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1 Orbital angular momentum
We compare our result on representations of rotations with our previous experience of angular momentum,
defined for a point particle as

L = x× p

or, for a quantum system as the operator relationship

L̂ = x̂× p̂

Notice that since
L̂i = εijkx̂j p̂k

there is no ordering ambiguity: x̂j and p̂k commute as long as j 6= k, and the cross product insures this.
Computing commutators of the components of L, we have[

L̂i, L̂m

]
= [εijkx̂j p̂k, εmnsx̂np̂s]

= εijkεmns [x̂j p̂k, x̂np̂s]

= εijkεmns (x̂j [p̂k, x̂np̂s] + [x̂j , x̂np̂s] p̂k)

= εijkεmns (x̂j [p̂k, x̂n] p̂s + x̂n [x̂j , p̂s] p̂k)

= εijkεmns (−i~δknx̂j p̂s + i~δjsx̂np̂k)
= i~ (−εijkεmksx̂j p̂s + εijkεmnj x̂np̂k)

= i~ (εijkεmsk + εiksεmjk) x̂j p̂s

Using the Jacobi identity (eq.(2) in Angular Momentum Notes) εjkmεinm + εkimεjnm + εijmεknm = 0, we
rewrite

εijkεmsk + εiksεmjk = εijkεmsk + εjmkεisk

= −εmikεjsk

and the commutator becomes [
L̂i, L̂m

]
= i~ (εijkεmsk + εiksεmjk) x̂j p̂s

= −i~εmikεjskx̂j p̂s
= i~εimkL̂k

We see that L̂m satisfies the fundamental angular momentum commutation relations and must therefore
admit |l,m〉 representations satisfying

L̂z |l,m〉 = m~ |l,m〉
L̂2 |l,m〉 = l (l + 1) ~2 |l,m〉
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along with raising and lowering operators, L̂±. However, in the case of orbital angular momentum, we have
an explicit coordinate representation for the operators. For the z-component,

〈x| L̂3 |α〉 = 〈x| (x̂1p̂2 − x̂2p̂1) |α〉

= −i~
(
x
∂

∂y
− y ∂

∂x

)
〈x | α〉

The eigenvalues of L̂3 are given by solving

−i~
(
x
∂

∂y
− y ∂

∂x

)
〈x | α〉 = m~ 〈x | α〉

but this takes a simpler form in terms of an azimuthal coordinate. Let x = ρ cosϕ and y = ρ sinϕ. Then

∂

∂ϕ
=

∂x

∂ϕ

∂

∂x
+
∂y

∂ϕ

∂

∂y

= −ρ sinϕ ∂

∂x
+ ρ cosϕ

∂

∂y

= −y ∂
∂x

+ x
∂

∂y

and we rewrite the eigenvalue equation as

−i~ ∂

∂ϕ
〈x | α〉 = m~ 〈x | α〉

with the immediate solutions
〈x | α〉 = eimϕ

Single valuedness of the wave function means that we must have

e2πmi = 1

and therefore only integer values for m are allowed.
This exposes an essential asymmetry between spinors and vectors. We have seen that 3-vectors may

be represented as matrices in a complex, 2-dim spinor representation, but there does not exist a similar
representation of spinors using 3-dim coordinates. Having shown that j and m may take both integer and
half-integer values, we now see that classical angular momentun is not the whole story. While the physical
existence of intrinsic angular momentum or spin was only discovered after the advent of quantum mechanics,
its existence is a consequence of the group-theoretic nature of rotations, and could have existed classically.

We continue with our examination of integer j representations, and the states |l,m〉 of orbital angular
momentum.

