Addition of angular momentum

April 21, 2017

Often we need to combine different sources of angular momentum to characterize the total angular
momentum of a system, or to divide the total angular momentum into parts to evaluate the effect of a
potential. We now develop general techniques for this.

1 States

Suppose we have a state which has several parts. For example, we might describe a particle by the product
of a spinor and a spatial wave function,

Y (x,t) x (6, 9)

where x is a two component spinor. Or, we might have a composite particle such as a proton, made up of
three quarks,
p = uud

This latter involves both the spatial wave function and the spinor for each quark,

p= Ur (Xv t) Xul (05 90) Us (X, t) Xu2 (97 QP) D (X’ t) Xd (97 (P)

Each of the wave functions may have orbital angular momentum described by |I, m;) states, while each spinor
is a |4, m,), so the total angular momentum is built from the 6-fold product,
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Even if all three quarks are in the | = 0 ground state, there are 2 x 2 x 2 = 8 possible combinations of the
spins. We need techniques to find all possible total angular momentum states, |j,m), for such systems.

When we have products like this, we think of them as general outer products and write the combined
spin state with a generic product, ®. For example, a system comprised of an electron (Spin—% ) and pion
(spin-1), we may write e,, for m = % and 7y for M = —1,0,1 we see that the outer produce will have
a combined spin state
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This is just like an outer product of vectors, u’v?, forming a matrix, except these two vectors live in spaces
of different dimension so that e,,m,; is a matrix with two rows and three columns. The electron and pion
states behave independently of one another. If our electron-pion system has the electron in a spin up state
in the plus direction along the z-axis, and the pion has its angular momentum in the positive z direction,
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then the total state is
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For more states, we just continue the product. For example, eight possible spin states for the ground
state of the positron will have the form

1 ® 1 2 1
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We would like to re-express such compound states in terms of states, |j,m) of total angular momentum j
and z-component, m.

2 Operators

Angular momentum is additive, so the operators representing dynamical variable of angular momentum,
J, will add when we have multiple particles. Thus, for the electron-pion system, measuring the total z-
component of spin amounts to measuring the z-component of spin of each particle and adding them,

Jy = Jo 4 Jr

where each of the operators on the right only acts on its corresponding spinor. In a matrix representation,
this seems like an odd combination, since the matrices are of different sizes:
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To write this with formal precision acting on the product state we write each as a pair,

[j3] AB |:j§:|mm’ (Wnrarr + Wi {jﬂ

= Jtelt+ieJr

MM’

where A, B take six values over the pairs A(m, M ).
The action of any product operator, A ® B on a product state is given by

(Ao B) (w) @ ) = (A1) © (B1)

Notice that if we use this ordered pair notation, we don’t need the superscripts. Either notation is clear with
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the understanding that JA?S ) sees only the electron state and JA:,SP
For example, for the state described above, the action of J3 is
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Since the electron is not in an eigenstate of J?ge ), the combined system is not in an eigenstate of J3. However,
if both states are eigenstates, so is the combined state. If we let x ¢, = 2, 2> ® |1, —1), then
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Similar considerations apply to any other spin operators, jl, jg, J+. and so on. Notice that the angular
momentum operators for components of angular momentum for different particles commute,

= J3
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Significantly, the spin vector for the total angular momentum,
J, = ji(l) + ji(2)
satisfies the fundamental commutation relations:
54 = ddy -4,
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This means that the total vector will also be described by |j,m) states. This means that we are able to set up
a 1-1, onto equality between states |j,m) of total angular momentum, and linear combinations of products
states of constituent particles.

3 Equivalence of simple and composite states

Because the same algebra holds for the composite state as for the individual particle states, eigenstates of
the two are the same. This lets us establish unique relationships between the individual particle angular



momentum and the total angular momentum of the system. We establish a systematic way of deriving this
correspondence.
If we have an equivalence between some |7, m) state and any product of states, of the form

|ja m> = |j17m1> ® |j27m2>

we will always have

Jsljym) = (A 4+ I ) iy ma) @ Lz, ma)
mhlj,m) = jg(,l) lj1,m1) @ [j2, m2) + |j1,m1) ® j3§2) |72, m2)
mhlj,m) = mih|ji,m1) ® |j2, ma) + mah|ji1,m1) @ |j2, m2)
mit|j,m) = (mi1+me)h|j, mi) @ |j2, ma)
so that
m = mi -+ ms
that is:

o The total z-component of spin is always the sum of the individual z-components.

