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1 The beginnings of quantum physics: an historical overview
In the early years of the twentieth century, a series of experiments showed that the classical notions of particle
and wave are both present in matter at very small scales. The insights led to a breakdown of Newtonian
mechanics, in favor of the emerging quantum theory.

Here is a brief description of a few of the important results, presented in logical order rather than historical
order.

1.1 Planck (1900), blackbody radiation, and E = ~ω
The theoretical distribution of frequencies of radiation within a hot cavity based on classical thermodynamics
does predicts far too many high frequency states. Planck showed that good agreement could be obtained if
one assumed proportionality between the energy and the frequency, E = hf or more conveniently,

E = ~ω

The requirment of higher energy suppresses the number of high frequency states. This was the first evi-
dence for quantization. The measured value of the constant, called Planck’s constant, is h = 6.62606957 ×
10−34m

2kg
s . Recall that the classical prediction is for the energy to vary as the sum of squares of the electric

and magnetic fields of the wave, independently of frequency.
The result relates a wave property (frequency) to a particle property (energy).

1.2 Photoelectric effect (1905)
Einstein’s Nobel prize winning paper of 1905 argued that if all of the energy, E = ~ω, of light of frequency
ω were absorbed by an electron in an atom of a metal, and if an energy φ were required to free the electron
from its atom, then electrons would escape with kinetic energy KE = ~ω−φ. Such a linear relationship with
frequency is found. The conclusion, that a photon of light must be entirely absorbed or not at all, remains
one of the more puzzling features of quantum mechanics.

The result points to quantization: the idea that in radiation, light moves in discrete all-or-nothing packets
called photons.

1.3 Electron diffraction through crystals, de Broglie (1924), and p = ~k
When a beam of electrons of momentum p is directed at a crystal, a circular diffraction pattern appears, just
as if the electron traveled as a wave with wavelength λ = h

p , called the de Broglie wavelength. The pattern
is just like that produced by x-rays passing through a crystal. This shows that something thought of as a
particle also has wavelike properties.

We may write the relationship using the wave vector,

k =
2π

λ
n̂
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where n̂ is the direction of propagation of the wave. Then the de Broglie relationship becomes

p = ~k

in close parallel to the Planck relation.

2 The Bohr atom (1913) and the Schrödinger equation (1925)
Based in part on these findings, and in an effort to explain the discrete spectra of atoms, Bohr used the wave
nature of the electron to develop a simple model for the hydrogen atom.

2.1 The Bohr atom
The Bohr atom assumes the usual electrostatic attraction between an electron and a proton,

F = −ke
2

r2
r̂

Then, for an electron in a circular orbit,

a = −v
2

r
r̂

To these classical elements, Bohr added a quantization rule: the angular momentum must be a multiple of
Planck’s reduced constant,

L = mvr = n~

Combining the classical elements, we have a relationship between the radius and velocity of circular
orbits,

ke2

r2
=

mv2

r

Solving for the velocity, we have

v =

√
ke2

mr

Then according to the Bohr quantization rule,

n~ = mvr

=
√
mrke2

or, solving for r,

rn =
n2~2

mke2

The total energy of the electron is

E =
1

2
mv2 − ke2

r

= −ke
2

2r

= −mk
2e4

2n2~2

= −13.6eV

n2
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This means that the energy of an electron that moves between two orbits will change by

E =
1

2
mv2 − ke2

r

= −ke
2

2r

= −mk
2e4

2n2~2

∆E = −13.6

(
1

n2
− 1

m2

)
eV

If this energy is given off in the form of a photon satisfying the Planck relation, then the frequency of the
emitted light will be

ω =
∆E

~
A formula of this form had already been determined experimentally, and was now explained by the Bohr
model.

2.2 The Klein-Gordon equation
The Bohr model restricts the electron to circular motion in a plane, and gives incorrect values of total angular
momentum for the electrons. A fuller picture was required, and is provided by writing a 3-dimensional wave
equation for the electron.

