Laguerre polynomials and the hydrogen wave function
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1 The radial equation: aymptotic limits

We begin by writing the radial wave equation,
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Since F < 0, the limit has exponential solutions which we write in the form
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For the wave function to vanish at infinity, we require B = 0.
As r — 0, the equation reduces to

0%y 200 1
a2 Trar DY =0

and we set ¢ = r®*. Then
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2 Transformation
First, simplify the variables. Starting with
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the first two terms may be written as
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Then multiplying by = —3, the radial equation becomes
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so, cancelling the common exponential, the radial equation is transformed to

_ 1y Lo Ly
0 = 4’1,’Z 2l:v Z 233Z
1
—5(l+2)xl’1Z+l(l+l)xl’2Z+(l+2)xl’1Z/
1
_gxlzl_’_lxl—lzl_’_xlzl/

1
+Az!71z — Z:ch —1(l+1)z"%z



Collecting terms,
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Dividing by 2!~!, Z must satisfy
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This is the associated Laguerre equation.

3 The Laguerre equation
A useful set of polynomials, the Laguerre functions, is given by the solutions to the Laguerre equation,
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and for a = n, the associated Laguerre polynimials,
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Exercise: Derive the associated Laguerre equation by differentiating the Laguerre equation k
times. For the Laguerre equation, we assume a solution of the form
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so that

I
o

o0 o o0
xz s(s—1)asx* 2+ (1 —x) Z sagr® ! 4 aZasxs
=

Zs (s—1) a351+25ax —Zsaz JrozZax = 0

s=2 s=1 s=1
oo
Zm (m+1)amirz™ —i—Z (m+1)amirz™ Zmamx +aZamx = 0
=1 m=0

The m = 0 term is
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For all m > 0,
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For m = 0 this formula also gives a; = —aag so we may extend this formula to all m. Iterate this series:
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where the I" function satisfies
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4 Quantization

Consider the large m limit of our solution for L, (). As a — 1 becomes negligible in the numerator, the
coeflicients become
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so asymptotically the series approaches
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This means that if the series extends to large m, the radial wave function becomes
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and diverges. The only way to avoid this is by taking o = i to be a non-negative integer so that the series
terminates
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and L,, (z) is a polynomial.
Returning to our definitions for the radial wave function
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We therefore get a quantization condition,
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Neglecting fine structure, these are the energy levels of hydrogen. Notice that in order for i to be a positive
integer, we must have
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The final polynomials are:
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so that the complete wave function is
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where A gives the normalization.

5 Appendix: The associated Laguerre equation

The associated polynomials solve a related set of equations given by differentiating the Laguerre equation
for Ly, k times:
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so we guess that the generic term is
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and, inserting a minus sign, the associated Laguerre equation is
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