Laguerre polynomials and the hydrogen wave function

April 3, 2015

1 The radial equation: aymptotic limits

We begin by writing the radial wave equation,

$$
\frac{\partial^{2} \psi}{\partial r^{2}}+\frac{2}{r} \frac{\partial \psi}{\partial r}+\left(\frac{2 m e^{2}}{\hbar^{2} r}+\frac{2 m E}{\hbar^{2}}-\frac{1}{r^{2}} l(l+1)\right) \psi=0
$$

and finding the limiting forms as $r \rightarrow \infty$ and at the origin. For large r, since $\frac{\partial \psi}{\partial r}$ is bounded,

$$
\frac{\partial^{2} \psi}{\partial r^{2}}+\frac{2 m E}{\hbar^{2}} \psi=0
$$

Since $E<0$, the limit has exponential solutions which we write in the form

$$
\psi=A e^{-\frac{1}{2} \kappa r}+B e^{+\frac{1}{2} \kappa r}
$$

where

$$
\kappa=\sqrt{-\frac{8 m E}{\hbar^{2}}}
$$

For the wave function to vanish at infinity, we require $B=0$.
As $r \rightarrow 0$, the equation reduces to

$$
\frac{\partial^{2} \psi}{\partial r^{2}}+\frac{2}{r} \frac{\partial \psi}{\partial r}-\frac{1}{r^{2}} l(l+1) \psi=0
$$

and we set $\psi=r^{\alpha}$. Then

$$
\begin{aligned}
0 & =\frac{\partial^{2} r^{\alpha}}{\partial r^{2}}+\frac{2}{r} \frac{\partial r^{\alpha}}{\partial r}-\frac{1}{r^{2}} l(l+1) r^{\alpha} \\
& =\alpha(\alpha-1) r^{\alpha-2} u+\frac{2}{r}\left(\alpha r^{\alpha-1}\right)-\frac{1}{r^{2}} l(l+1) r^{\alpha} u \\
& =(\alpha(\alpha+1)-l(l+1)) r^{\alpha-2} u
\end{aligned}
$$

so we have solutions

$$
\alpha=l,-(l+1)
$$

We require the positive powers, $\alpha=l$.

2 Transformation

First, simplify the variables. Starting with

$$
\frac{\partial^{2} \psi}{\partial r^{2}}+\frac{2}{r} \frac{\partial \psi}{\partial r}+\left(\frac{2 m e^{2}}{\hbar^{2} r}+\frac{2 m E}{\hbar^{2}}-\frac{1}{r^{2}} l(l+1)\right) \psi=0
$$

the first two terms may be written as

$$
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi}{\partial r}\right)+\left(\frac{2 m e^{2}}{\hbar^{2} r}+\frac{2 m E}{\hbar^{2}}-\frac{1}{r^{2}} l(l+1)\right) \psi=0
$$

Let

$$
\begin{aligned}
\kappa^{2} & =-\frac{8 m E}{\hbar^{2}} \\
\kappa r & =x \\
\lambda & =\frac{2 m e^{2}}{\kappa \hbar^{2}}
\end{aligned}
$$

Then multiplying by $\frac{1}{\kappa^{2}}$, the radial equation becomes

$$
\begin{aligned}
0 & =\frac{1}{\kappa^{2}} \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi}{\partial r}\right)+\left(\frac{1}{\kappa^{2}} \frac{2 m e^{2}}{\hbar^{2} r}+\frac{1}{\kappa^{2}} \frac{2 m E}{\hbar^{2}}-\frac{1}{\kappa^{2}} \frac{1}{r^{2}} l(l+1)\right) \psi \\
& =\frac{1}{x^{2}} \frac{\partial}{\partial x}\left(x^{2} \frac{\partial \psi}{\partial x}\right)+\left(\frac{\lambda}{x}-\frac{1}{4}-\frac{l(l+1)}{x^{2}}\right) \psi
\end{aligned}
$$

