
Laguerre polynomials and the hydrogen wave function

April 3, 2015

1 The radial equation: aymptotic limits
We begin by writing the radial wave equation,

∂2ψ

∂r2
+

2

r

∂ψ

∂r
+

(
2me2

~2r
+

2mE

~2
− 1

r2
l (l + 1)

)
ψ = 0

and finding the limiting forms as r →∞and at the origin. For large r, since ∂ψ
∂r is bounded,

∂2ψ

∂r2
+

2mE

~2
ψ = 0

Since E < 0, the limit has exponential solutions which we write in the form

ψ = Ae−
1
2κr +Be+

1
2κr

where

κ =

√
−8mE

~2
For the wave function to vanish at infinity, we require B = 0.

As r → 0, the equation reduces to

∂2ψ

∂r2
+

2

r

∂ψ

∂r
− 1

r2
l (l + 1)ψ = 0

and we set ψ = rα. Then

0 =
∂2rα

∂r2
+

2

r

∂rα

∂r
− 1

r2
l (l + 1) rα

= α (α− 1) rα−2u+
2

r

(
αrα−1

)
− 1

r2
l (l + 1) rαu

= (α (α+ 1)− l (l + 1)) rα−2u

so we have solutions
α = l,− (l + 1)

We require the positive powers, α = l.

2 Transformation
First, simplify the variables. Starting with

∂2ψ

∂r2
+

2

r

∂ψ

∂r
+

(
2me2

~2r
+

2mE

~2
− 1

r2
l (l + 1)

)
ψ = 0
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the first two terms may be written as

1

r2
∂

∂r

(
r2
∂ψ

∂r

)
+

(
2me2

~2r
+

2mE

~2
− 1

r2
l (l + 1)

)
ψ = 0

Let

κ2 = −8mE

~2
κr = x

λ =
2me2

κ~2

Then multiplying by 1
κ2 , the radial equation becomes

0 =
1

κ2
1

r2
∂

∂r

(
r2
∂ψ

∂r

)
+

(
1

κ2
2me2

~2r
+

1

κ2
2mE

~2
− 1

κ2
1

r2
l (l + 1)

)
ψ

=
1

x2
∂

∂x

(
x2
∂ψ

∂x

)
+

(
λ

x
− 1

4
− l (l + 1)

x2

)
ψ

Now let
ψ = e−x/2xlZ (x)

Then

1

x2
∂

∂x

(
x2
∂
(
e−x/2xlZψ

)
∂x

)
=

1

x2
∂

∂x

(
x2
(
−1

2
e−x/2xlZ + le−x/2xl−1Z + e−x/2xlZ ′

))
=

1

x2
∂

∂x

(
−1

2
e−x/2xl+2Z + le−x/2xl+1Z + e−x/2xl+2Z ′

)
=

1

x2

(
1

4
e−x/2xl+2Z − 1

2
le−x/2xl+1Z − 1

2
e−x/2xl+2Z ′

)
+

1

x2

(
−1

2
(l + 2) e−x/2xl+1Z + l (l + 1) e−x/2xlZ + (l + 2) e−x/2xl+1Z ′

)
+

1

x2

(
−1

2
e−x/2xl+2Z ′ + le−x/2xl+1Z ′ + e−x/2xl+2Z ′′

)
=

1

4
e−x/2xlZ − 1

2
le−x/2xl−1Z − 1

2
e−x/2xlZ ′

−1

2
(l + 2) e−x/2xl−1Z + l (l + 1) e−x/2xl−2Z + (l + 2) e−x/2xl−1Z ′

−1

2
e−x/2xlZ ′ + le−x/2xl−1Z ′ + e−x/2xlZ ′′

so, cancelling the common exponential, the radial equation is transformed to

0 =
1

4
xlZ − 1

2
lxl−1Z − 1

2
xlZ ′

−1

2
(l + 2)xl−1Z + l (l + 1)xl−2Z + (l + 2)xl−1Z ′

−1

2
xlZ ′ + lxl−1Z ′ + xlZ ′′

+λxl−1Z − 1

4
xlZ − l (l + 1)xl−2Z
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Collecting terms,

0 = xlZ ′′ + (2l + 2− x)xl−1Z ′

+

(
−1

2
lxl−1 − 1

2
(l + 2)xl−1 + λxl−1 + l (l + 1)xl−2 − l (l + 1)xl−2

)
Z

= xlZ ′′ + (2 (l + 1)− x)xl−1Z ′

+ (− (l + 1) + λ)xl−1Z

Dividing by xl−1, Z must satisfy

xZ ′′ + (2 (l + 1)− x)Z ′ + (λ− (l + 1))Z = 0

Let

k = 2l + 1

α = λ− (l + 1)

Then
xZ ′′ + (k + 1− x)Z ′ + αZ = 0

This is the associated Laguerre equation.

