
Modeling measurement

January 26, 2017

In wave mechanics, we found that we could replace dynamical variables such as the momentum or energy
with operators. We saw how the quantity

∞̂

−∞

dxψ∗p̂ψ

gave the expectation value of momentum by writing, p̂ = −i~ d
dx . We can take this idea further. We have

written the wave function as a superposition of plane waves,

ψ =
1√
2π

∞̂

−∞

A (k) eikxdk

and this expression is, in fact, expressing a vector in a basis. Linear combinations of functions give other
functions, and we can show that the same is true of normalizable functions – linear combinations of square-
integrable functions are square integrable functions. We will gain substantial insight by regarding quantum
states as elements of a normed vector space, called Hilbert space.

We may choose a basis for a vector space; in the case of an infinite dimensional space this basis may be
either countable or uncountable. For example, in the case of the infinite square well, we found a countable
basis of energy eigenstates,

ψn (x) =

√
2

L
sin

nπx

L
, n = 1, 2, 3, . . .

For a free particle, however, the basis is continuous,

ψk (x) =
1√
2π
eikx

where k may be any real number. The essential fact remains: we may write any physical state as a linear
combination of the basis states.

As with finite dimensional vector spaces, the norm of our Hilbert space generalizes to an inner product.
If we have two wave functions, ψ (x) , χ (x), we may define the complex inner product,

〈ψ (x) |χ (x)〉 ≡
∞̂

−∞

d3xψ (x)
∗
χ (x)

To find a component of this infinite vector, we take the inner product with one particular basis vector.
Thus, just as we may dot î into an arbitrary vector to find the x-component,

î · v = vx
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we may take the inner product of one member of our plane wave basis, 1√
2π
eiqx, with ψ:

〈ψk (x) |ψ (x)〉 =
1√
2π

∞̂

−∞

dx
(
eiqx

)∗
ψ

=
1

2π

∞̂

−∞

dxe−iqx
∞̂

−∞

A (k) eikxdk

=
1

2π

∞̂

−∞

dkA (k)

∞̂

−∞

dxei(k−q)x

=

∞̂

−∞

dkA (k) δ (k − q)

= A (q)

The inner product selects out the correct component – the coefficient of the basis vector 1√
2π
eiqx.

To make a measurement of the momentum of magnitude q, we now include the operator,

1√
2π

∞̂

−∞

dx
(
eiqx

)∗
p̂ψ =

−i~
2π

∞̂

−∞

dxe−iqx
d

dx

∞̂

−∞

A (k) eikxdk

=
−i~
2π

∞̂

−∞

dx

∞̂

−∞

ikA (k) ei(k−q)xdk

=
−i~
2π

∞̂

−∞

dkikA (k)

∞̂

−∞

dxei(k−q)x

= ~
∞̂

−∞

dkA (k) kδ (k − q)

= A (q) ~q

and we find the momentum, ~q, times the corresponding amplitude, A (q). This mathematical operation
corresponds to a measurement in which we filter the wave, selecting only the part with momentum q.
Naturally, after we accomplish this measurement, the wave is in a state of definite momentum q. In practice,
we only measure momentum in a range about q, and the final state is a normalizable wave function centered
tightly around q. The important thing to notice is that the measurement reduces our list of possible outcomes,
ψ = 1√

2π

´∞
−∞A (k) eikxdk, to the momentum eigenstate A (q) ~qeiqx. The fact of measurement changes the

list of things we might possibly measure.
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