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1 Summary
Some basic principles of quantum mechanics.

1. Measurement changes the state. A measurement modeled by an observable (operator) Â on a state |α〉 changes
the state to one of the eigenstates of Â:

Â |α〉 ∝ |a〉
where Â |a〉= a |a〉.

2. The probability of measuring an eigenvalue a is given by

P(a) = |〈a |α 〉|2

Notice that this is consistent in two respects. If the state |α〉 is already the eigenstate |a〉, then we measure a
with certainty,

P(a) = |〈a |a 〉|2 = 1

and for an arbitrary state, the probability of measuring one of the eigenvalues of Â is 1, that is, we always get
one of the eigenvalues:

P(some ai) = ∑
i
|〈ai |α 〉|2

= ∑
i
〈α |ai 〉〈ai |α 〉

= 〈α|
(

∑
i
|ai〉〈ai|

)
|α〉

= 〈α|1 |α〉
= 〈α |α 〉
= 1

where we use the completeness of the set of eigenvectors.

3. The expectation value of an operator is

〈α| Â |α〉 = 〈α|
(

∑
i
|ai〉〈ai|

)
Â

(
∑

j

∣∣a j
〉〈

a j
∣∣) |α〉

= ∑
i, j
〈α |ai 〉〈ai|a j

∣∣a j
〉〈

a j |α
〉

= ∑
i, j

a jδi j 〈α |ai 〉
〈
a j |α

〉
= ∑

i
ai 〈α |ai 〉〈ai |α 〉

= ∑
i

ai |〈ai |α 〉|2

= ∑
i

aiP(ai)
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2 Examples: Spin operators
We can construct any operator from its eigenstates and eigenvalues as

Â = ∑
i

ai |ai〉〈ai|

For Ŝx, we know that acting on Sz eigenkets |±〉, we have equal probability of finding |Sx,±〉. Therefore, we must have

|Sx,+〉=
1√
2

eiδ1 |+〉+ 1√
2

eiδ2 |−〉

for arbitrary phases δ1,δ2. Since the overall phase is arbitrary and nonphysical we can eliminate one of these and write

|Sx,+〉=
1√
2
|+〉+ 1√

2
eiδ |−〉

Since |Sx,+〉 and |Sx,−〉 must be orthogonal (since the observable Ŝx must be Hermitian), setting |Sx,−〉 = α |+〉+
β |−〉, we have

0 = 〈Sx,+ |Sx,−〉

=
1√
2

(
〈+|+ 〈−|e−iδ

)
(α |+〉+β |−〉)

=
1√
2

(
α +βe−iδ

)
so β =−eiδ α and the normalized state must be

|Sx,−〉=
1√
2
|+〉− 1√

2
eiδ |−〉

Then Ŝx is given by

Ŝx = +
h̄
2
|Sx,+〉〈Sx,+|+

(
− h̄

2

)
|Sx,−〉〈Sx,−|

=
h̄
2

(
1√
2

(
|+〉+ eiδ |−〉

) 1√
2

(
〈+|+ 〈−|e−iδ

)
− 1√

2

(
|+〉− eiδ |−〉

) 1√
2

(
〈+|− 〈−|e−iδ

))
=

h̄
4

(
|+〉〈+|+ |+〉〈−|e−iδ + eiδ |−〉〈+|+ |−〉〈−|− |+〉〈+|+ eiδ |−〉〈+|+ |+〉〈−|e−iδ −|−〉〈−|

)
=

h̄
4

(
2e−iδ |+〉〈−|+2eiδ |−〉〈+|

)
=

h̄
2

(
e−iδ |+〉〈−|+ eiδ |−〉〈+|

)
We could have made exactly the same arguments for Ŝy, so with σ some other phase we may also write

Ŝy =
h̄
2
(
e−iσ |+〉〈−|+ eiσ |−〉〈+|

)
But we also know that the x and y directions will have the same relationship to one another that they each have with
the z direction, for example, ∣∣〈Sx,±

∣∣Sy,+
〉∣∣ =

1√
2∣∣〈Sx,±

∣∣Sy,+
〉∣∣ =

1√
2
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Either of these relations gives: ∣∣∣∣ 1√
2

