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1 Heisenberg and Schrödinger pictures
The Schrödinger wave function places the time dependence of a physical system in the state, |ψ, t〉, where
the state is a vector in Hilbert space that moves in time. This Hilbert space can be described in any basis
we choose: coordinate, |x〉, momentum |p〉, or whatever suits our need.

It is also possible to regard the state as fixed and the basis as changing in time. This is the Heisenberg
picture.

1.1 Heisenberg operators
Consider an operator acting on a state, then projected onto any other state at time t,

〈χ, t| Â |ψ, t〉 =
(
〈χ, t0| Û† (t, t0)

)
Â
(
Û (t, t0) |ψ, t0〉

)
= 〈χ, t0|

(
Û† (t, t0) ÂÛ (t, t0)

)
|ψ, t0〉

so if we define a time-dependent Heisenberg operator,

ÂH = Â (t) ≡ Û† (t, t0) ÂSÛ (t, t0)

then we get the same prediction by looking at Â (t) acting on the fixed initial state:

〈χ, t| ÂS |ψ, t〉 = 〈χ, t0| ÂH (t) |ψ, t0〉

We may replace the Schrodinger equation with evolution equations for operators. Taking the time
derivative where Û (t, t0) = e−

i
~ Ĥ(t−t0),

dÂH

dt
=

∂

∂t
Û† (t, t0) ÂSÛ (t, t0) + Û† (t, t0) ÂS

∂

∂t
Û (t, t0)

=
i

~
ĤÛ† (t, t0) ÂSÛ (t, t0)− i

~
Û† (t, t0) ÂSÛ (t, t0) Ĥ

=
i

~
ĤÂH −

i

~
ÂHĤ

and we have the Heisenberg equation of motion,

dÂH

dt
=
i

~

[
Ĥ, ÂH

]
According to Sakurai, this was first written by Dirac.
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1.2 Heisenberg basis kets
The Heisenberg picture also requires a change in the basis kets. Since basis kets are eigenkets of particular
operators, and the operators are now time-depending, the eigenkets also change. We have

ÂS |a〉S = a |a〉S

where a state in the Schrödinger basis is given by

ψ (a, t) = 〈a |ψ, t〉

In the Heisenberg picture, these become

ÂH (t) |a, t〉H = a |a, t〉H
Û†ÂSÛ |a, t〉H = a |a, t〉H
ÂSÛ |a, t〉H = aÛ |a, t〉H

so we must have
Û |a, t〉H = |a〉S

Inverting,
|a, t〉H = Û† |a〉S

we see that the Heisenberg basis evolves oppositely to the Schrodinger state to give the same result.

1.3 Transition amplitudes
Given the time-dependence of the basis kets, we may ask for the probability amplitude for a basis ket |a, t0〉H
at time t0 to be found in another direction |b, t0〉H at time t,

〈b, t |a, t0〉

This is called the transition amplitude. For example, the transition amplitude for a system to go from x′ at
time t0 to x at time t is

〈x, t |x′, t0〉

2 Propagators
We have seen that the time evolution of state is given by

|ψ, t〉 = e−
i
~ Ĥ(t−t0) |ψ, t0〉

when the Hamiltonian is independent of time. Inserting an identity in terms of an energy basis,

|ψ, t〉 = e−
i
~ Ĥ(t−t0)

∑
a

|Ea〉 〈Ea |ψ, t0〉

=
∑
a

e−
i
~Ea(t−t0) |Ea〉 〈Ea |ψ, t0〉

Now view the state in a coordinate basis,

〈x |ψ, t〉 =
∑
a

e−
i
~Ea(t−t0) 〈x |Ea〉 〈Ea |ψ, t0〉

ψ (x, t) =
∑
a

e−
i
~Ea(t−t0) 〈x |Ea〉 〈Ea |ψ, t0〉
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Inserting one more identity in the coordinate basis, we have