For the total spin, we must compute
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Using Jy = J; +iJy for each particle, we notice that
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so that adding these together, % (jf)j(_z) + j(_l)j_(f)) = jl(l)jl(z) + jél)jég). Therefore, we may write the
dot product as
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allowing us to write J2 as
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for the product states.
For the general case, apply eq.(2) to the highest value of m for each particle,
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so that this state is an eigenstate of J? with eigenvalue j; + j2, and we write
7, 3) = ld1, +J2, g1, +d2) = |31, 1) @ |52, j2)

We can find 2 (j1 + j2) + 1 of states |j1, 472, j1, +Jj2) by acting with the lowering operator.

However, we have (251 + 1) (242 + 1) possible product states, but only 2j; + 2jo + 1 states of the form
|71, +J2, m). To find more of the possible combinations, consider the |j1,+7j2, 71, +j2 — 1) state. Recalling
that

Jeljym) =i (G +1) —m(m=Dh|j,m=1) (3)
the effect of the lowering operator is
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While this state has total j = j; + j2, there is a second combination of |ji,j; — 1) ® |j2,j2) and |j1,j1) ®
|72, 42 — 1) which is orthogonal to this one, found by interchanging the coefficients on the right and changing

the relative sign,
la) = /252 |71, 41 — 1) ® |j2, J2) — /241 |41, J1) ® |j2,d2 — 1)

Acting with j? on this state will tell us what representation it belongs to. Act first on each part.
Applying J? the first term gives
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while the second term gives
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Putting this all together, we find the action of J2 on |a)
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= /22 (53 + j3 + 1 + J2 + 2j1d2 — 2j2) B2 |1, 1 — 1) @ |ja, jz))
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= (i+d2—1) (G +42) P |a)

so we have j = j; + jo — 1.
This may or may not exhaust all possibilities. If not, we can lower twice from the top state to get linear
combinations of the three m = j — 2 states,

|j17j1 - 2> & ‘j27j2> ) |j1aj1 - 2> 0 |j2aj2 - 1> ; ‘j15j1> ® |j27j2 - 2>
The two sets of states we have found, |71 + j2, m) and |j1 + j2 — 1,m) account for two linearly independent
combinations of these, so if there remain more degrees of freedom we can find a third combination orthogonal
to these. It will have j lower by 1, giving a |j1 + j2 — 2, m) representation. We continue in this manner until

we have (271 + 1) (242 + 1) states. Since the |j,m) account for 25 + 1 of the degrees of freedom, this occurs
when
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Therefore, the representations include all j from j; + j2 to the first of j = j1 + jo — 272 or 7 = j1 + j2 — 2J2
to occur. If j; > jo, then j = j; — jo > 0 will be the first to occur; if jo > j; then js — j; > 0 will occur first,
so in either case, the lowest value is |j; — jo| and we will have representations

|.j1 +.j25m>
|j1 +.72 - 1am>

171 — g2l ,m)

and will have exactly accounted for all states of the system.



4 Example 1: Two spin 1/2 particles

The simplest nontrivial addition comes when we combine two spin—% particles to get four states of the form
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With the highestj = j; + j2 = 1, and stepping down to j; — j2 = 0, we expect 7 = 1,5 = 0 states. Begin
A 2)

with the highest state,
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Lowering again, we complete the j = 1 triplet,
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There is one remaining state, and it must be the single 7 = 0 state. Since w

e must also have m = 0, it must
be constructed from the mq + mo = 0 combinations, |%, —%> ® ‘l l>2 and ’%
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be orthogonal to the other three states. This is immediate for the ’%, %>1 ®
while for the |1,0) state orthogonality forces us to write
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This completes the identification of states.




5 Example 2: Real 3x3 matrix: Add two j = 1 states

We have noted before that a real, 3 X 3 matrix can be decomposed into a 1-dim trace term, a 3-dim space of
antisymmetric matrices, and a 5-dim space of traceless, symmetric matrices. We consider this decomposition
in terms of irreducible representations. Since the |1,m) states form a 3-dim vector space, we can think of a
matrix as an outer product of two of them,

|]~v m1> |1am2>

We have j; = jo = 1, so the range of total j should be from j = j; + jo = 2 to j = |j1 — j2| = 0. Thus, we
have three irreducible representations,

[2,m)

[1,m)

10,0)

of dimensions 2j + 1, that is, 5,3 and 1 as expected.
To compute the states in detail, we start with the j = 2 states,

1,1)]1,1) = |2,2)

