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Perhaps the most important applications of quantum mechanics is to the description of atoms, where
quantum effects dominate the description. We now turn to the exact solution of the simplest problem in
atomic physics – the study of the hydrogen atom.

1 The Hamiltonian
The Hamiltonian for hydrogen takes the form

Ĥ =
1

2m
P̂2 + V

(
X̂
)

and satisfies the Schrödinger equation,

Ĥ |α, t〉 = i~
∂

∂t
|α, t〉

where the potential is dependent only on R̂ =
√

X̂ · X̂ and is given in a (spherical) coordinate basis by

〈r, θ, ϕ|V
(
X̂
)

= 〈r, θ, ϕ|V (x)

= 〈r, θ, ϕ|
(
−e

2

r

)
Since the Hamiltonian is time-independent, we expect solutions of the form

|α, t〉 = e−
i
~ Ĥt |α〉

= e−
i
~Et |α〉

and making this substitution into the Schrödinger equation leads to the stationary state formulation,

Ĥ |α〉 = E |α〉[
1

2m
P̂2 + V

(
X̂
)]
|α〉 = E |α〉

2 Conservation of orbital angular momentum
We have studied the orbital angular momentum

L̂ = X̂× P̂
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Exercise: Show that [
L̂i, L̂j

]
= i~εijkL̂k

so that the L̂j form an irreducible representation of the rotation group. We know from our
examination of angular momentum that[

L̂i, P̂
2
]

=
[
L̂i, P̂kP̂k

]
= P̂k

[
L̂i, P̂k

]
+
[
L̂i, P̂k

]
P̂k

= εijm

(
P̂k

[
X̂jP̂m, P̂k

]
+
[
X̂jP̂m, P̂k

]
P̂k

)
= εijm

(
P̂kX̂j

[
P̂m, P̂k

]
+ P̂k

[
X̂j , P̂k

]
P̂m + X̂j

[
P̂m, P̂k

]
P̂k +

[
X̂j , P̂k

]
P̂mP̂k

)
= εijm

(
P̂k

[
X̂j , P̂k

]
P̂m +

[
X̂j , P̂k

]
P̂mP̂k

)
= εijm

(
P̂ki~δjkP̂m + i~δjkP̂mP̂k

)
= εijmi~

(
P̂jP̂m + P̂mP̂j

)
= 0

Exercise: Show that [
L̂i, X̂

2
]

= 0

The Hamiltonian is a function of X̂2 and P̂2,

Ĥ =
1

2m
P̂2 + V

(√
X̂2
)

so [
L̂, Ĥ

]
= 0

and angular momentum is conserved. As a result, we may label states with eigenvalues (l,m) of L̂2 and
L̂zrespectively, as well as energy. This makes it worthwhile expressing the Hamiltonian in terms of L̂.

From the definition of L̂, we see that

L̂2 =
(
X̂× P̂

)
·
(
X̂× P̂

)
=

(
εijkX̂jP̂k

)(
εilmX̂lP̂m

)
= (δjlδkm − δjmδkl) X̂jP̂kX̂lP̂m

= (δjlδkm − δjmδkl) X̂j

([
P̂k, X̂l

]
+ X̂lP̂k

)
P̂m

= −i~δkl (δjlδkm − δjmδkl) X̂jP̂m + (δjlδkm − δjmδkl) X̂jX̂lP̂kP̂m

= −i~
(
X̂jP̂j − 3X̂jP̂j

)
+ X̂jX̂jP̂kP̂k − X̂jX̂kP̂kP̂j

= X̂2P̂2 − X̂j

(
X̂ · P̂

)
P̂j + 2i~

(
X̂ · P̂

)
to arrive at

L̂2 = X̂2P̂2 − X̂j

(
X̂ · P̂

)
P̂j + 2i~

(
X̂ · P̂

)
On any state where X̂2 is nonvanishing, we may write

P̂2 =
1

X̂2
L̂2 +

1

X̂2
X̂j

(
X̂ · P̂

)
P̂j −

2i~
X̂2

(
X̂ · P̂

)
This may be used to replace P̂2 in the Schrödinger equation.
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3 Spin, orbital angular momentum, and degeneracy
The state |α〉 describes the electron in a hyrogen atom. Since the electron has spin- 12 , part of its state will
be described by |j,m〉 =

∣∣ 1
2 ,m

〉
where m = ± 1

2 . Because the spin operators Ŝ2 and Ŝz act only on the |j,m〉
states, while X̂ and P̂ act on phase space, these operators commute. The electron state will therefore be a
direct product,

|α〉 = |β〉 ⊗
∣∣∣∣12 ,m

〉
Any presence of Ŝ2 or Ŝz in the Hamiltonian will act on the spin ket, while X̂ and P̂ act only on the |β〉
part.