(
〈+|± 〈−|e−iδ

) 1√
2

(
|+〉+ eiσ |−〉

)∣∣∣∣ =
1√
2

1
2

∣∣∣1± ei(σ−δ )
∣∣∣ =

1√
2

which happens if and only if

ei(σ−δ ) = ±i

(σ −δ ) = ±π

2

The remaining indefiniteness of the phase can be chosen by fixing the overall phase of |Sx,+〉. It is conventional to
choose Ŝx to be real, so that δ = 0 and

Ŝx =
h̄
2
(|+〉〈−|+ |−〉〈+|) = h̄

2
σx

Then Ŝy must be pure imaginary. With σ = π

2 we have

Ŝy =
h̄
2

(
e−

iπ
2 |+〉〈−|+ e

iπ
2 |−〉〈+|

)
=

h̄
2
(−i |+〉〈−|+ i |−〉〈+|)

=
h̄
2

σy

3 The algebra of spin
The essential properties of angular momentum are implicit in the products of these spin operators. Most importantly,
we have the commutators, [

Ŝi, Ŝ j
]
= ih̄εi jkŜk

We also have the anticommutators, {
Ŝi, Ŝ j

}
=

1
2

h̄2
δi j

It will be useful to define the combinations
Ŝ± = Ŝx± iŜy

and the squared sum,

Ŝ2 = Ŝ · Ŝ
= Ŝ2

x + Ŝ2
y + Ŝ2

z

=
3
4

h̄21

since each Pauli matrix squares to the identity. Since Ŝ2 is proportional to the identity operator, we have[
Ŝ2,Si

]
= 0

4 Quantum vs. classical conditional probability: Bell’s Theorem
Consider three measurements, with corresponding operators A,B and C, performed in order. Classically, let

Pa→b
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be the probability of the B measurement giving b when the A measurement has given a. This is called a conditional
probability. Then, performing C, we have

Pb→c

for the conditional probability of c given b, and the joint probability of measuring b then c, given a is the product:

Pa→(b,c) = Pa→bPb→c

If we sum over all possible outcomes, bi, for B, we must get the conditional probability of c, given a,

Pa→c = ∑
bi

Pa→biPbi→c

because we have accounted for all possible intermediate routes from a to c.
Quantum mechanically, we may write each of the conditional probabilities as:

Pa→b = |〈b |a 〉|2

Pb→c = |〈c |b 〉|2

Pa→c = |〈c |a 〉|2

Now expand the last,

Pa→c = |〈c |a 〉|2

= 〈a |c 〉〈c |a 〉
= ∑

i
〈a |bi 〉〈bi |a 〉〈c |a 〉

= ∑
i
〈a |bi 〉〈bi |a 〉∑

j

〈
c
∣∣b j
〉〈

b j |a
〉

where we have inserted two copies of the identity operator. As in the classical case, the joint probability of measuring
b then c, given a is now

Pa→(b,c) = |〈b |a 〉〈c |b 〉|2

= (〈a |b 〉〈b |c 〉)(〈b |a 〉〈c |b 〉)
= (〈a |b 〉〈b |a 〉)(〈c |b 〉〈b |c 〉)
= Pa→bPb→c

However, if we sum over all intermediate states bi we do not get Pa→c! Instead, we have the single sum

∑
i
〈a |bi 〉〈bi |a 〉

∑
i

Pa→(bi,c) = ∑
i
〈a |bi 〉〈bi |a 〉(〈c |bi 〉〈bi |c 〉)

= ∑
i

Pa→biPbi→c

This is an extremely important difference between classical and quantum physics!
Let’s look at an example. Let the three operators be the spin operators in the z,x and y directions, respectively, and

let’s work as usual in the z basis. Start with a general spin state,

|ψ〉= α |+〉+β |−〉

where normalization requires αᾱ +ββ̄ = 1. Then the probability of measuring spin up in the x and then spin up in
the y directions is

Pψ→((x+),(y+)) = (〈ψ |Sx,+ 〉〈Sx,+ |ψ 〉)
(〈

Sy,+ |Sx,+
〉〈

Sx,+
∣∣Sy,+

〉)
= αᾱ

(
1√
2
× 1√

2

)
=

αᾱ

2
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Summing Pψ→((x±),(y+)) over both possible intermediate x states gives