Now let

$$
\psi=e^{-x / 2} x^{l} Z(x)
$$

Then

$$
\begin{aligned}
\frac{1}{x^{2}} \frac{\partial}{\partial x}\left(x^{2} \frac{\partial\left(e^{-x / 2} x^{l} Z \psi\right)}{\partial x}\right)= & \frac{1}{x^{2}} \frac{\partial}{\partial x}\left(x^{2}\left(-\frac{1}{2} e^{-x / 2} x^{l} Z+l e^{-x / 2} x^{l-1} Z+e^{-x / 2} x^{l} Z^{\prime}\right)\right) \\
= & \frac{1}{x^{2}} \frac{\partial}{\partial x}\left(-\frac{1}{2} e^{-x / 2} x^{l+2} Z+l e^{-x / 2} x^{l+1} Z+e^{-x / 2} x^{l+2} Z^{\prime}\right) \\
= & \frac{1}{x^{2}}\left(\frac{1}{4} e^{-x / 2} x^{l+2} Z-\frac{1}{2} l e^{-x / 2} x^{l+1} Z-\frac{1}{2} e^{-x / 2} x^{l+2} Z^{\prime}\right) \\
& +\frac{1}{x^{2}}\left(-\frac{1}{2}(l+2) e^{-x / 2} x^{l+1} Z+l(l+1) e^{-x / 2} x^{l} Z+(l+2) e^{-x / 2} x^{l+1} Z^{\prime}\right) \\
& +\frac{1}{x^{2}}\left(-\frac{1}{2} e^{-x / 2} x^{l+2} Z^{\prime}+l e^{-x / 2} x^{l+1} Z^{\prime}+e^{-x / 2} x^{l+2} Z^{\prime \prime}\right) \\
= & \frac{1}{4} e^{-x / 2} x^{l} Z-\frac{1}{2} l e^{-x / 2} x^{l-1} Z-\frac{1}{2} e^{-x / 2} x^{l} Z^{\prime} \\
& -\frac{1}{2}(l+2) e^{-x / 2} x^{l-1} Z+l(l+1) e^{-x / 2} x^{l-2} Z+(l+2) e^{-x / 2} x^{l-1} Z^{\prime} \\
& -\frac{1}{2} e^{-x / 2} x^{l} Z^{\prime}+l e^{-x / 2} x^{l-1} Z^{\prime}+e^{-x / 2} x^{l} Z^{\prime \prime}
\end{aligned}
$$

so, cancelling the common exponential, the radial equation is transformed to

$$
\begin{aligned}
0= & \frac{1}{4} x^{l} Z-\frac{1}{2} l x^{l-1} Z-\frac{1}{2} x^{l} Z^{\prime} \\
& -\frac{1}{2}(l+2) x^{l-1} Z+l(l+1) x^{l-2} Z+(l+2) x^{l-1} Z^{\prime} \\
& -\frac{1}{2} x^{l} Z^{\prime}+l x^{l-1} Z^{\prime}+x^{l} Z^{\prime \prime} \\
& +\lambda x^{l-1} Z-\frac{1}{4} x^{l} Z-l(l+1) x^{l-2} Z
\end{aligned}
$$

Collecting terms,

$$
\begin{aligned}
0= & x^{l} Z^{\prime \prime}+(2 l+2-x) x^{l-1} Z^{\prime} \\
& +\left(-\frac{1}{2} l x^{l-1}-\frac{1}{2}(l+2) x^{l-1}+\lambda x^{l-1}+l(l+1) x^{l-2}-l(l+1) x^{l-2}\right) Z \\
= & x^{l} Z^{\prime \prime}+(2(l+1)-x) x^{l-1} Z^{\prime} \\
& +(-(l+1)+\lambda) x^{l-1} Z
\end{aligned}
$$

Dividing by x^{l-1}, Z must satisfy

$$
x Z^{\prime \prime}+(2(l+1)-x) Z^{\prime}+(\lambda-(l+1)) Z=0
$$

Let

$$
\begin{aligned}
k & =2 l+1 \\
\alpha & =\lambda-(l+1)
\end{aligned}
$$

Then

$$
x Z^{\prime \prime}+(k+1-x) Z^{\prime}+\alpha Z=0
$$

This is the associated Laguerre equation.

