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1 Magnetic moment
Consider the interaction of a spin- 12 particle with a magnetic field. The Hamiltonian is

H = −µ ·B

where we take the magnetic field B = Bk to be uniform, constant, and in the z-direction. The magnetic
moment of a particle is proportional to its angular momentum, so as an operator it becomes

µ̂ =
ge

mc
Ŝ

=
ge~
2mc

σ̂

where the “g factor” is very close to 2, with m = me for the electron; for the neutron we have gn ≈ −1.91
and m = mp (yes, proton mass) where µN = e~

2mpc
is called the nuclear magneton. Therefore, for a neutron

in the magnetic field,

Ĥ = −µ̂ ·B
= − gne

mpc
Ŝ ·B

= −gneB
mpc

Ŝz

We define a frequency,

ω ≡ gneB

mpc
> 0

By studying this system we can check experimentally that spinors rotate at half the rate of vectors.

2 Rotations
Consider a rotation by an angle ϕ about an axis along n. The rotation operator that accomplishes this is

U = e
iϕ
2 n·σ

If this is used to rotate a spinor,
|χ〉 = a |+〉+ b |−〉

we have

|χ′〉 = U |χ′〉

= e
iϕ
2 n·σ (a |+〉+ b |−〉)
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For a rotation around the z-axis, e
iϕ
2 n·σ = e

iϕ
2 σz =

(
e
iϕ
2 0

0 e−
iϕ
2

)
and this becomes

|χ′〉 = ae
iϕ
2 |+〉+ be−

iϕ
2 |−〉

After a 2π rotation,

|χ′〉 = ae
2πi
2 |+〉+ be−

2πi
2 |−〉

= − (a |+〉+ b |−〉)
= − |χ〉

and the spinor has rotated only halfway around. It returns to itself only after 4π. By contrast, if we rotate
a 3-vector, only a 2π rotation is required. For example, The spin vector, Ŝ = ~

2 σ̂, rotates under the same
rotation according to

Ŝ′ = U ŜU†

=
~
2
e
iϕ
2 σz σ̂e−

iϕ
2 σz

=
~
2

(
1 cos

ϕ

2
+ iσz sin

ϕ

2

)
σ̂
(

1 cos
ϕ

2
− iσz sin

ϕ

2

)
so that the components are given by

Ŝ′x =
~
2

(
1 cos

ϕ

2
+ iσz sin

ϕ

2

)
σx

(
1 cos

ϕ

2
− iσz sin

ϕ

2

)
=

~
2

(
σx cos2

ϕ

2
+ i [σz, σx] sin

ϕ

2
cos

ϕ

2
+ σzσxσz sin2 ϕ

2

)
=

~
2

(
σx

(
cos2

ϕ

2
− sin2 ϕ

2

)
− 2σy sin

ϕ

2
cos

ϕ

2

)
=

~
2

(
Ŝx cosϕ− Ŝy sinϕ

)
for the x-component,

Ŝ′y =
~
2

(
1 cos

ϕ

2
+ iσz sin

ϕ

2

)
σy

(
1 cos

ϕ

2
− iσz sin

ϕ

2

)
=

~
2

(
σy cos2

ϕ

2
+ i [σz, σy] sin

ϕ

2
cos

ϕ

2
+ σzσyσz sin2 ϕ

2

)
=

~
2

(
Ŝy cosϕ+ Ŝy sinϕ

)
for the y-component, and, easily,

Ŝ′z =
~
2

(
1 cos

ϕ

2
+ iσz sin

ϕ

2

)
σz

(
1 cos

ϕ

2
− iσz sin

ϕ

2

)
=

~
2

(
σz cos2

ϕ

2
− i sin

ϕ

2
cos

ϕ

2
+ i sin

ϕ

2
cos

ϕ

2
+ σz sin2 ϕ

2

)
= Ŝz

We have the usual expression for a rotation by ϕ around the z-axis, which returns to itself after a 2π rotation.
Notice that any 3-vector would be written as v · σ, giving the same result.
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3 Neutron interference
Now consider a neutron interference experiment designed to detect this sign difference.