3 The Laguerre equation
A useful set of polynomials, the Laguerre functions, is given by the solutions to the Laguerre equation,

x
d2Lα
dx2

+ (1− x)
dLα
dx

+ αLα = 0

and for α = n, the associated Laguerre polynimials,

Lkn (x) = (−1)
k dk

dxk
Ln+k (x)

which satisfy

x
d2Lkn
dx2

+ (k + 1− x)
dLkn
dx

+ αLkn = 0

Exercise: Derive the associated Laguerre equation by differentiating the Laguerre equation k
times. For the Laguerre equation, we assume a solution of the form

Lα =

∞∑
s=0

asx
s

Then

dLα
dx

=

∞∑
s=1

sasx
s−1

d2Lα
dx2

=

∞∑
s=2

s (s− 1) asx
s−2
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so that

x

∞∑
s=2

s (s− 1) asx
s−2 + (1− x)

∞∑
s=1

sasx
s−1 + α

∞∑
s=0

asx
s = 0

∞∑
s=2

s (s− 1) asx
s−1 +

∞∑
s=1

sasx
s−1 −

∞∑
s=1

sasx
s + α

∞∑
s=0

asx
s = 0

∞∑
m=1

m (m+ 1) am+1x
m +

∞∑
m=0

(m+ 1) am+1x
m −

∞∑
m=1

mamx
m + α

∞∑
m=0

amx
m = 0

The m = 0 term is
a1 + αa0 = 0

For all m > 0,

(m (m+ 1) am+1 + (m+ 1) am+1 −mam + αam)xm = 0

(m+ 1)
2
am+1 + (α−m) am = 0

and therefore

am+1 = − α−m
(m+ 1)

2 am

For m = 0 this formula also gives a1 = −αa0 so we may extend this formula to all m. Iterate this series:

am = −α−m+ 1

m2
am−1

= (−1)
2 (α−m+ 1) (α−m+ 2)

m2 (m− 1)
2 am−2

= (−1)
k (α−m+ 1) (α−m+ 2) · · · (α−m+ k)

m2 · · · (m− k + 1)
2 am−k

so that for k = m,

am = (−1)
m (α−m+ 1) (α−m+ 2) · · ·α

m2 · · · 12
a0

= (−1)
m Γ (α+ 1)

m!m!Γ (α−m+ 1)
a0

where the Γ function satisfies

Γ (m) = (m− 1)!

Γ (α+ 1) = αΓ (α)

The solution is

Lα (x) = a0

∞∑
m=0

Γ (α+ 1)

m!m!Γ (α−m+ 1)
(−1)

m
xm

4 Quantization
Consider the large m limit of our solution for Lα (x). As α − 1 becomes negligible in the numerator, the
coefficients become

am =
(m− α− 1) (m− α− 2) · · · (m− (α− 1) + 1−m)

m!m!
a0
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≈ m (m− 1) (m− 2) · · · 1
m!m!

(α− 1) a0

= (α− 1) a0
1

m!

so asymptotically the series approaches

Lα (x) ∼ (α− 1) a0

∞∑
m=0

1

m!
xm ∼ ex

This means that if the series extends to large m, the radial wave function becomes

ψ = e−x/2xlZ (x) ∼ e+x/2xl

and diverges. The only way to avoid this is by taking α ≡ i to be a non-negative integer so that the series
terminates

am = (−1)
m (i−m+ 1) (i−m+ 2) · · ·α

m2 · · · 12
a0

ai = (−1)
i 1

i!
a0

ai+1 = 0

and Ln (x) is a polynomial.
Returning to our definitions for the radial wave function