3 The Laguerre equation

A useful set of polynomials, the Laguerre functions, is given by the solutions to the Laguerre equation,

$$
x \frac{d^{2} L_{\alpha}}{d x^{2}}+(1-x) \frac{d L_{\alpha}}{d x}+\alpha L_{\alpha}=0
$$

and for $\alpha=n$, the associated Laguerre polynimials,

$$
L_{n}^{k}(x)=(-1)^{k} \frac{d^{k}}{d x^{k}} L_{n+k}(x)
$$

which satisfy

$$
x \frac{d^{2} L_{n}^{k}}{d x^{2}}+(k+1-x) \frac{d L_{n}^{k}}{d x}+\alpha L_{n}^{k}=0
$$

Exercise: Derive the associated Laguerre equation by differentiating the Laguerre equation k times. For the Laguerre equation, we assume a solution of the form

$$
L_{\alpha}=\sum_{s=0}^{\infty} a_{s} x^{s}
$$

Then

$$
\begin{aligned}
\frac{d L_{\alpha}}{d x} & =\sum_{s=1}^{\infty} s a_{s} x^{s-1} \\
\frac{d^{2} L_{\alpha}}{d x^{2}} & =\sum_{s=2}^{\infty} s(s-1) a_{s} x^{s-2}
\end{aligned}
$$

so that

$$
\begin{array}{r}
x \sum_{s=2}^{\infty} s(s-1) a_{s} x^{s-2}+(1-x) \sum_{s=1}^{\infty} s a_{s} x^{s-1}+\alpha \sum_{s=0}^{\infty} a_{s} x^{s}=0 \\
\sum_{s=2}^{\infty} s(s-1) a_{s} x^{s-1}+\sum_{s=1}^{\infty} s a_{s} x^{s-1}-\sum_{s=1}^{\infty} s a_{s} x^{s}+\alpha \sum_{s=0}^{\infty} a_{s} x^{s}=0 \\
\sum_{m=1}^{\infty} m(m+1) a_{m+1} x^{m}+\sum_{m=0}^{\infty}(m+1) a_{m+1} x^{m}-\sum_{m=1}^{\infty} m a_{m} x^{m}+\alpha \sum_{m=0}^{\infty} a_{m} x^{m}=0
\end{array}
$$

The $m=0$ term is

$$
a_{1}+\alpha a_{0}=0
$$

For all $m>0$,

$$
\begin{aligned}
\left(m(m+1) a_{m+1}+(m+1) a_{m+1}-m a_{m}+\alpha a_{m}\right) x^{m} & =0 \\
(m+1)^{2} a_{m+1}+(\alpha-m) a_{m} & =0
\end{aligned}
$$

and therefore

$$
a_{m+1}=-\frac{\alpha-m}{(m+1)^{2}} a_{m}
$$

For $m=0$ this formula also gives $a_{1}=-\alpha a_{0}$ so we may extend this formula to all m. Iterate this series:

$$
\begin{aligned}
a_{m} & =-\frac{\alpha-m+1}{m^{2}} a_{m-1} \\
& =(-1)^{2} \frac{(\alpha-m+1)(\alpha-m+2)}{m^{2}(m-1)^{2}} a_{m-2} \\
& =(-1)^{k} \frac{(\alpha-m+1)(\alpha-m+2) \cdots(\alpha-m+k)}{m^{2} \cdots(m-k+1)^{2}} a_{m-k}
\end{aligned}
$$

so that for $k=m$,

$$
\begin{aligned}
a_{m} & =(-1)^{m} \frac{(\alpha-m+1)(\alpha-m+2) \cdots \alpha}{m^{2} \cdots 1^{2}} a_{0} \\
& =(-1)^{m} \frac{\Gamma(\alpha+1)}{m!m!\Gamma(\alpha-m+1)} a_{0}
\end{aligned}
$$

where the Γ function satisfies

$$
\begin{aligned}
\Gamma(m) & =(m-1)! \\
\Gamma(\alpha+1) & =\alpha \Gamma(\alpha)
\end{aligned}
$$

The solution is

$$
L_{\alpha}(x)=a_{0} \sum_{m=0}^{\infty} \frac{\Gamma(\alpha+1)}{m!m!\Gamma(\alpha-m+1)}(-1)^{m} x^{m}
$$

4 Quantization

Consider the large m limit of our solution for $L_{\alpha}(x)$. As $\alpha-1$ becomes negligible in the numerator, the coefficients become

$$
a_{m}=\frac{(m-\alpha-1)(m-\alpha-2) \cdots(m-(\alpha-1)+1-m)}{m!m!} a_{0}
$$

$$
\begin{aligned}
& \approx \frac{m(m-1)(m-2) \cdots 1}{m!m!}(\alpha-1) a_{0} \\
& =(\alpha-1) a_{0} \frac{1}{m!}
\end{aligned}
$$

so asymptotically the series approaches

$$
L_{\alpha}(x) \sim(\alpha-1) a_{0} \sum_{m=0}^{\infty} \frac{1}{m!} x^{m} \sim e^{x}
$$

