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1 Summary

Some basic principles of quantum mechanics.

1. Measurement changes the state. A measurement modeled by an observable (operator) A on a state |} changes
the state to one of the eigenstates of A:
Ala) o< |a)
where A |a) = a|a).
2. The probability of measuring an eigenvalue a is given by
2
P(a) = [(a|e)|

Notice that this is consistent in two respects. If the state |@) is already the eigenstate |a), then we measure a
with certainty,
2
P(a) = (ala)|” =1
and for an arbitrary state, the probability of measuring one of the eigenvalues of A is 1, that is, we always get
one of the eigenvalues:

P(somea;) = Z|<ai\a>|2
= X (o) (o)
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= (a|l|a)
= (a]a)
= 1

where we use the completeness of the set of eigenvectors.
3. The expectation value of an operator is
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2 Examples: Spin operators

We can construct any operator from its eigenstates and eigenvalues as
A= Zai |a,>> (a,-|
i
For S, we know that acting on S, eigenkets |4}, we have equal probability of finding |S,, ). Therefore, we must have

1 . 1 .
|Sx,+> = \ﬁelél |+> + ﬁelaz |—>

for arbitrary phases 8y, 8. Since the overall phase is arbitrary and nonphysical we can eliminate one of these and write
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Since |S,,+) and |S,,—) must be orthogonal (since the observable S, must be Hermitian), setting |S,, —) = ot|+) +
B|—), we have
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s0 B = —e'® o and the normalized state must be
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Then S, is given by
A h n
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We could have made exactly the same arguments for §y, so with 6 some other phase we may also write

S = Dl +e® ) ()

But we also know that the x and y directions will have the same relationship to one another that they each have with
the z direction, for example,

’<Sx’i’5ya+>’ =

’<Sx’i’5ya+>’ =
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Either of these relations gives:
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which happens if and only if
JOD =
T
(c—-98) = :|:§

The remaining indefiniteness of the phase can be chosen by fixing the overall phase of |Sy,+). It is conventional to
choose S, to be real, so that 6 = 0 and

Se=3 (-1 +1-) (+) = o
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Then Sy must be pure imaginary. With ¢ = 7 we have

S = S(EF e ()
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3 The algebra of spin

The essential properties of angular momentum are implicit in the products of these spin operators. Most importantly,

we have the commutators,
[Si,Sj] = ihS,‘ijk

We also have the anticommutators,
PN 1
{8:.8;} =518y

It will be useful to define the combinations
S+ =8+£iS,
and the squared sum,
§$ = S§-§
= Si+85+82
3
= il
4
since each Pauli matrix squares to the identity. Since 82 is proportional to the identity operator, we have

[§%,5] =0

4 Quantum vs. classical conditional probability: Bell’s Theorem
Consider three measurements, with corresponding operators A, B and C, performed in order. Classically, let

Pa%b



be the probability of the B measurement giving b when the A measurement has given a. This is called a conditional
probability. Then, performing C, we have
Pyse

for the conditional probability of ¢ given b, and the joint probability of measuring b then ¢, given a is the product:
Paﬁ(b,c) = PaspPosc
If we sum over all possible outcomes, b;, for B, we must get the conditional probability of ¢, given a,

Pose = Pa—>bini—>c
bi

because we have accounted for all possible intermediate routes from a to c.
Quantum mechanically, we may write each of the conditional probabilities as:

Posp = |<b|a>|2
Pose = lelb)?
Fose = |<c|a>|2
Now expand the last,
Pise = l{cla)?
= (ale)(c|a)

= Y (albi) (bila)(c|a)
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= Z<a|bi><bi‘a>z<c‘bj><bj|a>
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where we have inserted two copies of the identity operator. As in the classical case, the joint probability of measuring
b then c, given a is now

Paﬁ(b,c) = ‘<b ‘a> <C ‘b>|2
= (alb)(blc)) ((bla)(c|b))
((alb)(bla)) ({c|b)(blc))

Paﬁbeﬁc

However, if we sum over all intermediate states b; we do not get P,_,.! Instead, we have the single sum

Y (alb) (bila)

1

ZPa—>(b,-,c) =Y (albi) (bila) ((c|bi) (bilc))
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This is an extremely important difference between classical and quantum physics!
Let’s look at an example. Let the three operators be the spin operators in the z,x and y directions, respectively, and
let’s work as usual in the z basis. Start with a general spin state,

v) =al+)+B]-)

where normalization requires @ + B3 = 1. Then the probability of measuring spin up in the x and then spin up in
the y directions is

Pw%((x+),(y+)) = (<W|Sxa+><SX7+|w>)(<S)‘?+|Sxa+><SX7+‘S)W+>)
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Summing Py, ((x+),(y+)) Over both possible intermediate x states gives

ZPulﬁ((xj:),()%)) = (<W|va+><SXv+|W>) (<Syv+|Sxa+><Sx,+|Syv+>)
+.x
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Now consider
Fosse = |<c|a>|2
= ((al+) (tle) +{al=) (=le)) (e+) (+la) +(c[=) (=]a))

= (ay+pBs) (yo+6p)
= aayy+BBSS+aByd +apfys

Pose = |<c\a)|2
= (w[S.+ ><Sy+|w>

a+if) —= (a—ip)

=
V2 f
= %(aa+[3[3+i(aﬁ—/}a))

Now consider the general spin-% case:

FPose = |<ca>|2

= X lalbo) (k) el (1)

J
and
Y P = Y lalbi)(bila) ((c|bi) (bilc))
i i
Specialize these to spin %, and let the middle state be in the z-basis (since we lose no generality by letting one of the
directions be z):

FPose = |<c|a>|2
- §<a|bi><b;\c>z<c‘b ><b |a>
J
= ((a[+){(+lc)+{a|=) (=) ({c[+) (+]|a) +(c|-){=1a))
Set
(+la) = «
(<la)y = B
(+le)y = v
(=le) = 6
Then
Pose = |<c|a>|2
= ((af+) (+le) +{al=) (=le)) ({e[+) (+a) +{c|=) (~la))
= (ay+Bd) (ya+6p)
= aayy+BBSS+aByd +afys
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For the sum over intermediate states we have

Y Pusibi) Y (albi) (bila) ((c|bi) (bilc))

1

(al+) (+la) (c]+) (+]e)) +{a|=) (—la) ((c|=) (= lc))
= aayy+BBSS

So we have the difference,

Passe _ZPa%(b,-,c) = aﬁy5+a[§776

Write the complex numbers as

a = a
B = V1-a2®
Yy = b
§ = V1-b2"°

where the overall phase freedom allows us to choose & and Y real. Then
Py — ZPaﬁ(bhc) — a1 —a2e®b\/1—b2e ® 1 a\/1 —a2e b1 — b2e™®
i

ab\/1—a\/1— b2 (ei(‘pf‘a) + e"‘pefi(‘pfe)>
= 2ab\/1—a?\/1—b2cos(p—0)

This is a simple example of Bell’s Theorem. See further detail in Notes.




