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1 Angular momentum
Sakurai makes an important point when he notes that what we call “angular momentum” is not just r× p.
Instead, we will see that r × p only describes orbital angular momentum, when a mass moves in a circle.
But we must also include intrinsic spin which cannot be cast in this form.

To define what we mean by angular momentum, we generalize the algebra of rotations. The situation is
similar to what happens with translations and momentum. In that case, we found that translations could
be described by a unitary operator. The translation operator, acting on an eigenstate of position, gives a
position eigenstate with a different position eigenvalue. Because the translation operator is unitary, it has an
infinitesimal generator which is Hermitian. This Hermitian operator is an observable which we identify with
momentum. Thus, we see a direct relationship between the symmetry – translations – and the conserved
physical property – momentum.

A similar relationship holds for angular momentum. We will find a set of unitary operators to describe
rotations, and the generators of these operators will be our angular momentum operators. We shall show that
this procedure leads to different kinds of states, some with orbital angular momentum, some with intrinsic
spin, and some with both.

2 Rotations
We begin with ordinary 3-dimensional rotations. Rotations around the x, y and z axes are given by 1 0 0

0 cos θ − sin θ
0 sin θ cos θ

 ,

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 ,

 cos θ sin θ 0
sin θ cos θ 0

0 0 1


Any rotation of a 3-vector may be specified by an axis of rotation, n, and an angle, ϕ.

Rotations preserve lengths, but the length we are concerned with in quantum mechanis is the hermitian
norm of a state:

〈α |α〉

Now let a rotation of the state |α〉 be denoted by

|α̃〉 = D (n, ϕ) |α〉

so that
〈α̃| = 〈α|D† (n, ϕ)

Then preservation of the norm amounts to

〈α |α〉 = 〈α̃ |α̃〉
= 〈α|D† (n, ϕ) D (n, ϕ) |α〉

1



We conclude that D (n, ϕ) must be unitary,

D† (n, ϕ) D (n, ϕ) = 1̂

This means that D† (n, ϕ) = D−1 (n, ϕ) = D (n,−ϕ).
Next, we find the infinitesimal generators. Expanding for a small angle, ϕ,

D (n, ϕ) = 1̂− iϕ

~
n · Ĵ

we require the three operators, Ĵ =
(
Ĵ1, Ĵ2, Ĵ3

)
to be hermitian. Expanding, infinitesimally, to second order

D (n, ϕ) =

(
1̂− iϕ

~
n · Ĵ +

1
2

(
− iϕ

~
n · Ĵ

)2

+ . . .

)

= 1̂− iϕ

~
n · Ĵ− ϕ2

2~2

(
n · Ĵ

)2

+ . . .

These operators must satisfy certain basic properties of rotations. In particular, we know that any two
rotations are equivalent to some third rotation,

D (n, ϕ) D (m, θ) = D (l, χ)

It follows that a finite sequence of rotations is also equivalent to a single rotation. Consider the combination

D† (n, ϕ) D† (m, θ) D (n, ϕ) D (m, θ) = D (l, χ)

This must hold for some l, χ. Keeping terms to second order,

1̂− iχ

~
l · Ĵ =

(
1̂ +

iϕ

~
n · Ĵ− ϕ2

2~2

(
n · Ĵ

)2
)(

1̂ +
iθ

~
m · Ĵ− θ2

2~2

(
m · Ĵ

)2
)

×
(

1̂− iϕ

~
n · Ĵ− ϕ2

2~2

(
n · Ĵ

)2
)(

1̂− iθ

~
m · Ĵ− θ2

2~2

(
m · Ĵ

)2
)

=
(

1̂ +
iθ

~
m · Ĵ +

iϕ

~
n · Ĵ− θ2

2~2

(
m · Ĵ

)2

+
iϕ

~
n · Ĵ iθ

~
m · Ĵ− ϕ2

2~2

(
n · Ĵ

)2
)

×
(

1̂− iθ

~
m · Ĵ− iϕ

~
n · Ĵ− θ2

2~2

(
m · Ĵ

)2

+
iϕ

~
n · Ĵ iθ

~
m · Ĵ− ϕ2

2~2

(
n · Ĵ

)2
)

