Addition of angular momentum

April 21, 2015

Often we need to combine different sources of angular momentum to characterize the total angular
momentum of a system, or to divide the total angular momentum into parts to evaluate the effect of a
potential. We now develop general techniques for this.

1 States

Suppose we have a state which has several parts. For example, we might describe a particle by the product
of a spinor and a spatial wave function,

Y (x,t) x (6, 9)

where x is a two component spinor. Or, we might have a composite particle such as a proton, made up of
three quarks,
p = uud

This latter involves both the spatial wave function and the spinor for each quark,
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Each of the wave functions may have orbital angular momentum described by |I, m;) states, while each spinor
is a |4, m,), so the total angular momentum is built from the 6-fold product,
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Even if all three quarks are in the | = 0 ground state, there are 2 x 2 x 2 = 8 possible combinations of the
spins. We need techniques to find all possible total angular momentum states, |j,m), for such systems.

When we have products like this, we think of them as general outer products and write the combined
spin state with a generic product, ®. For example, a system comprised of an electron and a positron will
have a combined spin state,
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This is no different than the products we write for separation of variables problems. It simply means that
each spinor can take each of its states independently of the other. If our electron-positron system has the
electron in a spin up state, and the positron with its spin in the plus direction along the x-axis,
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then the total state is
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For more states, we just continue the product. For example, eight possible spin states for the ground
state of the positron will have the form

2 Operators

Angular momentum is additive, so the operators representing dynamical variable of angular momentum,
J, will add when we have multiple particles. Thus, for the electron-positron system, measuring the total
z-component of spin amounts to measuring the z-component of spin of each particle and adding them,

Jy= a8 4 g

where each of the operators on the right only acts on its corresponding spinor. Thus, for the state described

above, the action of J3 is
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Since the positron is not in an eigenstate of J:ge ), the combined system is not in an eigenstate of Js.
Similar considerations apply to the other component spin operators, Ji, Js, J1+. Also, the angular mo-
mentum operators for components of angular momentum for different particles commute,
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As an alternative to writing superscript labels, J (OR J (2) we could write the total J vector as
Jeli+ied

This way, everything is written in the product space. However, the superscript notation is simpler for most
purposes. Notice that the total angular momentum vector,

Ji=JM 4P
satisfies the same commutation relations as that of each individual particle:
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This means that the total vector will also be described by |7, m) states.
If we have an equivalence between some |j, m) state and any product or sum of product states, of the
form
|ja m> = |j17m1> ® |j2?m2>

we will always have
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so that
m = mi+ mo

that is, the total z-component of spin is always the sum of the individual z-components.
For the total spin, we must compute
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then we can evaluate J2 for various product states. For the general case, consider the highest value of m for
each particle,
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We can find 2 (j1 + j2) + 1 of states |j1, 472, 41, +j2) by acting with the lowering operator.
However, we have (251 + 1) (242 + 1) possible product states, but only 2j; + 2jo + 1 states of the form
|71, +J2, m). To find more of the possible combinations, consider the |j1, +jo, j1, +j2 — 1) state, given by
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While this state has total j = j; + ja, there is a second combination of |j1,j1 — 1) ® |je,j2) and |j1, 1) ®
|72, jo — 1) which is orthogonal to this one, found by interchanging the coefficients on the right and changing

the relative sign,
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Acting with j? on this state will tell us what representation it belongs to. Act first on each part.
Applying J? the first term gives
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while the second term gives
P ) @2 jo — 1) = I3y v jr) @ L, ja — 1) + Iy i1, 41) @ |2, 2 — 1)
o (j§1>j3<2> YCFCR ;ﬂ“j@) [1,5) @ s d2 — 1)
= (11 +1) 442 (o + 1)+ 251 (2 — 1)) B 1, 1) @ |j2. g2 — 1)
+02/5 Gi4+ 1) — 51 G — D2 G2 + 1) — (G2 — 1) J2 |41, 51 — 1) @ |2, o)
= (47 +2j1d2 + 43 — 1 + o) B g, ) @ [y G2 — 1)
+2¢/j12h 1, 1 — 1) @ |2, j2)




Putting this all together, we find the action of J% on |a)
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so we have j = j; + jo — 1.

This may or may not exhaust all possibilities. If not, we can lower twice from the top state to get linear

combinations of the three m = j — 2 states,
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The two sets of states we have found, |71 + j2, m) and |j1 + j2 — 1,m) account for two linearly independent
combinations of these, so if there remain more degrees of freedom we can find a third combination orthogonal
to these. It will have j lower by 1, giving a |j1 + j2 — 2, m) representation. We continue in this manner until
we have (271 + 1) (242 + 1) states. Since the |j,m) account for 25 + 1 of the degrees of freedom, this occurs

when
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Therefore, the representations include all j from j; + jo to the first of j = j1 4+ jo — 2j2 or j = j1 + jo — 2Js
to occur. If j; > jo, then j = j; — jo > 0 will be the first to occur; if jo > j; then jo — j; > 0 will occur first,
so in either case, the lowest value is |j; — ja2| and we will have representations

|j1 +j2am>



lj1 +j2 — 1,m)
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and will have exactly accounted for all states of the system.

