Modeling measurement

January 26, 2017

In wave mechanics, we found that we could replace dynamical variables such as the momentum or energy with operators. We saw how the quantity

$$
\int_{-\infty}^{\infty} d x \psi^{*} \hat{p} \psi
$$

gave the expectation value of momentum by writing, $\hat{p}=-i \hbar \frac{d}{d x}$. We can take this idea further. We have written the wave function as a superposition of plane waves,

$$
\psi=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} A(k) e^{i k x} d k
$$

and this expression is, in fact, expressing a vector in a basis. Linear combinations of functions give other functions, and we can show that the same is true of normalizable functions - linear combinations of squareintegrable functions are square integrable functions. We will gain substantial insight by regarding quantum states as elements of a normed vector space, called Hilbert space.

We may choose a basis for a vector space; in the case of an infinite dimensional space this basis may be either countable or uncountable. For example, in the case of the infinite square well, we found a countable basis of energy eigenstates,

$$
\psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \frac{n \pi x}{L}, \quad n=1,2,3, \ldots
$$

For a free particle, however, the basis is continuous,

$$
\psi_{k}(x)=\frac{1}{\sqrt{2 \pi}} e^{i k x}
$$

where k may be any real number. The essential fact remains: we may write any physical state as a linear combination of the basis states.

As with finite dimensional vector spaces, the norm of our Hilbert space generalizes to an inner product. If we have two wave functions, $\psi(\mathbf{x}), \chi(\mathbf{x})$, we may define the complex inner product,

$$
\langle\psi(\mathbf{x}) \mid \chi(\mathbf{x})\rangle \equiv \int_{-\infty}^{\infty} d^{3} x \psi(\mathbf{x})^{*} \chi(\mathbf{x})
$$

To find a component of this infinite vector, we take the inner product with one particular basis vector. Thus, just as we may dot $\hat{\mathbf{i}}$ into an arbitrary vector to find the x-component,

$$
\hat{\mathbf{i}} \cdot \mathbf{v}=v_{x}
$$

we may take the inner product of one member of our plane wave basis, $\frac{1}{\sqrt{2 \pi}} e^{i q x}$, with ψ :

$$
\begin{aligned}
\left\langle\psi_{k}(x) \mid \psi(x)\right\rangle & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d x\left(e^{i q x}\right)^{*} \psi \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} d x e^{-i q x} \int_{-\infty}^{\infty} A(k) e^{i k x} d k \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} d k A(k) \int_{-\infty}^{\infty} d x e^{i(k-q) x} \\
& =\int_{-\infty}^{\infty} d k A(k) \delta(k-q) \\
& =A(q)
\end{aligned}
$$

The inner product selects out the correct component - the coefficient of the basis vector $\frac{1}{\sqrt{2 \pi}} e^{i q x}$.
To make a measurement of the momentum of magnitude q, we now include the operator,

$$
\begin{aligned}
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d x\left(e^{i q x}\right)^{*} \hat{p} \psi & =\frac{-i \hbar}{2 \pi} \int_{-\infty}^{\infty} d x e^{-i q x} \frac{d}{d x} \int_{-\infty}^{\infty} A(k) e^{i k x} d k \\
& =\frac{-i \hbar}{2 \pi} \int_{-\infty}^{\infty} d x \int_{-\infty}^{\infty} i k A(k) e^{i(k-q) x} d k \\
& =\frac{-i \hbar}{2 \pi} \int_{-\infty}^{\infty} d k i k A(k) \int_{-\infty}^{\infty} d x e^{i(k-q) x} \\
& =\hbar \int_{-\infty}^{\infty} d k A(k) k \delta(k-q) \\
& =A(q) \hbar q
\end{aligned}
$$

and we find the momentum, $\hbar q$, times the corresponding amplitude, $A(q)$. This mathematical operation corresponds to a measurement in which we filter the wave, selecting only the part with momentum q. Naturally, after we accomplish this measurement, the wave is in a state of definite momentum q. In practice, we only measure momentum in a range about q, and the final state is a normalizable wave function centered tightly around q. The important thing to notice is that the measurement reduces our list of possible outcomes, $\psi=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} A(k) e^{i k x} d k$, to the momentum eigenstate $A(q) \hbar q e^{i q x}$. The fact of measurement changes the list of things we might possibly measure.