= 1̂− iθ

~
m · Ĵ− iϕ

~
n · Ĵ− θ2

2~2

(
m · Ĵ

)2

+
iϕ

~
n · Ĵ iθ

~
m · Ĵ− ϕ2

2~2

(
n · Ĵ

)2

+
(
iθ

~
m · Ĵ +

iϕ

~
n · Ĵ

)(
1̂− iθ

~
m · Ĵ− iϕ

~
n · Ĵ

)
− θ2

2~2

(
m · Ĵ

)2

+
iϕ

~
n · Ĵ iθ

~
m · Ĵ− ϕ2

2~2

(
n · Ĵ

)2

= 1̂− iθ

~
m · Ĵ +

iθ

~
m · Ĵ +

iϕ

~
n · Ĵ− iϕ

~
n · Ĵ

+
(
θ2

~2
− θ2

2~2
− θ2

2~2

)(
m · Ĵ

)2

+
(
ϕ2

~2
− ϕ2

2~2
− ϕ2

2~2

)(
n · Ĵ

)2

− iϕ
~

n · Ĵ iθ
~

m · Ĵ +
iϕ

~
n · Ĵ iθ

~
m · Ĵ +

iϕ

~
n · Ĵ iθ

~
m · Ĵ− iθ

~
m · Ĵ iϕ

~
n · Ĵ

= 1̂− ϕθ

~2

(
n · Ĵm · Ĵ−m · Ĵn · Ĵ

)
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we may identify
i~χlkĴk = ϕθnimj

[
Ĵi, Ĵj

]
This must hold for all ϕ, θ, ni,mj . Introducing coefficients, cijk, such that

[
Ĵi, Ĵj

]
= i~

3∑
k=1

cijkĴk

we have
χlk = cijkϕθnimj

for the parameters. We may find the coefficients cijk by computing in any particular case. For the real,
3-dimensional rotations above, we expand infinitesimally. With cos θ ≈ 1, sin θ ≈ θ, we find, 1 0 0

0 cos θ − sin θ
0 sin θ cos θ

 ≈

 1 0 0
0 1 0
0 0 1

+ θ

 0 0 0
0 0 −1
0 1 0


 cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

 ≈

 1 0 0
0 1 0
0 0 1

+ θ

 0 0 1
0 0 0
−1 0 0


 cos θ sin θ 0

sin θ cos θ 0
0 0 1

 ≈

 1 0 0
0 1 0
0 0 1

+ θ

 0 −1 0
1 0 0
0 0 0


Defining

J̄x =

 0 0 0
0 0 −1
0 1 0


J̄y =

 0 0 1
0 0 0
−1 0 0


J̄z =

 0 −1 0
1 0 0
0 0 0


we easily compute [

J̄x, J̄y
]

= J̄z

and in general,

[
J̄i, J̄j

]
=

3∑
k=1

εijkJ̄k

= εijkJ̄k

for i, j, k each ranging over all three indices. This shows that cijk is proportional to the Levi-Civita tensor,
so with a suitable normalization of our general generators, Ji, we have[

Ĵi, Ĵj

]
= i~εijkĴk

where we include a factor of i to make the real, anti-symmetric matrices J̄ hermitian. This final relationship
holds for any linear representation of rotations. Given any three objects, Ji, satisfying this set of commutation
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relations, we may use them to generate any finite rotation by taking the limit

D (n, ϕ) = lim
n→∞

(
1̂− iε

~
n · Ĵ

)n
= exp

(
− iϕ

~
n · Ĵ

)
where ϕ = limn→∞ nε.

3 Examples

3.1 Spin-1/2
We have already seen that the Pauli matrices satisfy

[σi, σj ] = 2iεijkσk

Therefore, if we set

τi =
~
2
σi

then
[τi, τj ] = i~εijkσk

are suitable generators and a finite rotation is given by

D (n, ϕ) = exp
(
− iϕ

~
n · τ

)
= exp

(
− iϕ

2
n · σ

)
This 2-dim matrix is easily found from the expansion for the exponential,

exp
(
− iϕ

2
n · σ

)
=
∞∑
k=0

1
k!

(
− iϕ

2

)k
(n · σ)k

Powers of n · σ are given by first computing

(n · σ)2 = niσinjσj

= ninj (σiσj)
= ninj (δij1 + iεijkσk)
= (n · n) 1 + i (n× n) · σ
= 1

Then

(n · σ)3 = (n · σ)2 (n · σ)
= (n · σ)

and iterating we have

(n · σ)2n = 1

(n · σ)2n+1 = n · σ
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The power series for the exponential is therefore

exp
(
− iϕ

2
n · σ

)
=

∞∑
k=0

1
k!

(
− iϕ

2

)k
(n · σ)k

=
∞∑
m=0

1
k!

(
− iϕ

2

)2m

(n · σ)2m +
∞∑
m=0

1
k!

(
− iϕ

2

)2m+1

(n · σ)2m+1

= 1
∞∑
m=0

(−1)m

k!

