsym (x1,x2)χsinglet parahelium

while the electrons in the lower energy state will be in the triplet configuration,

Ψ− = ψantisym (x1,x2)χtriplet orthohelium

These states are called parahelium and orthohelium, respectively. Parahelium states always have higher
energy than orthohelium states.
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