A neutron beam is split into two parallel beams, A and B. Beam B passes through a constant magnetic
field B = Bk for a length l of its path. The beams are then allowed to interfere and the intensity detected.
The Hamiltonian is that given above,

= −µ̂ ·B
= − gne

mpc
Ŝ ·B

Ĥ = −gneB
mpc

Ŝz

Ĥ = −ωŜz

We define a frequency,

ω ≡ gneB

mpc

The two beams may be represented the states

|A〉 = e−
i
~ Ĥ0t |ψ (x, 0)〉 (a |+〉+ b |−〉)

= |ψ (x, t)〉 (a |+〉+ b |−〉)

|B〉 = e−
i
~ Ĥ0t− i

~ Ĥt |ψ (x, 0)〉 (a |+〉+ b |−〉)

= e−
i
~ Ĥ0t |ψ (x, 0)〉 e− i

~ Ĥt (a |+〉+ b |−〉)

= |ψ (x, t)〉 e− i
~ Ĥt (a |+〉+ b |−〉)

= |ψ (x, t)〉 e iωt~ Ŝz (a |+〉+ b |−〉)

= |ψ (x, t)〉
(
ae

iωt
2 σ̂z |+〉+ be

iωt
2 σ̂z |−〉

)
= |ψ (x, t)〉

(
ae

iωt
2 |+〉+ be−

iωt
2 |−〉

)
where the free-particle Hamiltonian, Ĥ0 = P̂2

2m , commutes with Ĥ. We take |A〉 and |B〉 to be normalized.
Now the beams are recombined. If the beam is traveling in the x-direction, the interference pattern is

spread out over the yz plane, and there is a phase difference due to the slightly different distances the beams
travel. The combined state

|A+B〉 =
1√
2

(|A〉+ |B〉)

=
1√
2
|ψ (x, t)〉

(
(a |+〉+ b |−〉) +

(
ae

iωt
2 |+〉+ be−

iωt
2 |−〉

))
=

1√
2
|ψ (x, t)〉

(
a
(

1 + e
iωt
2

)
|+〉+ b

(
1 + e−

iωt
2

)
|−〉
)

with norm

〈A+B |A+B〉 = 〈ψ (xA, t) + ψ (xB , t) |ψ (xA, t) + ψ (xB , t)〉
1
2

(
a
(

1 + e−
iωt
2

)
〈+|+ b

(
1 + e

iωt
2

)
〈−|
)(

a
(

1 + e
iωt
2

)
|+〉+ b

(
1 + e−

iωt
2

)
|−〉
)

=
1
2
f (x, t)

(
a2
(

1 + e−
iωt
2

)(
1 + e

iωt
2

)
+ b2

(
1 + e

iωt
2

)(
1 + e−

iωt
2

))
=

1
2
f (x, t)

(
a2

(
2 + 2 cos

ωt

2

)
+ b2

(
2 + 2 cos

ωt

2

))
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= f (x, t)
(
a2 + b2

)(
1 + cos

ωt

2

)
= f (x, t)

(
1 + cos

ωt

2

)
Therefore, the intensity at a given point oscillates with amplitude proportional to

0 ≤ 1 + cos
ωt

2
≤ 2

with maxima occurring when cos ωt2 = +1, so the time T between successive maxima satisfies

ωT

2
= 2π

ωT = 4π

where we see the presence of the 4π rotation. With the velocity of the neutrons related to the reduced
deBroglie wavelength, λ̄ = λ

2π by

mv =
h

λ

v =
~
mλ̄

and T = l
v , the interference condition becomes

ωT = 4π
ωmnλ̄l = 4π~

gneB

mpc
mnλ̄l = 4π~

B =
4π~mpc

gnmneλ̄l

or, neglecting the difference between the neutron and proton masses,

B =
4π~c
gneλ̄l
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