(ϕ
2

)2m

− in · σ
∞∑
m=0

(−1)m

k!

(ϕ
2

)2m+1

= 1 cos
ϕ

2
− in · σ sin

ϕ

2

To rotate a spinor, χ =
(
α
β

)
, we act with this D (n, ϕ),

χ′ = D (n, ϕ)χ

Thus, starting with an up ket in the z-direction and rotating first around y by θ and then around z by ϕ,

χ (θ, ϕ) = D (k, ϕ) D (j, θ)
(

1
0

)
= D (k, ϕ)

(
1 cos

θ

2
− iσy sin

θ

2

)(
1
0

)
= D (k, ϕ)

(
cos θ2
sin θ

2

)
=

(
1 cos

ϕ

2
− iσz sin

ϕ

2

)( cos θ2
sin θ

2

)
=

(
cos θ2
sin θ

2

)
cos

ϕ

2
−
(

cos θ2
− sin θ

2

)
i sin

ϕ

2

=

(
e−

iϕ
2 cos θ2

e
iϕ
2 sin θ

2

)

= e−
iϕ
2

(
cos θ2

eiϕ sin θ
2

)
This a phase times the general n · Ŝ eigenket,

χ (θ, ϕ) = e−
iϕ
2

∣∣∣n · Ŝ,+〉
= e−

iϕ
2

[
cos

θ

2
|+〉+ eiϕ sin

θ

2
|−〉
]

3.2 Real 3-vectors in a complex representation
We may represent a real 3-vector, a = (a1, a2, a3) as a 2× 2, traceless, hermitian matrix,

a · σ =
(

a3 a1 − ia2

a1 + ia2 −a3

)
This is a 2-dim complex representation of a real, 3-dim vector. The length is given by

(a · σ)2 = aiσiajσj
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= aiaj (σiσj)
= aiaj (δij + iεijkσk)
= a · a

Since it is a matrix, it rotates with two copies of the rotation matrix,

(b · σ) = D (n, ϕ) (a · σ) D† (n, ϕ)

Checking the norm, we have

b · b = (b · σ)2

= D (n, ϕ) (a · σ) D† (n, ϕ) D (n, ϕ) (a · σ) D† (n, ϕ)

and since D (n, ϕ) is unitary,

b · b = D (n, ϕ) (a · σ)2 D† (n, ϕ)
= (a · a) D (n, ϕ) D† (n, ϕ)
= a · a

Since b and a have the same length, they are related by a rotation. Carrying out the actual rotations shows
that b is equal to a rotated by ϕ about n.

The actual rotation is accomplished as follows. Let

b · σ = D (n, ϕ) (a · σ) D† (n, ϕ)

where b is the rotated version of the 3-vector a. Then, expanding,

b · σ =
(
e−

iϕ
2 n·σ

)
(a · σ)

(
e

iϕ
2 n·σ

)
=

(
1 cos

ϕ

2
− in · σ sin

ϕ

2

)
(a · σ)

(
1 cos

ϕ

2
+ in · σ sin

ϕ

2

)
= (a · σ) cos2

ϕ

2
+ i (a · σ) (n · σ) sin

ϕ

2
cos

ϕ

2
− i (n · σ) (a · σ) sin

ϕ

2
cos

ϕ

2
+ (n · σ) (a · σ) (n · σ) sin2 ϕ

2
= (a · σ) cos2

ϕ

2
+ i [(a · σ) , (n · σ)] sin

ϕ

2
cos

ϕ

2
+ (n · σ) (a · σ) (n · σ) sin2 ϕ

2
Working out the commutator and the triple product, we have

[(a · σ) , (n · σ)] = ainj [σi, σj ]
= ainj (2iεijkσk)
= 2i (a× n) · σ

and

(n · σ) (a · σ) (n · σ) = (n · σ) ainjσiσj
= (n · σ) ainj (δij + iεijkσk)
= (n · σ) (a · n + i (a× n)k σk)
= (a · n) n · σ + inm (a× n)k σmσk
= (a · n) n · σ + inm (a× n)k (δmk + iεmknσn)
= (a · n) n · σ + in · (a× n)− (n× (a× n)) · σ
= (a · n) n · σ − ((n · n) a− (a · n) n) · σ
= (2 (a · n) n− a) · σ
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Substituting,

b · σ = (a · σ) cos2
ϕ

2
− 2 (a× n) · σ sin

ϕ

2
cos

ϕ

2
+ (2 (a · n) n− a) · σ sin2 ϕ

2

=
[
a cos2

ϕ

2
− 2 (a× n) sin

ϕ

2
cos

ϕ

2
+ (2 (a · n) n− a) sin2 ϕ

2

]
· σ

Notice that the right hand side comes out as a real 3-vector dotted into σ. Equating b to the coefficient on
the right, collecting terms and using trig identitites,

b = a
(

cos2
ϕ

2
− sin2 ϕ

2

)
− (a× n) sinϕ+ 2 (a · n) n sin2 ϕ

2
= a cosϕ− (a× n) sinϕ+ (a · n) n (1− cosϕ)
= (a · n) n + [a− (a · n) n] cosϕ− (a× n) sinϕ

