Quantum Mechanics: Wheeler: Physics 6210

Problems (some modified) from Sakurai, chapter 1.

W.1 (S.1.2): The Pauli matrices, 0%, are a triple of 2 x 2 matrices, o,

0; = (01,02,03)

o (1)
o ()
o= ()

Let 1 stand for the 2 x 2 identity matrix, and consider the matrix of all
complex linear combinations

given by

X=qyl+a-o
where ag and aq, as, az are complex numbers.

1. Express these numbers in terms of the four traces, tr (X) and tr (03, X).
2. Show that X is Hermitian if and only if ayp and a are real.

3. Show that X is traceless if and only if ag = 0.

S.1.3: This problem is not too hard if we first review some facts about determi-
nants and unitary matrices. The determinant of a product is the product
of the determinants,

det (AB) = det (A) det (B)

Now suppose B = A~!, so we have AA~! = 1. Then

det (AA™") = det(1)
det (A)det (A7") = 1
det (A7) = detl(A)

Looking at the problem, we see that the result follows if we can show that
the matrices exp (%’n . 0') and exp (f%wn . 0') are inverse to one another.
This follows from a simple theorem relating unitary and Hermitian ma-
trices. Let a matrix U be written as the exponential of ¢ times another

matrix, H, so that
U= eiH



Then U is unitary if and only if H is Hermitian. To prove this, note that
unitarity requires UT = U~! and it is not hard to show that U~ = e*H
Indeed, inserting a parameter A,

d .
Bl (61)\H
dX

and since H commutes with any function of itself, this vanishes. Therefore,
M =M i constant. Setting A = 0, shows that the constant must be 1,
and U~ = e7"# | Therefore, unitarity implies

eszH) _ Z-Hez)\Hefz)\H . ezAHiHefz)\H

vt = vt
emiHY  _ —iH

The same trick, writing this as e~ = =M gnq differentiating with

respect to A shows that
_igtem T po—inH

and using the original equality with A = 1 to remove the exponentials
shows that HT = H. Conversely, if H = H, the result is immediate.
With these results at hand, the problem is straightforward.

S.1.4: Practice with Dirac notation.

S.1.6: Don’t just show that it works — give a derivation. Set up the eigenket
condition and deduce the conditions under which it holds.

S.1.8: These are important relationships, worth checking, and good practice
with the Dirac notation. After you are done, find the matrix representa-
tions of S, Sy, and S,. They should look familiar.

S.1.10: After you solved the problem, repeat it in the usual matrix notation.

S.1.11: For this problem, it’s not hard to find the eigenvalues and eigenkets
and the condition that has to hold when Hys = 0, using standard matrix
techniques. It is helpful to recognize that the Hamiltonian

H = Hy|1) (1] + Ha2|2) (2| + Hiz (1) (2] + [2) (1))

A Hyy Hip
H =
< Hiz Ha
Then it is permissible to work with the matrix form. It’s not necessary,
however — you may just write the eigenket as a general linear combination,

[E) = 1) +52)

is just the matrix

and substitute both H and |E) into the eigenvalue equation
H|E)=E|E)



S.1.12: Again, Dirac notation or matrices are ok. Remember that spin is a
two-state system as well, so you can recast this as a spin problem.

S.1.13: Another good physical problem. Work through step by step.

S.1.14. Worked example problem: a three-state system. We are given

the operator

A:

V2

1 0
0 1
0 1 0

and are asked to find the eigenvalues and normalized eigenvectors. We
can find the eigenvalues by solving

0 = det(A—\l)
0
1

= det | — 1
e 7 :

1
)\ -
= det % -A

1
0 7

B LY

so the eigenvalues are

A

f)\3+0+07%(7)\)77(7)\)

1 0
0 1 - A
1 0
0
1
V2
-
1
2
= 0,%1

O O =
o = O
= O O

Since these are all different there is no degeneracy. To find the eigenvectors

we set v = (a,b,c) and solve

Av =
for each value of A. For A =1,
RN IR T I Y
V2 01 0 c c
1 b a
\ﬁ a—l&)—c = A l():
so we have
b = V2ha=V2\
a+ec = V2X\b



so either b=0,c= —a when A\=0,0ora =c = %b. This gives the three

vectors,
_ 1 1
V2 1 V3
b 1 ,a 0 ,b 1
_ 1 -1 1
V2 V2

corresponding to —1,0 and +1 respectively. Notice that each of these
vectors is orthogonal to the others. We use the remaining constants, a or
b, to normalize. Thus,

- #((3) () () ()
- ¥(aiea)

The last two cases are similar, so we have the three eigenvectors

1

L)
v, = —=

' V2l

vz

L
v9 = —=

e

L
v = —

! V2l o

V2

For part b, these could correspond to the spin eigenstates of a vector
particle, but there’s no particular reason to expect you to know that.

S.1.15: The vanishing of an operator, such as {A,B] = 0, means that it van-

ishes on every state. Completeness of a basis means that an arbitrary
state can be expanded in the basis.

S.1.16: The comment to S.1.15 is relevant here too.

S.1.19: Calculate the expectations and substitute. When you’re done with
that, try to explain the values you get for part b.

S.1.20: Just remember how to find the extrema of a function. Why does Saku-
rai ask for the maximum instead of the minimum? What is the minimum



value? (You found it in the previous problem.) Does maximizing the left
side also maximize the right side?

S.1.22: This is a terrific problem! Ask about it if you don’t figure it out!

S.1.23: A 3-state system. Work out all the details here. There’s nothing that’s
not straightforward matrix manipulation, and the problem gives some
clear insight into simultaneous eigenkets and degeneracy.

S.1.24: This problem foreshadows chapter three. Thinking about it now will
save you effort later. a) Do this by picking a state you know lies in the+z
direction: that is, the |+ > state. Now apply the operator and if it
works it should give you a state that is definitely in the |y, + > direction,
depending on whether the rotation is clockwise or counterclockwise. To
test the operator completely, check what happens to |z,+ > and |y, + >
states as well. b) Just use the rotator of part a) to rotate S,. Remember
that to rotate an operator you have to do a similarity transformation, that

is, if U = % (1 +i0,) and you want to rotate an operator O, it is given

by UOU.
S.1.26: Look at the states you're starting with and the ones you want to end
up with.

S.1.27: Good practice with continuum basis changes.

S.1.28: This gives good insight into the canonical quantization procedure. No-
tice that Sakurai’s classical Poisson bracket [A, Blassical 1S

0A0B 0AOB

ABcassica TP = a4 a.  a_ a.
[4; Bla ber = 9z ap  Op Ox

S.1.33: If this gives you trouble, go back and review the last section.