κ2 = −8mE

~2
κr = x

λ =
2me2

κ~2

and

i = λ− (l + 1)

We therefore get a quantization condition,

λ = i+ l + 1 ≡ n

where

n =
2me2

κ~2

=
2me2

~2
√
− 8mE

~2

=
2me2

~
√
−8mE

Solving for the energy

−8mEn =
4m2e4

n2~2

En = − me4

2n2~2
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Neglecting fine structure, these are the energy levels of hydrogen. Notice that in order for i to be a positive
integer, we must have

n ≥ l + 1

The final polynomials are:
Lkα (x) = L2l+1

n−l−1 (κr)

so that the complete wave function is

Ψ (r, θ, ϕ, l,ml,ms) = Ae−κr/2 (κr)
l
L2l+1
n−l−1 (κr)Ylm (θ, ϕ)χ (α, β)

where A gives the normalization.

5 Appendix: The associated Laguerre equation
The associated polynomials solve a related set of equations given by differentiating the Laguerre equation
for Ln+k, k times:

0 =
dk

dxk

(
x
d2Ln+k
dx2

+ (1− x)
dLn+k
dx

+ (n+ k)Ln+k

)
=

dk

dxk

(
x
d2Ln+k
dx2

)
+

dk

dxk

(
(1− x)

dLn+k
dx

)
+ (n+ k)

dkLn+k
dxk

For the first term,

d

dx

(
x
d2Ln+k
dx2

)
= x

d3Ln+k
dx3

+
d2Ln+k
dx2

d2

dx2

(
x
d2Ln+k
dx2

)
= x

d4Ln+k
dx4

+ 2
d3Ln+k
dx3

d3

dx3

(
x
d2Ln+k
dx2

)
= x

d5Ln+k
dx5

+ 3
d4Ln+k
dx4

The pattern is emerging:

dk

dxk

(
x
d2Ln+k
dx2

)
= x

dk+2Ln+k
dxk+2

+ k
dk+1Ln+k
dxk+1

Check one more derivative to complete the induction:

dk+1

dxk+1

(
x
d2Ln+k
dx2

)
=

d

dx

(
x
d(k+1)+2Ln+k
dx(k+1)+2

+ (k + 1)
d(k+1)+1Ln+k
dx(k+1)+1

)
so the form is correct.

For the second term, we need

dk

dxk

(
(1− x)

dLn+k
dx

)
=

dk

dxk

(
dLn+k
dx

− xdLn+k
dx

)
=

dk+1Ln+k
dxk+1

− dk

dxk

(
x
dLn+k
dx

)
Look at the last part,

d

dx

(
x
dLn+k
dx

)
= x

d2Ln+k
dx2

+
dLn+k
dx

d2

dx2

(
x
dLn+k
dx

)
= x

d3Ln+k
dx3

+ 2
d2Ln+k
dx2
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so we guess that the generic term is

dk

dxk

(
x
dLn+k
dx

)
= x

dk+1Ln+k
dxk+1

+ k
dkLn+k
dxk

and check one more:

dk+1

dxk+1

(
x
dLn+k
dx

)
=

dk+1Ln+k
dxk+1

+ x
dk+2Ln+k
dxk+2

+ k
dk+1Ln+k
dxk+1

= x
d(k+1)+1Ln+k
dx(k+1)+1

+ (k + 1)
dk+1Ln+k
dxk+1

Therefore, returning to the equation,

0 =
dk

dxk

(
x
d2Ln+k
dx2

)
+

dk

dxk

(
(1− x)

dLn+k
dx

)
+ (n+ k)

dkLn+k
dxk

= x
dk+2Ln+k
dxk+2

+ k
dk+1Ln+k
dxk+1

+
dk+1Ln+k
dxk+1

− xd
k+1Ln+k
dxk+1

− kd
kLn+k
dxk

+ (n+ k)
dkLn+k
dxk

= x
d2

dx2

(
dkLn+k
dxk

)
+ (k + 1− x)

d

dx

(
dkLn+k
dxk

)
+ n

(
dkLn+k
dxk

)
and, inserting a minus sign, the associated Laguerre equation is

x
d2Lkn
dx2

+ (k + 1− x)
dLkn
dx

+ nLkn = 0
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