If we define the parts of a parallel and perpendicular to n as

a = a‖ + a⊥
a‖ = (a · n) n

a⊥ = [a− (a · n) n]

this becomes

b = a‖ + a⊥ cosϕ− (a⊥ × n) sinϕ

showing that the rotation has left the parallel part of a unchanged, while the part of a perpendicular to n
is rotated through an angle ϕ in the plane perpendicular to n.

4 All representations for rotations

We now may find all finite-dimensional representations for the three operators Ĵi. These will allow us to
rotate arbitrary finite-dimensional states, including the 2-dim spin states, 3-dimensional real vectors, and in
general, n-dim states. All results follow from the fundamental commutation relation for hermitian rotational
generators, [

Ĵi, Ĵj

]
= i~εijkĴk

where i, j, k each take values 1, 2, 3 and we sum on k.

4.1 A maximal set of commuting observables
To begin, we ask how many mutually commuting operators we can build from Ĵi. We can diagonalize any
one of Ĵ1, Ĵ2, Ĵ3, but since none commute with either or the others, we cannot diagonalize more than one.
We choose Ĵ3 diagonal. There is one further commuting combination – since rotations preserve lengths, the
length of Ĵi itself is preserved by rotations,[

Ĵi, Ĵ2
]

=
[
Ĵi, ĴkĴk

]
= Ĵk

[
Ĵi, Ĵk

]
+
[
Ĵi, Ĵk

]
Ĵk

= Ĵki~εikmĴm + i~εikmĴmĴk
= i~εikm

(
ĴkĴm + ĴmĴk

)
= 0
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where the last step follows because ĴkĴm + ĴmĴk is symmetric in mk while εikm is antisymmetric. In
particular, we have [

Ĵ3, Ĵ2
]

= 0

so these may be simultaneously diagonalized.
Since we now have a maximal set of commuting observables, we may use their eigenvalues to label states.

Let

Ĵ2 |α, β〉 = α2~2 |α, β〉
Ĵ3 |α, β〉 = β~ |α, β〉

We seek all allowed values of the real eigenvalues, α, β.

4.2 Raising and lowering operators
Next, define

Ĵ± ≡ Ĵ1 ± iĴ2

where we note that Ĵ†+ = Ĵ−. These satisfy:[
Ĵ+, Ĵ−

]
=

[
Ĵ1 + iĴ2, Ĵ1 − iĴ2

]
= −i

[
Ĵ1, Ĵ2

]
+ i
[
Ĵ2, Ĵ1

]
= 2~Ĵ3

and [
Ĵ±, Ĵ3

]
=

[
Ĵ3, Ĵ1 ± iĴ2

]
=

[
Ĵ3, Ĵ1

]
± i
[
Ĵ3, Ĵ2

]
= i~Ĵ2 ± i

(
−i~Ĵ1

)
= ±~Ĵ±

as well as commuting with the length, [
Ĵ±, Ĵ2

]
= 0

Consider the action of Ĵ2 and Ĵ3 on the state Ĵ+ |α, β〉,

Ĵ2Ĵ+ |α, β〉 = Ĵ+Ĵ2 |α, β〉
= α2~2Ĵ+ |α, β〉

so this state is also an eigenstate of Ĵ2 with the eigenvalue α2, while

Ĵ3Ĵ+ |α, β〉 =
([
Ĵ3, Ĵ+

]
+ Ĵ+Ĵ3

)
|α, β〉

= ~Ĵ+ |α, β〉+ Ĵ+Ĵ3 |α, β〉
= (β + 1) ~Ĵ+ |α, β〉

We once again have an eigenstate, but the eigenvalue β has increased by ~. Similarly, Ĵ− lowers the eigenvalue
by ~:

Ĵ3Ĵ− |α, β〉 =
([
Ĵ3, Ĵ−

]
+ Ĵ−Ĵ3

)
|α, β〉

= −~Ĵ− |α, β〉+ Ĵ−Ĵ3 |α, β〉
= (β − 1) ~Ĵ− |α, β〉
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4.3 Limits on eigenvalues
Now consider the products

