Orbital angular momentum and the spherical harmonics
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1 Orbital angular momentum

We compare our result on representations of rotations with our previous experience of angular momentum,
defined for a point particle as
L=xxp

or, for a quantum system as the operator relationship

L=xxp

Notice that since

Li = eijit;pr
there is no ordering ambiguity: Z; and p, commute as long as j # k, and the cross product insures this.
Computing commutators, we have

[iu Lmi| = [eijk®Pk, EmnsTnDs)
€ijkEmns [jjiﬁkv inf)b‘]
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= EijkEmns (T [Pk, Tn] Ps + Tn [T, Ds] Pr)
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Therefore, with

EimnLli = Eimn€ijkTjDr

= ITmPn — TnPm

this becomes

|:L’i7 Lm} = iheimnLln
and we see that L,, satisfies the angular momentum commutation relations and must therefore admit |1, m)
representations satisfying

L. |l,m) = mhll,m)
L2|l,m) = 1(+1)h%|l,m)



along with raising and lowering operators, ﬁi. However, in this case we have an explicit coordinate repre-
sentation for the operators. For the z-component,

(x| Lgla) = (x| (21p2 — da2p1) )

. 0 0
= —ih <.13ay - y@x) (x )

Similarly, the z- and y-components are

(il = —in(vg 5 ) txla)
(x| Ly|a)y = —ih (zai - xéi) (x |a)
so we may construct the raising and lowering operators,
x| Ly|a)y = —ih Kyaaz - z?y) +i (z;x - xi)} (x |e)
= —ih {izz;; — Zg% Fi(z tiy) 882] (x )

This exposes an essential asymmetry between spinors and vectors. We have seen that 3-vectors may be
represented a matrices in a complex, 2-dim spinor representation, there does not exist a similar representation
of spinors using 3-dim coordinates. Thus, since orbital angular momentum operators may be written in a
coordinate representation, we will see that they only admit integer j representations, so the states |, m) only
exist for integer I. To see this in detail, we need to change from Cartesian to spherical coordinates.

2 Changing to spherical coordinates

Here we rewrite L,, L+ and L? in spherical coordinates. The coordinate transformation and its inverse are
given by

r = VAT

2 2
§ = tan! <33 —Zy>
,

p = tan~! (g>
x
and
x = rsinfcosyp
= rsinfsing
z = rcosf

We also need the derivative operators, %. Using the chain rule, we have

0 B or 0 08 0 dp 0
o~ ozor 0200 0x0p
0 B or 0 00 0 Op 0
dy ~ oyor oyoe " oy op
0 _ oo 0o 0p 0
0z 0z0r 0z00 0z dp



Computing the partial derivatives, we start with the differential of r,
x z
dr = —dz + gdy + —dz
r r r

and read off
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Next, for 6, we take the differential of tan 6,

tanf =
z
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Then, since
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we have
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and read off the partials,
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Finally, we compute the differential of tanp = £, and use cos? p = 12””7%
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and once again read off the partials
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Now, returning to the chain rule expansions, we substitute to find
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and we may substitute into the orbital angular momentum operators.
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3 Orbital angular momentum operators in spherical coordiates

Carrying out the coordinate substitutions, for Lz we have
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For the raising operator, we have
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while the lowering operator is
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Collecting these,
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Finally, since
Lyl = L?—1L2+hLs
we have
L? = L L +L2—hLs
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This last equation establishes the relationship between the spherical harmonics and the angular momen-
tum states, because the Laplace equation in spherical coordinates is
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and we know that the general solution for f (r,8, ) is given in terms of spherical harmonics,
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where the spherical harmonics satisfy
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for integer [ and m = —I, -1+ 1,...+ [, while the eigenstates of L2 satisfy precisely the same equation,
(x| L2 |1, m) =1 (1 + 1) h* (x |I,m)

with L2 given above. This shows that orbital angular momentum only describes integer j states.

4 Spherical harmonics

We can now use the quantum formalism to find the spherical harmonics, Y, (6, ) = (0, ¢ |I,m). For any
state |a), we know the effect of L, is given by

wmua>=—minm
0,0/ L. |l,m) = mh(0,¢l|l,m)
0, | ﬁz [I,m) = —ih% 0, |l,m)

so for an eigenstate,
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This is trivially integrated to give 4
(0,0 |l,m) =€ (0,0 |)

Furthermore, we know that the raising operator will anihilate the state with the highest value of m,
Lyjl,m=1) = 0
In a coordinate basis, this translates to a differential equation,
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Setting (x |I) = f; (6), we have

0 = sinﬂ% —lcosff;

This is solved by f; = sin' 0, so we have, for m = [

Y, (0,0) = Aye®sin' 0



Now we can find all other Y | (6, ) by acting with the lowering operator,

O, 0| L_|l,m) = 1(I+1)—m(m—1)h{0,¢|l,m—1)

Inserting the coordinate expression for (0, ¢| L_ |I,m) and solving for the next lower state, we have
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thereby defining all Y! | (6, ) recursively.