S5 (LOLD+LD[L0) = 1)
%|1,71>|1,1>+%|1,o>|1,o>+%|1,1>\1,71> — 2,0
%\1,—1>|1,0>+\%|1,0)\1,—1> = 12,-1)

1,-1)y[1,-1) = [2,-2)

The j = 1 states start with the unique state orthogonal to |2,1), namely % (|1,0) 1,1y — |1,1)|1,0)).
Therefore,
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1
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The final state is the unique normalized state orthogonal to both:
2,0 = = 1,—1) [1L1) + = [1,0)[1,0) + —=|1,1)]1,~1)
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and built as a linear combination

since this is the most general combination with m = 0. Orthogonality between |0,0) and |1,0) shows that
a =, then orthogonality between |0,0) and |2,0) gives
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so that 8 = —«. This means that |0,0) = « (|1,-1)|1,1) — |1,0)|1,0) +|1,1) |1, —1)) and we choose o =
to normalize, giving the final one of the nine states,
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0,0) = %

6 Example 3: Add j = 1 and j = 3/2 states

Suppose we want to add |1, m)
12 states of the form

oma ) 1)
3 1

and we expect the total angular momentum to run from j =1+ % = g down to j = § — 1= 3, that is,

6 states |§ >
4 states ’2, >

.m)

to get the requisite 12 states.

6.1 The j = 5/2 states
We start with the highest state,
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Notice that the state is normalized and that each term has a total m = %, i.e., for the first term on the right,
3

% +1= % and for the second term, % +0 = 3. Continue, lowering four more times:
153 04 j@) \f \/>
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and apply the lowering operator:

This gives the second state,

3,m) angular momenta. Then there are (2j; + 1) (2j2+1) = (2-1+1) (2~
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Once again, the state is normalized and mi + mo = 5 in each term.
Continue
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Notice the symmetry in the coeflicients between this state and the previous one. The symmetry continues,
with the next lowering leading us to
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and finally, the lowest state is unique just like the highest state. Just to check the consistency, we work it

so we have

out:
s (5 3\ 3/ @)\ |3 1 _ \/5 s, @) (3 3
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so that, combining the terms,
§77§ = §37§ |1771>
27 2 27 2
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as expected.
Collecting the full multiplet,
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6.2 The j = 3/2 states
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involved a linear combination of two product states, | 5 §> [1,1) and | 5 §> |1,0), so there is a unique second

state built from these,
. 2131

As shown above, this state will have a total angular momentum of j = 5. It is the highest state, as can be

seen by noting that my + mo = % in each term. Therefore,

52) -l - s o

and we may lower to find the remaining states,
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The second state,
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Lowering again,
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and finally,

\/»f‘ >|10 f’ >|1 0)
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which is what we expect for the lowest state.
Just as a check, try to lower this last state again:
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We therefore have all of the ’%, m> states,
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6.3 The j = 1/2 states

We have exhausted all states with mj +msy = g and my +mg = %, but there remain two linear combinations
unaccounted for. We have two states built from
31 33
1,0 1, —
331055 ) -

1
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22V V00,022, -1
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1

Consider the two states built from the first triple, with m; +mgy = 3,
51 1 (33
2.2) = 1,1) S e Y .
3 = Vo ] >| e \2 2> 10+ =[5 2 -
31 /8 /1 /6 (3 3
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These are orthogonal to one another, since
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and two states built out of
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and there is exactly one more normalized state orthogonal to both of these. This will be the |j,m) =

state. Start with an arbitrary linear combination,

11 3 3 3

and demand the vanishing of the inner products
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Cancelling the denominators,

0 = V3a+V68+7y
0 = V8a—pB-V6y

so that 8 = v/8a — v/67 from the second, leaving
0 = V3a+v6(Via—VEy) -+
= \/§a+4\/§a—6’y+’y

= 5\/304—57
Therefore,
v = V3a
B = VB8a— ey
= V8a—V18V3a
= —\/ia

so our state is
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and normalization requires
R EE AT
2°212°2
= a*(1+2+3)

1
a = —

V6

30 = Vilgs)mo Ve spmo B3 3o

Now lower to find the final state,
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Finally,




and we have the complete doublet:

11 113 1 2131 313 3
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Exercise: Compute all eight total angular momentum states of the combination of three spin-%

particles,
1 ® 1 ® 1
—.m —,m —.m
27 1 . 27 2 ) 2, 3 5

by first deriving the total angular momentum of the combination of the first two ‘%,m1>1 ®
|%7m2>2 as a triplet |1,m) and a singlet |0,0), then combining each of these with the remaining

spin-% state:

Check that you have all eight states.
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