Ĵ+Ĵ− =
(
Ĵ1 + iĴ2

)(
Ĵ1 − iĴ2

)
= Ĵ2

1 + Ĵ2
2 − iĴ1Ĵ2 + iĴ2Ĵ1

= Ĵ2
1 + Ĵ2

2 − i
[
Ĵ1, Ĵ2

]
= Ĵ2

1 + Ĵ2
2 + ~Ĵ3

= Ĵ2 − Ĵ2
3 + ~Ĵ3

and

Ĵ−Ĵ+ =
(
Ĵ1 − iĴ2

)(
Ĵ1 + iĴ2

)
= Ĵ2

1 + Ĵ2
2 + iĴ1Ĵ2 − iĴ2Ĵ1

= Ĵ2
1 + Ĵ2

2 + i
[
Ĵ1, Ĵ2

]
= Ĵ2

1 + Ĵ2
2 − ~Ĵ3

= Ĵ2 − Ĵ2
3 − ~Ĵ3

The product may be expressed in term of our diagonal operators. Furthermore, since Ĵ†+ = Ĵ− and Ĵ†− = Ĵ+

we have

〈α, β| Ĵ−Ĵ+ |α, β〉 =
[
〈α, β| Ĵ†+

] [
Ĵ+ |α, β〉

]
≥ 0

and

〈α, β| Ĵ+Ĵ− |α, β〉 =
[
〈α, β| Ĵ†−

] [
Ĵ+ |α, β〉

]
≥ 0

since these expressions give the norms of the kets
[
Ĵ+ |α, β〉

]
and

[
Ĵ− |α, β〉

]
, respectively. Substituting for

the diagonal expression in each of these, we get two inequalities:

0 ≤ 〈α, β| Ĵ−Ĵ+ |α, β〉

= 〈α, β|
(
Ĵ2 − Ĵ2

3 − ~Ĵ3

)
|α, β〉

=
(
α2 − β2 − β

)
~2 〈α, β |α, β〉

=
(
α2 − β2 − β

)
~2

and

0 ≤ 〈α, β| Ĵ+Ĵ− |α, β〉

= 〈α, β|
(
Ĵ2 − Ĵ2

3 + ~Ĵ3

)
|α, β〉

=
(
α2 − β2 + β

)
~2 〈α, β |α, β〉

=
(
α2 − β2 + β

)
~2

and therefore, both

β2 + β ≤ α2

β2 − β ≤ α2
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Now, just as we did for the simple harmonic oscillator, we start with any eigenstate and lower the
eigenvalue k times,

Ĵ3

(
Ĵ−

)k
|α, β〉 = (β − k) ~

(
Ĵ−

)k
|α, β〉

We may set (
Ĵ−

)k
|α, β〉 = λβ−k |α, β − k〉

for some normalization constant, λβ−k. However, this series must terminate, since we require

k2 − 2βk − k + β2 + β ≤ α2

For any fixed β, there is some value of k which is sufficiently large to violate this inequality. Therefore, there
must exist some βmin such that

Ĵ− |α, βmin〉 = 0

where, recognizing that βmin < 0, we have

β2
min − βmin ≤ α2

From this state, we apply Ĵ+ to produce eigenkets of the form

Ĵk+ |α, βmin〉 = λβmin+k |α, βmin + k〉

Once again we hit a limit, so there exists some maximum βmax, satisfying

β2
max + βmax ≤ α2

Notice that if βmin = −βmax = −m then both inequalities give

m (m+ 1) ≤ α2

Now acting on the highest state, |α, βmax〉 with Ĵ+, or acting on the lowest state, |α, βmin〉, with Ĵ−
must give zero

Ĵ+ |α, βmax〉 = 0
Ĵ− |α, βmin〉 = 0

and therefore, acting on the first with Ĵ− and the second with Ĵ+

0 = Ĵ−Ĵ+ |α, βmax〉

=
(
Ĵ2 − Ĵ2

3 − ~Ĵ3

)
|α, βmax〉

=
(
α2 − β2

max − βmax
)

~2 |α, βmax〉

and

0 = Ĵ+Ĵ− |α, βmin〉

=
(
Ĵ2 − Ĵ2

3 + ~Ĵ3

)
|α, βmin〉

=
(
α2 − β2

min + βmin
)

~2 |α, βmin〉

so that

α2 = β2
max + βmax

= β2
min − βmin
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We also know that βmax − βmin = k for some non-negative integer, k. Thus

β2
min − βmin = β2

max + βmax

= (βmin + k)2 + (βmin + k)
β2
min − βmin = β2

min + 2βmink + k2 + βmin + k

0 = (k + 1) 2βmin + k (k + 1)
0 = 2βmin + k

βmin = −k
2

so that βmin is some negative integer or half-integer,

βmin = j ∈
{
−1

2
,−1,−3

2
,−2, . . .