This will become relevant when we look at small corrections to the Hamiltonian, where we find coupling
between orbital and spin angular momentum. It is also important if we place the atom in a magnetic field,
since the magnetic moment depends on spin.

We now have found a maximal set of commuting operators,

Ĥ, L̂2, L̂z, Ŝ
2, Ŝz

so we label our states with the corresponding eigenvalues. Separating orbital angular momentum kets in the
same way as spin, we have

|α〉 = |E, l,ml,ms〉 ⊗ |l,ml〉 ⊗
∣∣∣∣12 ,ms

〉
where we retain the possibility that the energy eigenkets depend on the angular momentum eigenvalues.

Substituting for P̂2, and writing the state in terms of the eigenvalues, the stationary state Schrödinger
equation becomes[

1

2m

1

X̂2
L̂2 +

1

2m

1

X̂2
X̂j

(
X̂ · P̂

)
P̂j −

i~
m

1

X̂2

(
X̂ · P̂

)
+ V

(
X̂
)]
|E, l,ml〉 ⊗

∣∣∣∣12 ,ms

〉
= E |E, l,m〉 ⊗

∣∣∣∣12 ,ms

〉
The first thing we notice is that the absence of any spin operators in the Hamiltonian means that there is
no mixing of the

∣∣ 1
2 ,±

1
2

〉
states. This means that the final stationary state solutions will have the pure spin

up or spin down form,

|E, l,ml,ms〉 ⊗ |l,ml〉 ⊗
∣∣∣∣12 ,ms

〉
= |E, l,ml〉 ⊗ |l,ml〉 ⊗

∣∣∣∣12 ,ms

〉
that is, the two energy eigenstates with ms = ± 1

2 have the same energy.
The orbital angular momentum kets are eigenkets of L̂2. Replacing this operator by its eigenvalue,[

~2

2m
l (l + 1)

1

X̂2
+

1

2m

1

X̂2
X̂j

(
X̂ · P̂

)
P̂j −

i~
m

1

X̂2

(
X̂ · P̂

)
+ V

(
X̂
)]
|E, l〉 ⊗ |l,ml〉 ⊗

∣∣∣∣12 ,ms

〉
= E |E, l〉 ⊗ |l,ml〉 ⊗

∣∣∣∣12 ,ms

〉
The Hamiltonian is independent of ml, so we may drop this label from the energy eigenkets. This means
that states of a given l, but different values of ml will have the same energy. The total energy degeneracy is
therefore

2× (2l + 1)

for states |E, l〉.

4 Stationary state Schrödinger equation in spherical coordinates
From here on, it becomes advantageous to choose a basis of spherical coordinates, 〈r, θ, ϕ|. We also need
basis kets for the intinsic spin. These may be chosen to be the Ŝz eigenkets, 〈±| Bringing in the composit

3



bra, 〈r, θ, ϕ| ⊗ 〈±|, from the left, the Hamiltonian ignores spin factor 〈±|, giving the wave function a factor
of either α = 〈+

∣∣ 1
2 ,ms

〉
or β = 〈−

∣∣ 1
2 ,ms

〉
. We write a general linear combination of these as a complex

2-vector,

χ =

(
α
β

)
so the full state retains this factor in the form Ψ = ψ (r, θϕ)χ (α, β).

Returning to the coordinate part of the basis bra, we may immediately replace

〈r, θ, ϕ| 1

X̂2
= 〈r, θ, ϕ| 1

r2

〈r, θ, ϕ|V
(
X̂
)

= −〈r, θ, ϕ| e
2

r

leaving only two terms to evaluate. We work through these in detail.

4.1 The first term, in detail
For the first,

1

2m
〈r, θ, ϕ| 1

X̂2
X̂j

(
X̂ · P̂

)
P̂j |E, l〉 =

1

2mr2
〈r, θ, ϕ|xj

(
x · P̂

)
P̂j |E, l〉

=
1

2mr2
〈r, θ, ϕ|xj

(ˆ
d3x′ |x′〉 〈x′|

)(
x · P̂

)(ˆ
d3x′′ |x′′〉 〈x′′|

)
P̂j

(ˆ
d3x′′′ |x′′′〉 〈x′′′|

)
|E, l〉

where we have inserted identities between operators. Now we may evaluate,

〈x′|
(
x · P̂

)
|x′′〉 = x · 〈x′| P̂ |x′′〉

= i~x ·∇x′′δ3 (x′ − x′′)

〈x′′| P̂j |x′′′〉 = i~∇j,x′′′δ3 (x′′ − x′′′)