ψ (x, t) =

ˆ
d3x′

∑
a

e−
i
~Ea(t−t0) 〈x |Ea〉 〈Ea |x′〉 〈x′ |ψ, t0〉

=

ˆ
d3x′

∑
a

e−
i
~Ea(t−t0) 〈x |Ea〉 〈Ea |x′〉ψ (x′, t0)

Now define the propagator

K (x, t;x′, t0) ≡
∑
a

〈x |Ea〉 〈Ea |x′〉 e−
i
~Ea(t−t0)

so that we have
ψ (x, t) =

ˆ
d3x′K (x, t;x′, t0)ψ (x′, t0)

Identifying the propagator for a given problem separates the initial wave function from the potential,
allowing a formal solution for the wave function at a later time and arbitrary position. Holding (x′, t0) fixed,
ua (x) is the stationary state wave function, and e−

i
~Eat is its time dependence, so K (x, t;x′, t0) satisfies the

time-dependent Schrödinger equation. Also,

lim
t→t0

K (x, t;x′, t0) = δ3 (x− x′)

Moreover, the propagator is essentially a Green’s function that includes the time evolution, giving the
probability amplitude for a particle initially at x′ at t0 to be found at x at the later time t. In this way, the
propagator is the transition amplitude for the system. We can make this explicit:

K (x, t;x′, t0) ≡
∑
a

〈x |Ea〉 〈Ea |x′〉 e−
i
~Ea(t−t0)

= 〈x| e− i
~Ht

∑
a

|Ea〉 〈Ea| e
i
~Ht0 |x′〉

= 〈x| Û (t, 0) Û† (t0, 0) |x′〉

so removing the identity 1 =
∑

a |Ea〉 〈Ea| and identifying the Heisenberg basis states, Û† (t0, 0) |x′〉 =

|x′, t0〉H and Û† (t, 0) |x〉 = |x, t〉H we have the transition amplitude:

K (x, t;x′, t0) = 〈x, t |x′, t0〉

Transition amplitudes, or propagators, have a composition property. If we insert the identity operator in
the form

1 =

ˆ
d3x′′ |x′′, t1〉 〈x′′, t1|

where t0 < t1 < t, into the transition amplitude, it becomes an integral over a product of transition
amplitudes:

〈x, t |x′, t0〉 =

ˆ
d3x′′ 〈x, t |x′′, t1〉 〈x′′, t1| x′, t0〉

This shows that the probability amplitude for going from (x′, t0) to (x, t) is the product of the probability
amplitudes for going from (x′, t0) to an intermediate state at time t1 and the probability of going from
that state to (x, t), summed over all possible intermediate positions. This is just like the composition of
conditional probabilities:

PAgivenB =
∑
C

PAgivenCPC givenB

but it is significant that it applies to probability amplitudes instead of probabilities. This fact underlies
Bell’s theorem.
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3 The Feynman path integral

We consider a particle with Hamiltonian of the form Ĥ = p̂2

2m + V (x̂).
Applying the composition property N − 1 times in going from (x0, t0) to (xN , tN ),

〈xN , tN |x0, t0〉 =

ˆ
· · ·
ˆ N−1∏

i=1

d3xi 〈xN , tN |xN−1, tN−1〉 · · · 〈x1, t1| x0, t0〉

Now look at one of the transition amplitudes,

〈xi+i, ti+1| xi, ti〉 = 〈xi+i, ti| e−
i
~ Ĥ(ti+1−ti) |xi, ti〉

= 〈xi, ti| e
i
~ p̂·(xi+1−xi)e−

i
~ Ĥ(ti+1−ti) |xi, ti〉

Let N be sufficiently large that ti+1 − ti = ∆t becomes infinitesimal. To evaluate the translation operator
and the Hamiltonian, we insert a momentum basis,