3 Example 1: Two spin 1/2 particles

The simplest nontrivial addition comes when we combine two spin-1 particles to get four states of the form
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With the highestj = j; + j2 = 1, and stepping down to j; — j2 = 0, we expect 7 = 1,j = 0 states. Begin
with the highest state,
11 11
‘131>: 5’9 ® 57 o
2°2/4 2°2/,
and apply J_ = jg) + j(,Q),
R A - 11 11
L, 1) = ( 1) (2)) S s
J_|1,1) JU+JE '3 1® 232/,
11 11 11 sy |11
-z -z i J@|Z Z
v3) @ a) a), o ),

1/3 1/1 1 1 11 11 3 1|1 1
2R|1,0) = —l=)—-=z(=—-1]h|Zz,—2= -, = -, = -+ -h|=,—=
V2 1,0 \/2 <2> 2(2 > ’2’ 2>®’2’2>2+ 2’2>1® 4+4 ‘2’ 2>2

R V2|27 2 2°2/, |22/, 712" 2/,

Lowering again, we complete the j = 1 triplet,
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where we use the fact that J_ |%, —% = 0. Then
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There is one remaining state, and it must be the single j = 0 state. Since we must also have m = 0, it must
be constructed from the m; + mo = 0 combinations, |%, —%> ® ‘l l>2 and ’% %>1 ® ‘%, —%>2. Also, it must
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be orthogonal to the other three states. This is immediate for the ’%, %>1 R |5, >2 and |%, —%> ® ’%, _%>27

while for the |1,0) state orthogonality forces us to write
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This completes the identification of states.
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4 Example 2: Real 3x3 matrix: Add two j = 1 states

We have noted before that a real, 3 x 3 matrix can be decomposed into a 1-dim trace term, a 3-dim space of
antisymmetric matrices, and a 5-dim space of traceless, symmetric matrices. We consider this decomposition
in terms of irreducible representations. Since the |1,m) states form a 3-dim vector space, we can think of a
matrix as an outer product of two of them,

|11 m1> |17m2>

We have j; = jo = 1, so the range of total j should be from j = j; + jo = 2 to j = |j1 — j2| = 0. Thus, we
have three irreducible representations,
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of dimensions 2j + 1, that is, 5,3 and 1 as expected.
To compute the states in detail, we start with the j = 2 states,
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The j = 1 states start with the unique state orthogonal to |2,1), namely % (11,0) 1,1y — |1,1)|1,0)).
Therefore,
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and built as a linear combination
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since this is the most general combination with m = 0. Orthogonality between |0,0) and |1,0) shows that
a = 7, then orthogonality between |0,0) and |2,0) gives
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5 Example 3: Add j = 1 and j = 3/2 states

Suppose we want to add |1, m)
12 states of the form

3,m) angular momenta. Then there are (2j; +1) (2jo+1) = (2-141) (2- 2 +1) =
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and we expect the total angular momentum to run from j =1+ % = % down to j = % — 1= 3, that is,

6 states |%,m>
4 states |%,m>
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to get the requisite 12 states.

5.1 The j = 5/2 states
We start with the highest state,

and apply the lowering operator:



Notice that the state is normalized and that each term has a total m = 2, i.e., for the first term on the right,
3

% +1= % and for the second term, % + 0 = 3. Continue, lowering four more times:
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Once again, the state is normalized and my + mo = 5 in each term.
Continue
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Notice the symmetry in the coeflicients between this state and the previous one. The symmetry continues,
with the next lowering leading us to
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and finally, the lowest state is unique just like the highest state. Just to check the consistency, we work it
out:
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so that, combining the terms,
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Collecting the full multiplet,
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5.2 The j = 3/2 states

The second state,
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involved a linear combination of two product states, |%, %> [1,1) and |%, %> |1,0), so there is a unique second

state built from these,
. 213 1

As shown above, this state will have a total angular momentum of j = 5. It is the highest state, as can be

seen by noting that m; + mo = % in each term. Therefore,
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and we may lower to find the remaining states,
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Lowering again,
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which is what we expect for the lowest state.
Just as a check, try to lower this last state again:
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5.3 The j = 1/2 states

%, m> states,

We have exhausted all states with my +mso = g and mq +mg = %, but there remain two linear combinations

unaccounted for. We have two states built from

35[0,

3 3 3 1
e Y E U DY = | |
2a 2>| ’ >a 2a 2>| 70>a

Consider the two states built from the first triple, with m; +ma = 3,
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These are orthogonal to one another, since
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and there is exactly one more normalized state orthogonal to both of these. This will be the |j, m) =

state. Start with an arbitrary linear combination,
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Cancelling the denominators,

0 = V3a+V68+7y
0 = V8a—p— b6y

so that 8 = V8a — \/67 from the second, leaving
0 = \/§a+\/6(\/§a—\/6’y)+7
= V3a+4v3a—6y+~

= 5\/304—57
Therefore,
v = V3a
B = VBa—voy
= V8a - V18V3a
= 7\/5@

so our state is

11
— Y=«
2°2

and normalization requires

31
2>|1,1>\/§a

57
1 111
1 = 9’9 oo
<2 2‘2 2>

= a*(1+2+3)

31

§a 3> |17 *1>
2°2

Sl

Finally,
11 113 1 203 1 3|3 3
1 i | T ) QY i) S U e
‘2’2> \/;‘2’ 2>|’> \/;‘2’2>’0>+\/;‘2’2>|’ )

12



Now lower to find the final state,
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