Modeling measurement
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In wave mechanics, we found that we could replace dynamical variables such as the momentum or energy

with operators. We saw how the quantity
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gave the expectation value of momentum by writing, p = —ih%. We can take this idea further. We have
written the wave function as a superposition of plane waves,
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and this expression is, in fact, expressing a vector in a basis. Linear combinations of functions give other
functions, and we can show that the same is true of normalizable functions — linear combinations of square-
integrable functions are square integrable functions. We will gain substantial insight by regarding quantum
states as elements of a normed vector space, called Hilbert space.

We may choose a basis for a vector space; in the case of an infinite dimensional space this basis may be
either countable or uncountable. For example, in the case of the infinite square well, we found a countable

basis of energy eigenstates,
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For a free particle, however, the basis is continuous,

where k may be any real number. The essential fact remains: we may write any physical state as a linear
combination of the basis states.

As with finite dimensional vector spaces, the norm of our Hilbert space generalizes to an inner product.
If we have two wave functions, 1 (x), x (x), we may define the complex inner product,
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To find a component of this infinite vector, we take the inner product with one particular basis vector.
Thus, just as we may dot i into an arbitrary vector to find the xz-component,

i-v=uv,



we may take the inner product of one member of our plane wave basis, \/%eiq’”, with :

(e @)1 @) = \/12?/ de ()

= A(g)

The inner product selects out the correct component — the coefficient of the basis vector \/%eiq”.
To make a measurement of the momentum of magnitude ¢, we now include the operator,
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and we find the momentum, hg, times the corresponding amplitude, A (¢). This mathematical operation
corresponds to a measurement in which we filter the wave, selecting only the part with momentum gq.
Naturally, after we accomplish this measurement, the wave is in a state of definite momentum ¢. In practice,
we only measure momentum in a range about ¢, and the final state is a normalizable wave function centered
tightly around ¢. The important thing to notice is that the measurement reduces our list of possible outcomes,
P = \/% ffooo A (k) et**dk, to the momentum eigenstate A (¢) hge’?®. The fact of measurement changes the

list of things we might possibly measure.