〈xi+i, ti+1| xi, ti〉 =

ˆ
d3pi 〈xi+1, ti| |pi, ti〉 〈pi, ti| e−

i
~ Ĥ(ti+1−ti) |xi, ti〉

=

ˆ
d3pi 〈xi+1, ti |pi, ti〉 〈pi, ti|

(
1− i

~
Ĥ∆t

)
|xi, ti〉

=

ˆ
d3pi 〈xi+1, ti |pi, ti〉

(
1− i

~
p2
i

2m
∆t− i

~
V (xi) ∆t

)
〈pi, ti |xi, ti〉

Now, using

〈pi, ti |xi, ti〉 =
1

(2π~)
3/2

e−
i
~pi·xi

the infinitesimal transition amplitude becomes

〈xi+i, ti+1| xi, ti〉 =

ˆ
d3pi 〈xi+1, ti| |pi, ti〉 〈pi, ti| e−

i
~ Ĥ(ti+1−ti) |xi, ti〉

=

ˆ
d3pi 〈xi+1, ti |pi, ti〉 〈pi, ti|

(
1− i

~
Ĥ∆t

)
|xi, ti〉

=
1

(2π~)
3

ˆ
d3pie

i
~pi·xi+1

(
1− i

~
p2
i

2m
∆t− i

~
V (xi) ∆t

)
e−

i
~pi·xi

=
1

(2π~)
3

ˆ
d3pie

i
~pi·(xi+1−xi)e−

i
~

p2
i

2m ∆t− i
~V (xi)∆t

=
1

(2π~)
3

ˆ
d3pi exp

i

~

[
pi · (xi+1 − xi)−

p2
i

2m
∆t− V (xi) ∆t

]
=

1

(2π~)
3

ˆ
d3pi exp

i

~

[
pi ·

dxi

dt
−H

]
dt

=
1

(2π~)
3

ˆ
d3pi exp

i

~
L (pi,xi) dt

where we find the Hamiltonian replaced by the Lagrangian,

L (pi,xi) dt = (pi · ẋi −H) dt

Notice that all operators have been replaced by eigenvalues.

4



Now reassemble the full, finite transition amplitude:

〈xN , tN |x0, t0〉 =

ˆ
· · ·
ˆ

1

(2π~)
3N

N−1∏
i=1

d3xid
3pi

N−1∏
i=1

(
exp

i

~
L (pi,xi) dt

)

=

ˆ
· · ·
ˆ

1

(2π~)
3(N−1)

N−1∏
i=1

d3xid
3pi

(
exp

i

~

N−1∑
i=1

L (pi,xi) dt

)
and replacing the sum of infinitesimals by an integral,

exp
i

~

N−1∑
i=1

L (pi,xi) dt = exp
i

~

tNˆ

t0

L (pi,xi) dt

= exp
i

~
S [x (t) ,p (t)]

where S [x (t) ,p (t)] is the action functional in terms of both position and momentum.
Finally, we define the functional integral to be the sum over all intervening paths, here in both configu-

ration and momentum spaces:
ˆ
D [x (t)] ≡

ˆ
· · ·
ˆ

1

(2π~)
3(N−1)/2

N−1∏
i=1

d3xi

ˆ
D [p (t)] ≡

ˆ
· · ·
ˆ

1

(2π~)
3(N−1)/2

N−1∏
i=1

d3pi

With this notation, the transition amplitude, or propagator, is given by

〈xN , tN | x0, t0〉 =

ˆ
D [x (t)]

ˆ
D [p (t)] exp

i

~
S [x (t) ,p (t)]

This is the Feynman path integral. Notice again that the action here is written as an independent functional
of position and momentum.

The infinite products of intermediate integrals may be interpreted as meaning that the phase exp i
~S [x (t)]

is to be summed over every value of position and momentum. As we shall see from examples, the result
involves some curious normalizations, but the formulation is very powerful because it may be immediately
generalized to field theory. Any theory of fields Φ having an action functional may be quantized by averaging
exp i

~S [Φ] over all field configurations.

〈Φ (x, tf )| Φ (x, ti)〉 =

ˆ
D [Φ (x, t)] exp

i

~
S [Φ (x, t) ,Π (x, t)]

S [Φ (x, t)] =

tfˆ

ti

L (Φ (x, t) ,Π (x, t)) d4x

Here, the position and time are simply parameters, while the field and its conjugate mometum are the
dynamical variables.