2 Changing to spherical coordinates
It is not surprising that orbital angular momentum is most transparently studied in terms of spherical
coordinates. Here we rewrite L̂z, L̂± and L̂2 in spherical coordinates. The coordinate transformation and
its inverse are given by

r =
√
x2 + y2 + z2

θ = tan−1
(
x2 + y2

r2

)
ϕ = tan−1

(y
x

)
2



and

x = r sin θ cosϕ

y = r sin θ sinϕ

z = r cos θ

We also need the derivative operators, ∂
∂xi . Using the chain rule, we have

∂

∂x
=

∂r

∂x

∂

∂r
+
∂θ

∂x

∂

∂θ
+
∂ϕ

∂x

∂

∂ϕ

∂

∂y
=

∂r

∂y

∂

∂r
+
∂θ

∂y

∂

∂θ
+
∂ϕ

∂y

∂

∂ϕ

∂

∂z
=

∂r

∂z

∂

∂r
+
∂θ

∂z

∂

∂θ
+
∂ϕ

∂z

∂

∂ϕ
(1)

We would like to write the right hand sides of these equations in spherical coordinates.
We may find the partials by writing the total differentials of r, θ and ϕ. Starting with the differential of

r,
dr =

x

r
dx+

y

r
dy +

z

r
dz

we read off the partial derivatives,

∂r

∂x
=

x

r
= sin θ cosϕ

∂r

∂y
=

y

r
= sin θ sinϕ

∂r

∂z
=

z

r
= cos θ

Next, for θ, we take the differential of tan θ,

tan θ =

√
x2 + y2

z

1

cos2 θ
dθ =

1√
x2 + y2

x

z
dx+

1√
x2 + y2

y

z
dy −

√
x2 + y2

z2
dz

Then, with

1√
x2 + y2

=
1

r sin θ

x

z
=

r sin θ cosϕ

r cos θ
y

z
=

r sin θ sinϕ

r cos θ

the differential of θ becomes

dθ = cos2 θ

(
1

r sin θ

sin θ cosϕ

cos θ
dx+

1

r sin θ

sin θ sinϕ

cos θ
dy − r sin θ

r2 cos2 θ
dz

)
=

1

r
cos θ cosϕdx+

1

r
cos θ sinϕdy − sin θ

r
dz
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and read off the partials

∂θ

∂x
=

1

r
cos θ cosϕ

∂θ

∂y
=

1

r
cos θ sinϕ

∂θ

∂z
= − sin θ

r

Finally, we compute the differential of tanϕ = y
x , and use cos2 ϕ = x2

x2+y2

1

cos2 ϕ
dϕ = − y

x2
dx+

1

x
dy

dϕ = − cos2 ϕ
r sin θ sinϕ

r2 sin2 θ cos2 ϕ
dx+ cos2 ϕ

1

r sin θ cosϕ
dy

= − sinϕ

r sin θ
dx+

cosϕ

r sin θ
dy

and once again read off the partials

∂ϕ

∂x
= − sinϕ

r sin θ
∂ϕ

∂y
=

cosϕ

r sin θ

∂ϕ

∂z
= 0

Now, returning to the chain rule expansions, eqs.(1), we substitute to find

∂

∂x
=

x

r

∂

∂r
+

1√
x2 + y2

xz

r2
∂

∂θ
− y

x2 + y2
∂

∂ϕ

= sin θ cosϕ
∂

∂r
+

1

r
cos θ cosϕ

∂

∂θ
− 1

r

sinϕ

sin θ

∂

∂ϕ

∂

∂y
=

y

r

∂

∂r
+

1√
x2 + y2

yz

r2
∂

∂θ
+

x

x2 + y2
∂

∂ϕ

= sin θ sinϕ
∂

∂r
+

1

r
cos θ sinϕ

∂

∂θ
+

1

r

cosϕ

sin θ

∂

∂ϕ

∂

∂z
=

z

r

∂

∂r
−
√
x2 + y2

r2
∂

∂θ

= cos θ
∂

∂r
− sin θ

r

∂

∂θ
(2)

In the next section, we substitute to find the orbital angular momentum operators in angular coordinates.
Finally, it is easy to find the Laplacian in spherical coordinates using the techniques of differential

geometry. Using the metric in spherical coordinates

gij =

 1
r2

r2 sin2 θ


and the divergence theorem, the result is immediate:

