Neutron Interference

April 19, 2013

1 Magnetic moment

Consider the interaction of a spin- $\frac{1}{2}$ particle with a magnetic field. The Hamiltonian is

$$
H=-\boldsymbol{\mu} \cdot \mathbf{B}
$$

where we take the magnetic field $\mathbf{B}=B \mathbf{k}$ to be uniform, constant, and in the z-direction. The magnetic moment of a particle is proportional to its angular momentum, so as an operator it becomes

$$
\begin{aligned}
\hat{\boldsymbol{\mu}} & =\frac{g e}{m c} \hat{\mathbf{S}} \\
& =\frac{g e \hbar}{2 m c} \hat{\boldsymbol{\sigma}}
\end{aligned}
$$

where the "g factor" is very close to 2 , with $m=m_{e}$ for the electron; for the neutron we have $g_{n} \approx-1.91$ and $m=m_{p}$ (yes, proton mass) where $\mu_{N}=\frac{e \hbar}{2 m_{p} c}$ is called the nuclear magneton. Therefore, for a neutron in the magnetic field,

$$
\begin{aligned}
\hat{H} & =-\hat{\boldsymbol{\mu}} \cdot \mathbf{B} \\
& =-\frac{g_{n} e}{m_{p} c} \hat{\mathbf{S}} \cdot \mathbf{B} \\
& =-\frac{g_{n} e B}{m_{p} c} \hat{S}_{z}
\end{aligned}
$$

We define a frequency,

$$
\omega \equiv \frac{g_{n} e B}{m_{p} c}>0
$$

By studying this system we can check experimentally that spinors rotate at half the rate of vectors.

2 Rotations

Consider a rotation by an angle φ about an axis along \mathbf{n}. The rotation operator that accomplishes this is

$$
\mathcal{U}=e^{\frac{i \varphi}{2} \mathbf{n} \cdot \boldsymbol{\sigma}}
$$

If this is used to rotate a spinor,

$$
|\chi\rangle=a|+\rangle+b|-\rangle
$$

we have

$$
\begin{aligned}
\left|\chi^{\prime}\right\rangle & =\mathcal{U}\left|\chi^{\prime}\right\rangle \\
& =e^{\frac{i \varphi}{2} \mathbf{n} \cdot \boldsymbol{\sigma}}(a|+\rangle+b|-\rangle)
\end{aligned}
$$

For a rotation around the z-axis, $e^{\frac{i \varphi}{2} \mathbf{n} \cdot \boldsymbol{\sigma}}=e^{\frac{i \varphi}{2} \sigma_{z}}=\left(\begin{array}{cc}e^{\frac{i \varphi}{2}} & 0 \\ 0 & e^{-\frac{i \varphi}{2}}\end{array}\right)$ and this becomes

$$
\left|\chi^{\prime}\right\rangle=a e^{\frac{i \varphi}{2}}|+\rangle+b e^{-\frac{i \varphi}{2}}|-\rangle
$$

After a 2π rotation,

$$
\begin{aligned}
\left|\chi^{\prime}\right\rangle & =a e^{\frac{2 \pi i}{2}}|+\rangle+b e^{-\frac{2 \pi i}{2}}|-\rangle \\
& =-(a|+\rangle+b|-\rangle) \\
& =-|\chi\rangle
\end{aligned}
$$

and the spinor has rotated only halfway around. It returns to itself only after 4π. By contrast, if we rotate a 3 -vector, only a 2π rotation is required. For example, The spin vector, $\hat{\mathbf{S}}=\frac{\hbar}{2} \hat{\boldsymbol{\sigma}}$, rotates under the same rotation according to

$$
\begin{aligned}
\hat{\mathbf{S}}^{\prime} & =\mathcal{U} \hat{\mathbf{S}} \mathcal{U}^{\dagger} \\
& =\frac{\hbar}{2} e^{\frac{i \varphi}{2} \sigma_{z}} \hat{\boldsymbol{\sigma}} e^{-\frac{i \varphi}{2} \sigma_{z}} \\
& =\frac{\hbar}{2}\left(1 \cos \frac{\varphi}{2}+i \sigma_{z} \sin \frac{\varphi}{2}\right) \hat{\boldsymbol{\sigma}}\left(1 \cos \frac{\varphi}{2}-i \sigma_{z} \sin \frac{\varphi}{2}\right)
\end{aligned}
$$