The most important advantage of the path integral formulation is that it allows for a systematic pertur-
bation theory. If we write the particle Lagrangian as

L = L0 + V

and expand the exponential

〈xN , tN | x0, t0〉 =

ˆ
D [x (t)]

ˆ
D [p (t)]

exp
i

~

tNˆ

t0

L0dt

1 +
i

~

tNˆ

t0

V dt+ · · ·


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it is possible to evaluate the potential terms order by order. The same expansion applies to field theory,

〈Φ (x, tf )| Φ (x, ti)〉 =

ˆ
D [Φ (x, t)]

(
exp

i

~
S0 [Φ (x, t)]

)1 +
i

~

tNˆ

t0

V dt+ · · ·


allowing term by term approximation. Ultimately, each term in the expansion involves different powers of
the potential. We keep track of the large number of required integrals by sets of Feynman diagrams, each
diagram corresponding to a particular set of integrals.

Typically, equivalence to other methods holds, but is not demanded. The path integral is an independent
model for quantization.

4 The momentum integrals

For the form of Hamiltonian we have chosen, Ĥ = p̂2

2m + V (x̂), it is possible to do all of the momentum
integrals. Each one is simply a Gaussian:

1

(2π~)
3

ˆ
d3pi exp

i

~
L (pi,xi) dt =

1

(2π~)
3

ˆ
d3pi exp

i

~

(
pi ·

(xi+1 − xi)

∆t
− p2

i

2m
− V (xi)

)
dt

=
1

(2π~)
3

ˆ
d3pi exp

i

~

(
− 1

2m

(
pi −m

dxi

dt

)2

+
m

2
(xi+1 − xi)

2 − V (xi)

)
dt

=
1

(2π~)
3 exp

i

~

(m
2
v2
i − V (xi)

)
dt

ˆ
d3pi exp

(
− i

2m~
(pi −mvi)

2

)
Letting y = pi −m (xi+1 − xi), the integral becomesˆ

d3y exp

(
− i

2m~
y2

)
The imaginary unit does not really cause any problem. Adding an infinitesimal part for convergence we haveˆ

d3y exp

(
− i

2m~
(1− iε)y2

)
=

ˆ
d3y exp

(
−ε+ i

2m~
y2

)
Each of the three Gaussians gives ˆ

dy exp
(
−αy2

)
=

√
π

α

so

lim
ε→0

ˆ
d3y exp

(
− i

2m~
(1− iε)y2

)
= lim

ε→0

(
2m~π
ε+ i

)3/2

= (−2πim~)
3/2

The full ith integral is therefore,

1

(2π~)
3

ˆ
d3pi exp

i

~
L (pi,xi) dt =

( m

2πi~

)3/2

exp
i

~

(
1

2
mv2

i − V (xi)

)
dt

Combining these in the full path integral, we have

〈xN , tN |x0, t0〉 =

ˆ
· · ·
ˆ

1

(2π~)
3(N−1)

N−1∏
i=1

d3xid
3pi

(
exp

i

~

N−1∑
i=1

L (pi,xi) dt

)

=

ˆ
· · ·
ˆ N−1∏

i=1

d3xi

(
− im

(2π~)
3

)3N/2

exp
i

~

tNˆ

t0

(
1

2
mv2

i − V (xi)

)
dt
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and replacing the sum of infinitesimals by an integral, and defining the functional integral measure to be

ˆ
D [x (t)] ≡

ˆ
· · ·
ˆ N−1∏

i=1

d3xi

(
− im

(2π~)
3

)3N/2

the transition amplitude is

〈xN , tN |x0, t0〉 =

ˆ
D [x (t)] exp

i

~

tNˆ

t0

L (x, ẋ) dt

=

ˆ
D [x (t)] exp

i

~
S [x (t)]

where S [x (t)] is now the usual configuration space action. This is the usual form of the Feynman path
integral.
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