We may use the deBroglie wavelength and the Planck relation, together with the relativistic relationship
between energy and momentum, to derive a suitable equation. We have:

E = ~ω
p = ~k

The 4-momentum of a particle is given by

pα = muα

= mγ (c,v)

=

(
E

c
,p

)
and the norm of this equation is

ηαβp
αpβ = pαpα

= −
(
p0
)2

+ p2

= −E
2

c2
+ p2

On the other hand, we have

ηαβp
αpβ = m2uαuα

= −m2c2

Equating these,

−E
2

c2
+ p2 = −m2c2

E2 = p2c2 +m2c4
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Now suppose the electron is described by a plane wave, in which we replace
(
ω
c ,k

)
using the Planck and

deBroglie relations

ψ = Aei(k·x−ωt)

= Ae
i
~ (p·x−Et)

Then we may recover the energy and momentum by differentiation,

−i~∇ψ = ∇
[
Ae

i
~ (p·x−Et)

]
= pψ

i~
∂

∂t
ψ =

∂

∂t

[
Ae

i
~ (p·x−Et)

]
= Eψ

Identifying the energy and momentum operators,

pα =

(
−E
c
,p

)
= −i~

(
1

c

∂

∂t
,∇
)

= −i~ ∂

∂xα
(1)

and substituting into the energy-momentum relation,

E2 = p2c2 +m2c4(
i~
∂

∂t

)2

= (i~∇)
2
c2 +m2c4

gives a differential operator. Allowing this operator to act on a “wave function”, ψ,

−~2 ∂
2ψ

∂t2
= −~2c2∇2ψ +m2c4ψ

− 1

c2
∂2ψ

∂t2
+ ∇2ψ =

m2c2

~2
ψ (2)

The differential operator

� ≡ − 1

c2
∂2

∂t2
+ ∇2

= ηαβ
∂

∂xα
∂

∂xβ

is the spacetime generalization of the Laplacian, ∇2 = δij ∂
∂xi

∂
∂xj . Notice that the wave speed, c, must be

the speed of light for ηαβ ∂
∂xα

∂
∂xβ

to be a Lorentz invariant operator.
The time dependence makes eq.(2) a wave operator, but because of the Planck and deBroglie relationships,

it also depends on particle-like energy and momentum. Indeed, the plane-wave solutions may be written as

ψ = Ae
i
~ (p·x−Et)

Eq.(2),

�ψ =
m2c2

~2
ψ

is called the Klein-Gordon equation. It first appears in Schrödinger’s notes in 1925 before being published the
next year first by Oskar Klein and Walter Gordon, but also the same year by Vladimir Fock, Johann Kudar,
Théophile de Donder and Frans-H. van den Dungen, and Louis de Broglie. It is the obvious relativistic
generalization of the Schrödinger equation but fails to describe electron spin.
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2.3 A first order equation: the Schrödinger equation
Because the Klein-Gordon equation is second order in time derivatives, it requires both initial position and
velocity specifications, and this is forbidden by the uncertainty principle. Additionally, it is found that the
equation leads to negative probability states.

In 1925, Schrödinger took a different approach. The problems arising from the second order time deriva-
tives may be avoided by first solving for the energy, then taking a non-relativistic approximation, and finally
substituting the operator forms, eq.(1), for E and p.

With the total energy of our electron including a potential, we may write

E =
√
p2c2 +m2c4 + V

= mc2
√

1 +
p2

m2c2
+ V

For v � c we may expand
√

1 + p2

m2c2 in a Taylor series,√
1 +

p2

m2c2
= 1 +

p2

2m2c2
− 1

8

(
p2

m2c2

)2

+ · · ·

≈ 1 +
p2

2m2c2

This lets us find the usual Newtonian expression, together with the rest energy:

E ≈ mc2
(

1 +
p2

2m2c2

)
+ V

Making the same operator substitutions that led us to the Klein-Gordon equation, and allowing it to operate
on a function, φ, gives

i~
∂φ

∂t
= mc2φ− ~2

2m
∇2φ+ V φ

The constant mass term may be removed by the replacement

φ = ψe−
i
~mc

2t

Then we find

i~
∂

∂t

(
ψe−

i
~mc

2t
)

