Change of basis

January 27, 2013

We know that the eigenvectors of Hermitian operators may be chosen to form a complete, orthonormal set of basis states. Let

$$
S=\left\{\left|a^{\prime}\right\rangle \mid a^{\prime} \in K\right\}
$$

where K is some (finite or infinite) index set, be such a complete orthonormal basis, with

$$
\hat{\mathcal{O}}\left|a^{\prime}\right\rangle=a^{\prime}\left|a^{\prime}\right\rangle
$$

for some Hermitian operator, $\hat{\mathcal{O}}$. There is a converse to this: if we have a complete, orthonormal set, then we can build operators:

$$
\hat{\mathcal{O}}^{\prime} \equiv \sum_{a^{\prime} \in K} \alpha\left(a^{\prime}\right)\left|a^{\prime}\right\rangle\left\langle a^{\prime}\right|
$$

and the complex numbers $\alpha\left(a^{\prime}\right)$ will be its eigenvalues, since

$$
\begin{aligned}
\hat{\mathcal{O}}^{\prime}\left|a^{\prime \prime}\right\rangle & =\sum_{a^{\prime} \in K} \alpha\left(a^{\prime}\right)\left|a^{\prime}\right\rangle\left\langle a^{\prime} \mid a^{\prime \prime}\right\rangle \\
& =\sum_{a^{\prime} \in K} \alpha\left(a^{\prime}\right)\left|a^{\prime}\right\rangle \delta_{a^{\prime} a^{\prime \prime}} \\
& =\alpha\left(a^{\prime \prime}\right)\left|a^{\prime \prime}\right\rangle
\end{aligned}
$$

By choosing $\alpha\left(a^{\prime}\right)$ real for each a^{\prime}, we insure that $\hat{\mathcal{O}}^{\prime}$ is Hermitian. Therefore, we may find (many) Hermitian operators with a given complete orthonormal set of eigenstates.

If we have any quantum state, it may be expanded in term of any complete basis:

$$
\begin{aligned}
|\psi\rangle & =\hat{1}|\psi\rangle \\
& =\sum_{a^{\prime} \in K}\left|a^{\prime}\right\rangle\left\langle a^{\prime} \mid \psi\right\rangle
\end{aligned}
$$

so the complex numbers $\left\langle a^{\prime} \mid \psi\right\rangle$ represent the state $|\psi\rangle$ in the basis $\left|a^{\prime}\right\rangle$.
If we wish to change the basis, consider the relationship between two bases, $\left|a^{\prime}\right\rangle$ and $\left|b^{\prime}\right\rangle$. Because these span the same vector space, there is are equal numbers of indices, a^{\prime} and b^{\prime} and we put these in $1-1$, but otherwise arbitrary, correspondence, $a_{1} \leftrightarrow b_{1}, a_{2} \leftrightarrow b_{2}, \ldots$. In general, let $a^{\prime} \leftrightarrow b^{\prime}$. Now, since the basis ket $\left|b^{\prime}\right\rangle$ is also a state, it may be expanded in terms of the $\left|a^{\prime}\right\rangle$,

$$
\left|b^{\prime}\right\rangle=\sum_{a^{\prime \prime} \in K}\left|a^{\prime \prime}\right\rangle\left\langle a^{\prime \prime} \mid b^{\prime}\right\rangle
$$

We may view this as a matrix \hat{U}, with components $\left\langle a^{\prime \prime} \mid b^{\prime}\right\rangle$, acting on $\left|a^{\prime \prime}\right\rangle$ to give $\left|b^{\prime}\right\rangle$. The matrix is the sum over corresponding pairs,

$$
\hat{U}=\sum_{m}\left|b_{m}\right\rangle\left\langle a_{m}\right|
$$

since then

$$
\begin{aligned}
\hat{U}\left|a_{k}\right\rangle & =\sum_{m}\left|b_{m}\right\rangle\left\langle a_{m} \mid a_{k}\right\rangle \\
& =\sum_{m} \delta_{m k}\left|b_{m}\right\rangle \\
& =\left|b_{k}\right\rangle
\end{aligned}
$$

Using this relation we see that this operator indeed has the right matrix components

$$
\left\langle a_{l}\right| \hat{U}\left|a_{k}\right\rangle=\left\langle a_{l} \mid b_{k}\right\rangle
$$

Notice that \hat{U} is unitary, since, with $\hat{U}^{\dagger}=\sum_{m}\left|a_{m}\right\rangle\left\langle b_{m}\right|$, we have

$$
\begin{aligned}
\hat{U}^{\dagger} \hat{U} & =\left(\sum_{m}\left|a_{m}\right\rangle\left\langle b_{m}\right|\right)\left(\sum_{n}\left|b_{n}\right\rangle\left\langle a_{n}\right|\right) \\
& =\sum_{m, n}\left|a_{m}\right\rangle\left\langle b_{m} \mid b_{n}\right\rangle\left\langle a_{n}\right| \\
& =\sum_{m, n} \delta_{m n}\left|a_{m}\right\rangle\left\langle a_{n}\right| \\
& =\sum_{m}\left|a_{m}\right\rangle\left\langle a_{m}\right| \\
& =\hat{1}
\end{aligned}
$$