This means that if the series extends to large m, the radial wave function becomes

$$
\psi=e^{-x / 2} x^{l} Z(x) \sim e^{+x / 2} x^{l}
$$

and diverges. The only way to avoid this is by taking $\alpha \equiv i$ to be a non-negative integer so that the series terminates

$$
\begin{aligned}
a_{m} & =(-1)^{m} \frac{(i-m+1)(i-m+2) \cdots \alpha}{m^{2} \cdots 1^{2}} a_{0} \\
a_{i} & =(-1)^{i} \frac{1}{i!} a_{0} \\
a_{i+1} & =0
\end{aligned}
$$

and $L_{n}(x)$ is a polynomial.
Returning to our definitions for the radial wave function

$$
\begin{aligned}
\kappa^{2} & =-\frac{8 m E}{\hbar^{2}} \\
\kappa r & =x \\
\lambda & =\frac{2 m e^{2}}{\kappa \hbar^{2}}
\end{aligned}
$$

and

$$
i=\lambda-(l+1)
$$

We therefore get a quantization condition,

$$
\lambda=i+l+1 \equiv n
$$

where

$$
\begin{aligned}
n & =\frac{2 m e^{2}}{\kappa \hbar^{2}} \\
& =\frac{2 m e^{2}}{\hbar^{2} \sqrt{-\frac{8 m E}{\hbar^{2}}}} \\
& =\frac{2 m e^{2}}{\hbar \sqrt{-8 m E}}
\end{aligned}
$$

Solving for the energy

$$
\begin{aligned}
-8 m E_{n} & =\frac{4 m^{2} e^{4}}{n^{2} \hbar^{2}} \\
E_{n} & =-\frac{m e^{4}}{2 n^{2} \hbar^{2}}
\end{aligned}
$$

Neglecting fine structure, these are the energy levels of hydrogen. Notice that in order for i to be a positive integer, we must have

$$
n \geq l+1
$$

The final polynomials are:

$$
L_{\alpha}^{k}(x)=L_{n-l-1}^{2 l+1}(\kappa r)
$$

so that the complete wave function is

$$
\Psi\left(r, \theta, \varphi, l, m_{l}, m_{s}\right)=A e^{-\kappa r / 2}(\kappa r)^{l} L_{n-l-1}^{2 l+1}(\kappa r) Y_{l m}(\theta, \varphi) \chi(\alpha, \beta)
$$

where A gives the normalization.

5 Appendix: The associated Laguerre equation

The associated polynomials solve a related set of equations given by differentiating the Laguerre equation for L_{n+k}, k times:

$$
\begin{aligned}
0 & =\frac{d^{k}}{d x^{k}}\left(x \frac{d^{2} L_{n+k}}{d x^{2}}+(1-x) \frac{d L_{n+k}}{d x}+(n+k) L_{n+k}\right) \\
& =\frac{d^{k}}{d x^{k}}\left(x \frac{d^{2} L_{n+k}}{d x^{2}}\right)+\frac{d^{k}}{d x^{k}}\left((1-x) \frac{d L_{n+k}}{d x}\right)+(n+k) \frac{d^{k} L_{n+k}}{d x^{k}}
\end{aligned}
$$

For the first term,

$$
\begin{aligned}
\frac{d}{d x}\left(x \frac{d^{2} L_{n+k}}{d x^{2}}\right) & =x \frac{d^{3} L_{n+k}}{d x^{3}}+\frac{d^{2} L_{n+k}}{d x^{2}} \\
\frac{d^{2}}{d x^{2}}\left(x \frac{d^{2} L_{n+k}}{d x^{2}}\right) & =x \frac{d^{4} L_{n+k}}{d x^{4}}+2 \frac{d^{3} L_{n+k}}{d x^{3}} \\
\frac{d^{3}}{d x^{3}}\left(x \frac{d^{2} L_{n+k}}{d x^{2}}\right) & =x \frac{d^{5} L_{n+k}}{d x^{5}}+3 \frac{d^{4} L_{n+k}}{d x^{4}}
\end{aligned}
$$