= mc2ψe−
i
~mc

2t − ~2

2m
∇2
(
ψe−

i
~mc

2t
)

+ V ψe−
i
~mc

2t

i~
(
∂ψ

∂t
− i

~
mc2ψ

)
e−

i
~mc

2t =

(
mc2ψ − ~2

2m
∇2ψ + V ψ

)
e−

i
~mc

2t

resulting in the familiar form of the time-dependent Schrödinger equation,

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + V ψ (3)

Notice that it is possible to generate a relativistic correction to the Schrödinger equation by keeping the
next order term in the Taylor series. The result is

i~
∂ψ

∂t
= − ~2

2m
∇2ψ − 1

8
mc2

(
p2

m2c2

)2

ψ + V ψ

i~
∂ψ

∂t
= − ~2

2m
∇2ψ − 1

8

(
−~2∇2

)2
m3c2

ψ + V ψ

and therefore

i~
∂ψ

∂t
= − ~2

2m
∇2ψ − 1

8

~4

m3c2
(
∇2
)2
ψ + V ψ

This relativistic correction contributes to the fine structure of hydrogenic spectra, along with spin-orbit
coupling and the Darwin term.
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3 Spin
Stern and Gerlach performed a series of experiments through the 1920s that together show an unexpected
feature first interpreted as the intrinsic spin of the electron by Uhlenbeck and Goudsmit.

3.1 The Stern-Gerlach experiment
In an attempt to measure the angular momentum predicted for atomic systems, Stern and Gerlach passed
silver atoms through an inhomogeneous magnetic field. The field gave a force on each atom proportional to
its angular momentum. The orbital angular momentum of the electrons in silver depends only on the state
of the outer electron. With an orbital total angular momentum of L = l~ there should be 2l + 1 distinct
values of angular momentum, and the beam of silver atoms should split into 2l+1 separate beams. However,
by 1925, some experiments showed an even number - two separate beams - which cannot be explained by
integers l. The result was explained by Goudsmit and Uhlenbeck, by assigning the electron an intrinsic spin
of 1

2~.
Some of the history of this period is wonderfully described by Goudsmit (see Notes or the homework

page).

3.1.1 Cesium clock

A pair of Stern-Gerlach devices (using cesium instead of silver) is the basis of the atomic clock. An atomic
beam is split into two, dependent on the outer electron’s spin orientation. The “spin down” beam is irradiated
at a frequency ω with energy E = ~ω exactly sufficient to flip it to the “spin up” state. This beam then
passes through a second Stern-Gerlach magnet and the “spin up” component measured. With a feedback
loop, the frequency ω is tuned to maximize this spin up component. The entire device highly stabilizes the
frequency ω to about one part in 1014. Counting the waves gives accurate timing, with the second defined
as the duration of 9, 192, 631, 770 periods of the radiation corresponding to the transition between the two
hyperfine levels of the ground state of the cesium 133 atom.

3.2 The Pauli equation
Although the Schrödinger equation fails to describe the electron spin, Pauli generalized it in 1927. The first
insight is to write the total classical energy of a point charge in an electromagnetic field. If the electric and
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magnetic fields are found from scalar and vector potentials, Aα = (φ,A), then this energy is given by the
Hamiltonian,

H =
1

2m
(p− eA)

2
+ qV

Replacing the energy with the operator form of this expression gives,(
1

2m
(−i~∇− eA)

2
+ qV

)
ψ = i~

∂ψ

∂t

but this still does not include the coupling of the intrinsic spin of the electron to the magnetic field.
Pauli introduced two component spinors to correspond to the two quantum spin states of the electron,

Ψ =

(
ψ1 (x, t)
ψ2 (x, t)

)
then modified the equation to include two-dimensional operators. Since these operators must be Hermitian
in order to give real values for the energy, they must be linear combinations of the identity and the Pauli
matrices,