}
and βmax = βmin + k = +j, and

α2 =
k

2

(
k

2
+ 1
)

= j (j + 1)

The labeling of our states is complete. Letting β = m, the complete set of possible states for any fixed
half-integer j is given by the 2j + 1 states,

|α, β〉 = {|j,m〉 | m = −j,−j + 1, . . . , j + 1, j}
and we have one such set for every choice of j = 0, 1

2 , 1,
3
2 , 2,

5
2 , . . .. The eigenvalues of these states are given

by

Ĵ2 |j,m〉 = j (j + 1) ~2 |j,m〉
Ĵ3 |j,m〉 = m~ |j,m〉

These states will be referred to as “spin-j” representations.

4.4 Normalization
We define these eigenstates to be normalized, and since they are nondegenerate, they are orthonormal,

〈j1,m1 |j2,m2〉 = δj1j2δm1m2

However, we need to know how to the effect of the raising and lowering operators. We already know that

Ĵ± |j,m〉 = λm±1 |j,m± 1〉
To find λm±1, look again at the norm

〈j,m| Ĵ−Ĵ+ |j,m〉 = 〈j,m|
(
Ĵ2 − Ĵ2

3 − ~Ĵ3

)
|j,m〉

|λm+1|2 = (j (j + 1)−m (m+ 1)) ~2

λm+1 =
√
j (j + 1)−m (m+ 1)~

where we choose the phase so that λm+1 is real. For Ĵ− we have

〈j,m| Ĵ+Ĵ− |j,m〉 = 〈j,m|
(
Ĵ2 − Ĵ2

3 + ~Ĵ3

)
|j,m〉

|λm−1|2 = (j (j + 1)−m (m− 1)) ~2

λm−1 =
√
j (j + 1)−m (m− 1)~

Therefore, the action of the raising and lowering operators is

Ĵ± |j,m〉 =
√
j (j + 1)−m (m± 1)~ |j,m± 1〉
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4.5 Examples of representations
4.5.1 Spin 0

For j = 0, we only have the single allowed value m = 0 and there is only one state,

|j,m〉 = |0, 0〉

These are scalars. We may find the expectation value of any component of angular momentum using

J1 =
1
2

(
Ĵ+ + Ĵ−

)
J2 =

1
2i

(
Ĵ+ − Ĵ−

)
Since m = 0 = βmin = βmax, both Ĵ+ and Ĵ− must give zero:

Ĵ± |0, 0〉 = 0

and we have

〈0, 0| Ĵx |0, 0〉 = 0
〈0, 0| Ĵy |0, 0〉 = 0

〈0, 0| Ĵz |0, 0〉 = 0

so every component of angular momentum has zero expectation value.

4.5.2 Spin 1/2

For j = 1
2 we have our familiar algebra of Pauli matrices, but we now have a more systematic labelling for

the states. When we wish to be explicit about the value of j, we will write∣∣∣∣12 ,±1
2

〉
instead of |±〉. Notice that in all cases here we are taking Ĵz diagonal. We already know the expectation
values of Ĵi in these states. For Ĵ2 and Ĵ± we have

Ĵ2

∣∣∣∣12 ,±1
2

〉
=

1
2

(
1
2

+ 1
)

~2

∣∣∣∣12 ,±1
2

〉
=

3
4

~2

∣∣∣∣12 ,±1
2

〉
and

Ĵ+

∣∣∣∣12 , 1
2

〉
= 0

Ĵ−

∣∣∣∣12 , 1
2

〉
=

√
j (j + 1)−m (m− 1)~

∣∣∣∣12 , 1
2
− 1
〉

=

√
1
2

(
3
2

)
− 1

2

(
−1

2

)
~
∣∣∣∣12 ,−1

2

〉
= ~

∣∣∣∣12 ,−1
2

〉
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Ĵ−

∣∣∣∣12 ,−1
2

〉
=

√
1
2

(
3
2

)
−
(
−1

2

)(
−3

2

) ∣∣∣∣12 ,−1
2
− 1
〉

= 0

Ĵ+

∣∣∣∣12 ,−1
2

〉
=

√
j (j + 1)−m (m+ 1)~

∣∣∣∣12 , 1
2

〉
=

√
3
4
−
(
−1

2

)(
1
2

)
~
∣∣∣∣12 , 1

2

〉
= ~

∣∣∣∣12 , 1
2

〉
Notice that in matrix notation,

Ĵ+ = Ĵx + iĴy

=
~
2

(σx + iσy)

= ~
(

0 1
0 0

)
Ĵ− = ~

(
0 0
1 0

)
so that

Ĵ+

(
1
0

)
= 0

Ĵ+

(
0
1

)
=

(
1
0

)
Ĵ−

(
0
1

)
= 0

Ĵ+

(
1
0

)
=

(
0
1

)
Quite generally, the components of the raising and lowering operators are unit off-diagonal matrices.