so that the components are given by

$$
\begin{aligned}
\hat{S}_{x}^{\prime} & =\frac{\hbar}{2}\left(1 \cos \frac{\varphi}{2}+i \sigma_{z} \sin \frac{\varphi}{2}\right) \sigma_{x}\left(1 \cos \frac{\varphi}{2}-i \sigma_{z} \sin \frac{\varphi}{2}\right) \\
& =\frac{\hbar}{2}\left(\sigma_{x} \cos ^{2} \frac{\varphi}{2}+i\left[\sigma_{z}, \sigma_{x}\right] \sin \frac{\varphi}{2} \cos \frac{\varphi}{2}+\sigma_{z} \sigma_{x} \sigma_{z} \sin ^{2} \frac{\varphi}{2}\right) \\
& =\frac{\hbar}{2}\left(\sigma_{x}\left(\cos ^{2} \frac{\varphi}{2}-\sin ^{2} \frac{\varphi}{2}\right)-2 \sigma_{y} \sin \frac{\varphi}{2} \cos \frac{\varphi}{2}\right) \\
& =\frac{\hbar}{2}\left(\hat{S}_{x} \cos \varphi-\hat{S}_{y} \sin \varphi\right)
\end{aligned}
$$

for the x-component,

$$
\begin{aligned}
\hat{S}_{y}^{\prime} & =\frac{\hbar}{2}\left(1 \cos \frac{\varphi}{2}+i \sigma_{z} \sin \frac{\varphi}{2}\right) \sigma_{y}\left(1 \cos \frac{\varphi}{2}-i \sigma_{z} \sin \frac{\varphi}{2}\right) \\
& =\frac{\hbar}{2}\left(\sigma_{y} \cos ^{2} \frac{\varphi}{2}+i\left[\sigma_{z}, \sigma_{y}\right] \sin \frac{\varphi}{2} \cos \frac{\varphi}{2}+\sigma_{z} \sigma_{y} \sigma_{z} \sin ^{2} \frac{\varphi}{2}\right) \\
& =\frac{\hbar}{2}\left(\hat{S}_{y} \cos \varphi+\hat{S}_{y} \sin \varphi\right)
\end{aligned}
$$

for the y-component, and, easily,

$$
\begin{aligned}
\hat{S}_{z}^{\prime} & =\frac{\hbar}{2}\left(1 \cos \frac{\varphi}{2}+i \sigma_{z} \sin \frac{\varphi}{2}\right) \sigma_{z}\left(1 \cos \frac{\varphi}{2}-i \sigma_{z} \sin \frac{\varphi}{2}\right) \\
& =\frac{\hbar}{2}\left(\sigma_{z} \cos ^{2} \frac{\varphi}{2}-i \sin \frac{\varphi}{2} \cos \frac{\varphi}{2}+i \sin \frac{\varphi}{2} \cos \frac{\varphi}{2}+\sigma_{z} \sin ^{2} \frac{\varphi}{2}\right) \\
& =\hat{S}_{z}
\end{aligned}
$$

We have the usual expression for a rotation by φ around the z-axis, which returns to itself after a 2π rotation. Notice that any 3 -vector would be written as $\mathbf{v} \cdot \boldsymbol{\sigma}$, giving the same result.

3 Neutron interference

Now consider a neutron interference experiment designed to detect this sign difference.
A neutron beam is split into two parallel beams, A and B. Beam B passes through a constant magnetic field $\mathbf{B}=B \mathbf{k}$ for a length l of its path. The beams are then allowed to interfere and the intensity detected. The Hamiltonian is that given above,

$$
\begin{aligned}
& =-\hat{\boldsymbol{\mu}} \cdot \mathbf{B} \\
& =-\frac{g_{n} e}{m_{p} c} \hat{\mathbf{S}} \cdot \mathbf{B} \\
\hat{H} & =-\frac{g_{n} e B}{m_{p} c} \hat{S}_{z} \\
\hat{H} & =-\omega \hat{S}_{z}
\end{aligned}
$$

We define a frequency,

$$
\omega \equiv \frac{g_{n} e B}{m_{p} c}
$$

The two beams may be represented the states

$$
\begin{aligned}
|A\rangle & =e^{-\frac{i}{\hbar} \hat{H}_{0} t}|\psi(\mathbf{x}, 0)\rangle(a|+\rangle+b|-\rangle) \\
& =|\psi(\mathbf{x}, t)\rangle(a|+\rangle+b|-\rangle) \\
|B\rangle & =e^{-\frac{i}{\hbar} \hat{H}_{0} t-\frac{i}{\hbar} \hat{H} t}|\psi(\mathbf{x}, 0)\rangle(a|+\rangle+b|-\rangle) \\
& =e^{-\frac{i}{\hbar} \hat{H}_{0} t}|\psi(\mathbf{x}, 0)\rangle e^{-\frac{i}{\hbar} \hat{H} t}(a|+\rangle+b|-\rangle) \\
& =|\psi(\mathbf{x}, t)\rangle e^{-\frac{i}{\hbar} \hat{H} t}(a|+\rangle+b|-\rangle) \\
& =|\psi(\mathbf{x}, t)\rangle e^{\frac{i \omega t}{\hbar} \hat{S}_{z}}(a|+\rangle+b|-\rangle) \\
& =|\psi(\mathbf{x}, t)\rangle\left(a e^{\frac{i \omega t}{2} \hat{\sigma}_{z}}|+\rangle+b e^{\frac{i \omega t}{2} \hat{\sigma}_{z}}|-\rangle\right) \\
& =|\psi(\mathbf{x}, t)\rangle\left(a e^{\frac{i \omega t}{2}}|+\rangle+b e^{-\frac{i \omega t}{2}}|-\rangle\right)
\end{aligned}
$$