σ = (σx, σy, σz)

=

((
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

))
We will explore these in much more detail in later Sections. Pauli took the relevant linear combination to be

σ · (i~∇− eA)

along with the 2× 2 identity for the scalar potential, eϕ1. Replacing p− eA in the Hamiltonian then gives

i~
∂Ψ

∂t
= − ~2

2m
[σ · (i~∇− eA)]

2
Ψ + eϕ1Ψ

The resulting Pauli equation applies to a 2-component spinor and, when the potential for the electro-
magnetic field is included using the Pauli matrices, allows for the correct description of non-relativistic spin,
including the Stern-Gerlach results. If we let

Ψ =

(
ψ1 (x, t)
ψ2 (x, t)

)
and (ϕ,A) be the scalar and vector potentials of electrodynamics, then the Pauli equation isfor a spin- 12
particle with charge e. Here, the Pauli matrices are given by

σ = (σx, σy, σz)

=

((
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

))
Exercise: Show that the Pauli matrices satisfy

σiσj = δij1 + iεijkσk

where i, j, k = 1, 2, 3, δij is the Kronecker delta, εijk is the Levi-Civita tensor defined by

εijk =


+1 ijk an even permutation of 123

−1 ijk an odd permutation of 123

0 otherwise
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and there is an implicit sum on k (Einstein summation convention). The Levi-Civita is
antisymmetric under interchange of any pair of indices, εijk = −εikj and so on.

Exercise: Let Sij be any symmetric matrix, Sij = Sji, and Aij be any antisymetric matrix,
Aij = −Aji. Show that the trace of their product vanishes,∑

i,j

AijSji = AijSji = 0

It follows that
εijkSjk = 0

for any symmetric matrix.

Exercise: Show that the ith component of the cross product of two vectors, Ai, Bj may be
written as

[A×B]i = εijkAjBk

and the curl of a vector field as

[∇×A]i = εijk∇jBk

Using this expression for the product of Pauli matrices, and the quantity [σ · (i~∇− eA)]
2 works out to

[σ · (i~∇− eA)]
2
ψ

[σ · (i~∇− eA)]
2

Ψ =

(
i~σi

∂

∂xi
− eσiAi

)2

Ψ

=

(
i~σi

∂

∂xi
− eσiAi

)(
i~σj

∂

∂xj
− eσjAj

)
Ψ

= σiσj

(
i~

∂

∂xi
− eAi

)(
i~

∂

∂xj
− eAj

)
Ψ

= (δij + iεijkσk)

(
i~

∂

∂xi
− eAi

)(
i~
∂Ψ

∂xj
− eAjΨ

)
= (δij + iεijkσk)

(
−~2 ∂2Ψ

∂xi∂xj
− i~e

(
Ai

∂Ψ

∂xj
+Aj

∂Ψ

∂xi

)
+ e2AiAjΨ− e

(
i~

∂

∂xi
Aj

)
Ψ

)
= δij

(
−~2 ∂2Ψ

∂xi∂xj
− i~e

(
Ai

∂Ψ

∂xj
+Aj

∂Ψ

∂xi

)
+ e2AiAjΨ− e

(
i~

∂

∂xi
Aj

)
Ψ

)
+ iεijkσk

(
−~2 ∂2Ψ

∂xi∂xj
− i~e

(
Ai

∂Ψ

∂xj
+Aj

∂Ψ

∂xi

)
+ e2AiAjΨ− e

(
i~

∂

∂xi
Aj

)
Ψ

)
=

(
−~2∇2Ψ− 2i~eA ·∇Ψ + e2A2Ψ− e (i~∇ ·A) Ψ

)
+ ~eσ · (∇×A) Ψ

= (i~∇− eA)
2

Ψ + ~eσ ·BΨ

This gives the Schrödinger-Pauli equation,

i~
∂Ψ

∂t
= − ~2

2m
(i~∇− eA)

2
Ψ− ~e

2m
σ ·BΨ + eϕΨ
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