4.5.3 Spin 1

We now have a total of three j = 1 states,

|j,m〉 = |1, 1〉 , |1, 0〉 , |1,−1〉

related by

Ĵ− |1, 1〉 =
√

1 (1 + 1)− 1 (1− 1)~ |1, 1− 1〉
=
√

2~ |1, 0〉

and

Ĵ− |1, 0〉 =
√

1 (1 + 1)− 0 (0− 1)~ |1, 0− 1〉
=
√

2~ |1,−1〉

with similar relations for the raising operator. The eigenvalue of Ĵ2 is j (j + 1) ~2 = 2~2.
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4.5.4 Spin 3/2

We have 2j + 1 = 4 states,

|j,m〉 =
∣∣∣∣32 , 3

2

〉
,

∣∣∣∣32 , 1
2

〉
,

∣∣∣∣32 ,−1
2

〉
,

∣∣∣∣32 ,−3
2

〉
related by

Ĵ−

∣∣∣∣32 , 3
2

〉
=

√
3
2

(
3
2

+ 1
)
− 3

2

(
3
2
− 1
)

~
∣∣∣∣32 , 1

2

〉
=
√

3~
∣∣∣∣32 , 1

2

〉
Ĵ−

∣∣∣∣32 , 1
2

〉
=

√
3
2

(
3
2

+ 1
)
− 1

2

(
1
2
− 1
)

~
∣∣∣∣32 ,−1

2

〉
= 2~

∣∣∣∣32 ,−1
2

〉
Ĵ−

∣∣∣∣32 ,−1
2

〉
=

√
3
2

(
3
2

+ 1
)
−
(
−1

2

)(
−1

2
− 1
)

~
∣∣∣∣32 ,−3

2

〉
=
√

3~
∣∣∣∣32 ,−3

2

〉
Ĵ−

∣∣∣∣32 ,−3
2

〉
= 0

with similar relations for the raising operator. The eigenvalue of Ĵ2 is j (j + 1) ~2 = 15
4 ~2

4.5.5 Spin j

We summarize here the general results we have shown above.
For spin-j, where j = n

2 is any integer or half-integer there are 2j+ 1 = n+ 1 orthonormal states labelled
|j,m〉, where m ranges over all 2j + 1 values from −j to +j.

|j,m〉

The actions of Ĵ2, Ĵz, Ĵ± on these are given by

Ĵ2 |j,m〉 = j (j + 1) ~2 |j,m〉
Ĵz |j,m〉 = m~ |j,m〉
Ĵ+ |j,m〉 =

√
j (j + 1)−m (m+ 1)~ |j,m+ 1〉

Ĵ− |j,m〉 =
√
j (j + 1)−m (m− 1)~ |j,m− 1〉

while the actions of Ĵx, Ĵy may be found using

Ĵx =
1
2

(
Ĵ+ + Ĵ−

)
Ĵy =

1
2i

(
Ĵ+ − Ĵ−

)
There is a vector space of every positive integer dimension spanned by |j,m〉 for some j. Taken together,
these give all of the irreducible representations of the 3-dimensional rotation group. This means that any
tensor, i.e., any object that the 3-dim rotation group acts on multi-linearly and homogeneously, may be
decomposed into some combination of the |j,m〉 vector space.
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4.6 Decomposition of tensors
We have observed previously that a matrix can be decomposed into its trace, its antisymmetric part, and
its traceless symmetric part:

Mij =
1
2
δijtrM +

1
2

(Mij −Mji) +
1
2

(
Mij +Mji −

2
3
trM

)
When we rotate Mij with an orthogonal transformation,

M̃ij = O m
i O n

j Mmn

= O m
i Mmn

[
Ot
]m
i

M̃ = OMO−1

each of these parts is preserved. For example, the antisymmetric part of the new matrix is a linear combi-
nation of the components of only the antisymmetric part of the original matrix,