Substituting and integrating by parts to free up the delta functions, we start from the right with
ˆ
d3x′′′ 〈x′′| P̂j |x′′′〉 〈x′′′ |E, l〉 = i~

ˆ
d3x′′′∇j,x′′′δ3 (x′′ − x′′′) 〈x′′′ |E, l〉

= −i~
ˆ
d3x′′′δ3 (x′′ − x′′′)∇j,x′′′ 〈x′′′ |E, l〉

= −i~∇j,x′′ 〈x′′ |E, l〉

Replacing this in the full expression,

1

2m
〈r, θ, ϕ| 1

X̂2
X̂j

(
X̂ · P̂

)
P̂j |E, l〉 = − i~

2mr2
〈r, θ, ϕ|xj

(ˆ
d3x′ |x′〉 〈x′|

)(
x · P̂

)(ˆ
d3x′′ |x′′〉 〈x′′|

)
∇j,x′′ 〈x′′ |E, l〉

we next encounterˆ
d3x′′ 〈x′|

(
x · P̂

)
|x′′〉∇j,x′′ 〈x′′ |E, l,m〉 = i~

ˆ
d3x′′x ·∇x′′δ3 (x′ − x′′)∇j,x′′ 〈x′′ |E, l〉

= −i~
ˆ
d3x′′δ3 (x′ − x′′) (x ·∇x′′)∇j,x′′ 〈x′′ |E, l〉

= −i~ (x ·∇x′)∇j,x′ 〈x′ |E, l〉
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and then the final integral,

− ~2

2mr2
〈r, θ, ϕ|xj

ˆ
d3x′ |x′〉 (x ·∇x′)∇j,x′ 〈x′ |E, l〉 = − ~2

2mr2

ˆ
d3x′ 〈r, θ, ϕ |x′〉x′j (x ·∇x′)∇j,x′ 〈x′ |E, l〉

= − ~2

2mr2

ˆ
d3x′δ3 ((r, θ, ϕ)− x′)x′j (x ·∇x′)∇j,x′ 〈x′ |E, l〉

= − ~2

2mr2
xj (x ·∇)∇j 〈r, θ, ϕ |E, l〉

Finally, note that

xj (x ·∇)∇j = xj

(
r
∂

∂r

)
∇j

=

(
r
∂

∂r

)
(x ·∇)−

(
r
∂x

∂r

)
·∇

= r
∂

∂r

(
r
∂

∂r

)
−
(
r
∂x

∂r

)
·∇

In spherical coordinates,
∂x

∂r
=

∂

∂r
(rr̂) =

(
∂

∂r
r

)
r̂ = r̂

so that

xj (x ·∇)∇j = r
∂

∂r

(
r
∂

∂r

)
− rr̂ ·∇

= r
∂

∂r
+ r2

∂2

∂r2
− r ∂

∂r

= r2
∂2

∂r2

4.2 The third term
We are left with the evaluation of the third term

− i~
m
〈r, θ, ϕ| 1

X̂2

(
X̂ · P̂

)
|E, l〉 = − i~

mr2
r 〈r, θ, ϕ|x · P̂ |E, l〉

= − ~2

mr

∂

∂r
〈r, θ, ϕ |E, l〉

where we have used the same techniques as for the second term.

4.3 The final differential equation
Substituting these results into the full equation we have[

l (l + 1) ~2

2mr2
− ~2

2m

∂2

∂r2
− ~2

mr

∂

∂r
− e2

r

]
〈r, θ, ϕ| (|E, l〉 ⊗ |l,ml〉)χ = E 〈r, θ, ϕ| (|E, l〉 ⊗ |l,ml〉)χ

Since the remaining operator depends only on r, the angular parts of the basis separate so that

〈r, θ, ϕ| (|E, l〉 ⊗ |l,ml〉) = 〈r |E, l〉 〈θ, ϕ |l,m〉
= ψE,l (r)Ylm (θ, ϕ)
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The functions Ylm (θ, ϕ) are the spherical harmonics. They form a complete orthonormal set of functions on
the 2-sphere. Writing the full wave function as

Ψ = ψE,l (r)Ylm (θ, ϕ)χ (α, β)

we have only the radial equation for ψE,l (r) remaining

− ~2

2m

(
∂2

∂r2
ψE,l (r) +

2

r

∂

∂r
ψE,l (r)

)
+

(
l (l + 1) ~2

2mr2
− e2

r

)
ψE,l (r) = EψE,l (r)

The first terms combine to give the radial part of the Laplacian,

∂2

∂r2
ψE,l (r) +

2

r

∂

∂r
ψE,l (r) =

1

r2
∂

∂r

(
r2
∂

∂r
ψE,l (r)

)
Solutions for ψE,l (r) may be expressed in terms of Laguerre polynomials.
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