∑
(±,x)

Pψ→((x±),(y+)) = (〈ψ |Sx,+ 〉〈Sx,+ |ψ 〉)
(〈

Sy,+ |Sx,+
〉〈

Sx,+
∣∣Sy,+

〉)
+(〈ψ |Sx,−〉〈Sx,−|ψ 〉)

(〈
Sy,+ |Sx,−

〉〈
Sx,−

∣∣Sy,+
〉)

=
αᾱ

2
+

ββ̄

2

=
1
2

Now consider

Pa→c = |〈c |a 〉|2

= (〈a |+ 〉〈+ |c 〉+ 〈a |−〉〈−|c 〉)(〈c |+ 〉〈+ |a 〉+ 〈c |−〉〈−|a 〉)
=

(
ᾱγ + β̄ δ

)(
γ̄α + δ̄ β

)
= αᾱγγ̄ +ββ̄δ δ̄ + ᾱβγδ̄ +αβ̄ γ̄δ

Pa→c = |〈c |a 〉|2

=
〈
ψ
∣∣Sy,+

〉〈
Sy,+ |ψ

〉
=

1√
2

(
ᾱ + iβ̄

) 1√
2
(α− iβ )

=
1
2
(
αᾱ +ββ̄ + i

(
αβ̄ −βᾱ

))
Now consider the general spin- 1

2 case:

Pa→c = |〈c |a 〉|2

= ∑
i
〈a |bi 〉〈bi |a 〉∑

j

〈
c
∣∣b j
〉〈

b j |a
〉

and

∑
i

Pa→(bi,c) = ∑
i
〈a |bi 〉〈bi |a 〉(〈c |bi 〉〈bi |c 〉)

Specialize these to spin 1
2 , and let the middle state be in the z-basis (since we lose no generality by letting one of the

directions be z):

Pa→c = |〈c |a 〉|2

= ∑
±
〈a |bi 〉〈bi |c 〉∑

j

〈
c
∣∣b j
〉〈

b j |a
〉

= (〈a |+ 〉〈+ |c 〉+ 〈a |−〉〈−|c 〉)(〈c |+ 〉〈+ |a 〉+ 〈c |−〉〈−|a 〉)

Set

〈+ |a 〉 = α

〈−|a 〉 = β

〈+ |c 〉 = γ

〈−|c 〉 = δ

Then

Pa→c = |〈c |a 〉|2

= (〈a |+ 〉〈+ |c 〉+ 〈a |−〉〈−|c 〉)(〈c |+ 〉〈+ |a 〉+ 〈c |−〉〈−|a 〉)
=

(
ᾱγ + β̄ δ

)(
γ̄α + δ̄ β

)
= αᾱγγ̄ +ββ̄δ δ̄ + ᾱβγδ̄ +αβ̄ γ̄δ
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For the sum over intermediate states we have

∑
i

Pa→(bi,c) = ∑
i
〈a |bi 〉〈bi |a 〉(〈c |bi 〉〈bi |c 〉)

= 〈a |+ 〉〈+ |a 〉(〈c |+ 〉〈+ |c 〉)+ 〈a |−〉〈−|a 〉(〈c |−〉〈−|c 〉)
= αᾱγγ̄ +ββ̄δ δ̄

So we have the difference,

Pa→c−∑
i

Pa→(bi,c) = ᾱβγδ̄ +αβ̄ γ̄δ

Write the complex numbers as

α = a

β =
√

1−a2eiϕ

γ = b

δ =
√

1−b2eiθ

where the overall phase freedom allows us to choose α and γ real. Then

Pa→c−∑
i

Pa→(bi,c) = a
√

1−a2eiϕ b
√

1−b2e−iθ +a
√

1−a2e−iϕ b
√

1−b2eiθ

= ab
√

1−a2
√

1−b2
(

ei(ϕ−θ)+ eiϕ e−i(ϕ−θ)
)

= 2ab
√

1−a2
√

1−b2 cos(ϕ−θ)

This is a simple example of Bell’s Theorem. See further detail in Notes.
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