The pattern is emerging:

$$
\frac{d^{k}}{d x^{k}}\left(x \frac{d^{2} L_{n+k}}{d x^{2}}\right)=x \frac{d^{k+2} L_{n+k}}{d x^{k+2}}+k \frac{d^{k+1} L_{n+k}}{d x^{k+1}}
$$

Check one more derivative to complete the induction:

$$
\frac{d^{k+1}}{d x^{k+1}}\left(x \frac{d^{2} L_{n+k}}{d x^{2}}\right)=\frac{d}{d x}\left(x \frac{d^{(k+1)+2} L_{n+k}}{d x^{(k+1)+2}}+(k+1) \frac{d^{(k+1)+1} L_{n+k}}{d x^{(k+1)+1}}\right)
$$

so the form is correct.
For the second term, we need

$$
\begin{aligned}
\frac{d^{k}}{d x^{k}}\left((1-x) \frac{d L_{n+k}}{d x}\right) & =\frac{d^{k}}{d x^{k}}\left(\frac{d L_{n+k}}{d x}-x \frac{d L_{n+k}}{d x}\right) \\
& =\frac{d^{k+1} L_{n+k}}{d x^{k+1}}-\frac{d^{k}}{d x^{k}}\left(x \frac{d L_{n+k}}{d x}\right)
\end{aligned}
$$

Look at the last part,

$$
\begin{aligned}
\frac{d}{d x}\left(x \frac{d L_{n+k}}{d x}\right) & =x \frac{d^{2} L_{n+k}}{d x^{2}}+\frac{d L_{n+k}}{d x} \\
\frac{d^{2}}{d x^{2}}\left(x \frac{d L_{n+k}}{d x}\right) & =x \frac{d^{3} L_{n+k}}{d x^{3}}+2 \frac{d^{2} L_{n+k}}{d x^{2}}
\end{aligned}
$$

so we guess that the generic term is

$$
\frac{d^{k}}{d x^{k}}\left(x \frac{d L_{n+k}}{d x}\right)=x \frac{d^{k+1} L_{n+k}}{d x^{k+1}}+k \frac{d^{k} L_{n+k}}{d x^{k}}
$$

and check one more:

$$
\begin{aligned}
\frac{d^{k+1}}{d x^{k+1}}\left(x \frac{d L_{n+k}}{d x}\right) & =\frac{d^{k+1} L_{n+k}}{d x^{k+1}}+x \frac{d^{k+2} L_{n+k}}{d x^{k+2}}+k \frac{d^{k+1} L_{n+k}}{d x^{k+1}} \\
& =x \frac{d^{(k+1)+1} L_{n+k}}{d x^{(k+1)+1}}+(k+1) \frac{d^{k+1} L_{n+k}}{d x^{k+1}}
\end{aligned}
$$

Therefore, returning to the equation,

$$
\begin{aligned}
0 & =\frac{d^{k}}{d x^{k}}\left(x \frac{d^{2} L_{n+k}}{d x^{2}}\right)+\frac{d^{k}}{d x^{k}}\left((1-x) \frac{d L_{n+k}}{d x}\right)+(n+k) \frac{d^{k} L_{n+k}}{d x^{k}} \\
& =x \frac{d^{k+2} L_{n+k}}{d x^{k+2}}+k \frac{d^{k+1} L_{n+k}}{d x^{k+1}}+\frac{d^{k+1} L_{n+k}}{d x^{k+1}}-x \frac{d^{k+1} L_{n+k}}{d x^{k+1}}-k \frac{d^{k} L_{n+k}}{d x^{k}}+(n+k) \frac{d^{k} L_{n+k}}{d x^{k}} \\
& =x \frac{d^{2}}{d x^{2}}\left(\frac{d^{k} L_{n+k}}{d x^{k}}\right)+(k+1-x) \frac{d}{d x}\left(\frac{d^{k} L_{n+k}}{d x^{k}}\right)+n\left(\frac{d^{k} L_{n+k}}{d x^{k}}\right)
\end{aligned}
$$

and, inserting a minus sign, the associated Laguerre equation is

$$
x \frac{d^{2} L_{n}^{k}}{d x^{2}}+(k+1-x) \frac{d L_{n}^{k}}{d x}+n L_{n}^{k}=0
$$