O
1
2
(
M −M t

)
O−1 =

1
2
(
OMO−1 −OM tO−1

)
=

1
2

(
M̃ − M̃ t

)
We say that the usual matrix representation is reducible, and from the fact that these three invariant subspace
have one degree of freedom for the trace, three for the antisymmetric part, and five degrees of freedom for
the traceless symmetric part, we expect that we can write M as a combination of the three vector spaces,

|0, 0〉 , |1,m〉 , |2,m〉

which are of dimensions 1, 3 and 5, respectively.
There is notation for this equivalence. Letting the boldface number 3 stand for one index of M , we think

of the nine components of M as the outer product of 3-dimensional things,

M → 3⊗ 3

and we write this as the sum, in the new notation, of three irreducible vector spaces:

3⊗ 3 = 1⊕ 3⊕ 5

There are more general objects that rotations can act on. By taking outer products of vectors, we
construct “tensors” with arbitrarily many indices,

Tij...k = uivj . . . wk

Since we can rotate each vector, we know how Tij...k changes under rotations. We may take abritrary linear
combinations of objects of this form to construct n-index objects with 3n degrees of freedom. For example,
a general tensor with three indices, Tijk, has 33 = 27 independent components.

A systematic analysis along these same lines shows that a rank three tensor, that is, an object with three
indices like the Levi-Civita tensor, Tijk, may be decomposed into four irreducible parts,

3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10

Notice that the degrees of freedom always match, 33 = 27 = 1 + 8 + 8 + 10, so we have accounted for all 27
independent components of Tijk. There are general techniques for finding this decomposition for any tensor.
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One familiar example of this sort of decomposition is given by the spherical harmonics. If we have any
bounded, piecewise continuous function on a sphere, f (θ, ϕ), it may be expanded in spherical harmonics,

f (θ, ϕ) =
∞∑
l=0

l∑
m=−l

AlmY
l
m (θ, ϕ)

But such functions form an infinite dimensional vector space, since sums of such functions give other functions
on the sphere. The collection of spherical harmonics for any fixed l,

{
Y lm (θ, ϕ) |m = −l,−l + 1, . . . , l

}
also

form a vector space, since we may take linear combinations of any two linear combinations of these, to form
another linear combinations of the same set. Moreover, these sets are rotationally invariant: any rotation
of the sphere (θ, ϕ) → (θ + α,ϕ+ β) mixes m but leaves l fixed. Since the dimension of these invariant
subspaces is 2l + 1, while the dimension of the function space is infinite, the sum above gives us an infinite
decomposition,

∞ = 1⊕ 3⊕ 5⊕ · · · ⊕ (2l + 1)⊕ · · ·

We show in the next set of notes that these odd-dimensional vector spaces are, in fact, the spherical harmonics.
The importance of such decompositions becomes evident when we look at atoms, nuclei, mesons or

baryons, all of which are composite. Atoms are described by electrons orbiting nuclei, while the others are
comprised of quarks and gluons. In each of these multi-particle systems, the constituents may have both
orbital angular momentum and spin, and we need to know how these various contributions to the total
angular momentum combine to give a total number of states for the system. Therefore, we will later develop
rules for the addition of angular momentum states.

4.7 Rotations
We conclude with the form of the matrix elements of the finite rotation operators,

D̂ (n, ϕ) = e−
iϕ
~ n·Ĵ

Since the generators

Ĵ =
(
Ĵ1, Ĵ2, Ĵ3

)
=

(
1
2

(
Ĵ+ + Ĵ−

)
,

1
2i

(
Ĵ+ − Ĵ−

)
, Ĵ3

)
change m but never change the value of j, we have

〈j1,m1 D̂ (n, ϕ) |j2,m2〉 = 〈j1,m1 e
− iϕ

~ n·Ĵ |j2,m2〉

vanishes unless j1 = j2. We therefore need consider only matrix elements of a single value of j. Define the
matrix element of rotations of (2j + 1)-dimensional states as the (2j + 1)× (2j + 1) matrix with elements

D̂j
m′,m (n, ϕ) ≡ 〈j,m′| e−

iϕ
~ n·Ĵ |j,m〉

In general, if we start with a given state, |j,m〉, and rotate it, the result is given by acting with these
matrices. Concretely, by multiplying by the identity matrix,

1̂ =
∑
j

j∑
m=−j

|j,m〉 〈j,m|
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we have

D̂ (n, ϕ) |j,m〉 =

∑
j′

j′∑
m′=−j′

|j′,m′〉 〈j′,m′|

 D̂ (n, ϕ) |j,m〉

=
∑
j′

j′∑
m′=−j′

|j′,m′〉 δj′j 〈j,m′| D̂ (n, ϕ) |j,m〉

=
j∑

m′=−j
|j′,m′〉 D̂j

m′m (n, ϕ)
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