where the free-particle Hamiltonian, $\hat{H}_{0}=\frac{\hat{\mathbf{P}}^{2}}{2 m}$, commutes with \hat{H}. We take $|A\rangle$ and $|B\rangle$ to be normalized.
Now the beams are recombined. If the beam is traveling in the x-direction, the interference pattern is spread out over the $y z$ plane, and there is a phase difference due to the slightly different distances the beams travel. The combined state

$$
\begin{aligned}
|A+B\rangle & =\frac{1}{\sqrt{2}}(|A\rangle+|B\rangle) \\
& =\frac{1}{\sqrt{2}}|\psi(\mathbf{x}, t)\rangle\left((a|+\rangle+b|-\rangle)+\left(a e^{\frac{i \omega t}{2}}|+\rangle+b e^{-\frac{i \omega t}{2}}|-\rangle\right)\right) \\
& =\frac{1}{\sqrt{2}}|\psi(\mathbf{x}, t)\rangle\left(a\left(1+e^{\frac{i \omega t}{2}}\right)|+\rangle+b\left(1+e^{-\frac{i \omega t}{2}}\right)|-\rangle\right)
\end{aligned}
$$

with norm

$$
\begin{aligned}
\langle A+B \mid A+B\rangle & =\left\langle\psi\left(\mathbf{x}_{A}, t\right)+\psi\left(\mathbf{x}_{B}, t\right) \mid \psi\left(\mathbf{x}_{A}, t\right)+\psi\left(\mathbf{x}_{B}, t\right)\right\rangle \frac{1}{2}\left(a\left(1+e^{-\frac{i \omega t}{2}}\right)\langle+|+b\left(1+e^{\frac{i \omega t}{2}}\right)\langle-|\right)\left(a\left(1+e^{\frac{i \omega t}{2}}\right)|+\rangle\right. \\
& =\frac{1}{2} f(\mathbf{x}, t)\left(a^{2}\left(1+e^{-\frac{i \omega t}{2}}\right)\left(1+e^{\frac{i \omega t}{2}}\right)+b^{2}\left(1+e^{\frac{i \omega t}{2}}\right)\left(1+e^{-\frac{i \omega t}{2}}\right)\right) \\
& =\frac{1}{2} f(\mathbf{x}, t)\left(a^{2}\left(2+2 \cos \frac{\omega t}{2}\right)+b^{2}\left(2+2 \cos \frac{\omega t}{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =f(\mathbf{x}, t)\left(a^{2}+b^{2}\right)\left(1+\cos \frac{\omega t}{2}\right) \\
& =f(\mathbf{x}, t)\left(1+\cos \frac{\omega t}{2}\right)
\end{aligned}
$$

Therefore, the intensity at a given point oscillates with amplitude proportional to

$$
0 \leq 1+\cos \frac{\omega t}{2} \leq 2
$$

with maxima occurring when $\cos \frac{\omega t}{2}=+1$, so the time T between successive maxima satisfies

$$
\begin{aligned}
\frac{\omega T}{2} & =2 \pi \\
\omega T & =4 \pi
\end{aligned}
$$

where we see the presence of the 4π rotation. With the velocity of the neutrons related to the reduced deBroglie wavelength, $\bar{\lambda}=\frac{\lambda}{2 \pi}$ by

$$
\begin{aligned}
m v & =\frac{h}{\lambda} \\
v & =\frac{\hbar}{m \bar{\lambda}}
\end{aligned}
$$

and $T=\frac{l}{v}$, the interference condition becomes

$$
\begin{aligned}
\omega T & =4 \pi \\
\omega m_{n} \bar{\lambda} l & =4 \pi \hbar \\
\frac{g_{n} e B}{m_{p} c} m_{n} \bar{\lambda} l & =4 \pi \hbar \\
B & =\frac{4 \pi \hbar m_{p} c}{g_{n} m_{n} e \bar{\lambda} l}
\end{aligned}
$$

or, neglecting the difference between the neutron and proton masses,

$$
B=\frac{4 \pi \hbar c}{g_{n} e \bar{\lambda} l}
$$