∇2 = DiD
i

4



=
1
√
g

∂

∂xi

(
√
ggij

∂

∂xj

)
=

1

r2 sin θ

[
∂

∂r

(
r2 sin θ

∂

∂r

)
+

∂

∂θ

(
r2 sin θ

1

r2
∂

∂θ

)
+

∂

∂ϕ

(
r2 sin θ

1

r2 sin2 θ

∂

∂ϕ

)]
=

1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂ϕ2
(3)

3 Orbital angular momentum operators in spherical coordiates

Carrying out the coordinate substitutions, for L̂3 we have

−i~
(
x
∂

∂y
− y ∂

∂x

)
= −i~r sin θ cosϕ

(
sin θ sinϕ

∂

∂r
+

1

r
cos θ sinϕ

∂

∂θ
+

1

r

cosϕ

sin θ

∂

∂ϕ

)
+i~r sin θ sinϕ

(
sin θ cosϕ

∂

∂r
+

1

r
cos θ cosϕ

∂

∂θ
− 1

r

sinϕ

sin θ

∂

∂ϕ

)
= −i~ ∂

∂ϕ

as found above. For the raising operator, we have

1

~
L̂+ = z

∂

∂x
+ iz

∂

∂y
− (x+ iy)

∂

∂z

= r cos θ

(
sin θ cosϕ

∂

∂r
+

1

r
cos θ cosϕ

∂

∂θ
− 1

r

sinϕ

sin θ

∂

∂ϕ

)
+r cos θ

(
i sin θ sinϕ

∂

∂r
+
i

r
cos θ sinϕ

∂

∂θ
+
i

r

cosϕ

sin θ

∂

∂ϕ

)
−r sin θ (cosϕ+ i sinϕ)

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
=

(
cosϕ+ i sinϕ− eiϕ

)
r cos θ sin θ

∂

∂r
+ cos2 θeiϕ

∂

∂θ
+ eiϕ sin2 θ

∂

∂θ

+i (cosϕ+ i sinϕ)
cos θ

sin θ

∂

∂ϕ

= eiϕ
(
∂

∂θ
+ i

cos θ

sin θ

∂

∂ϕ

)
while the lowering operator is

1

~
L̂− = −z ∂

∂x
+ iz

∂

∂y
+ (x− iy) ∂

∂z

= −r cos θ
(
sin θ cosϕ

∂

∂r
+

1

r
cos θ cosϕ

∂

∂θ
− 1

r

sinϕ

sin θ

∂

∂ϕ

)
+r cos θ

(
i sin θ sinϕ

∂

∂r
+
i

r
cos θ sinϕ

∂

∂θ
+
i

r

cosϕ

sin θ

∂

∂ϕ

)
+r sin θ (cosϕ− i sinϕ)

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
= re−iϕ sin θ cos θ

∂

∂r
− re−iϕ cos θ sin θ ∂

∂r

−e−iϕ cos2 θ ∂
∂θ
− e−iϕ sin2 θ ∂

∂θ
+ ie−iϕ

cos θ

sin θ

∂

∂ϕ
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= −e−iϕ
(
∂

∂θ
− icos θ

sin θ

∂

∂ϕ

)
Collecting the results so far, we have

L̂3 = −i~ ∂

∂ϕ
(4)

L̂+ = ~eiϕ
(
∂

∂θ
+ i

cos θ

sin θ

∂

∂ϕ

)
(5)

L̂− = ~e−iϕ
(
− ∂

∂θ
+ i

cos θ

sin θ

∂

∂ϕ

)
(6)

Exercise: Find the form of L̂x and L̂y from eqs.(5) and (6), together with the definitions
Ĵ± ≡ Ĵ1 ± iĴ2.

Exercise: Confirm the form of the Laplacian operator by direct substitution into

L̂2 = L̂2
x + L̂2

y + L̂2
z

Now, since

L̂+L̂− = L̂2 − L̂2
3 + ~L̂3

the magnitude squared of the total angular momentum is

L2 = L̂+L̂− + L2
3 − ~L3

=

(
~eiϕ

(
∂

∂θ
+ i

cos θ

sin θ

∂

∂ϕ

))(
~e−iϕ

(
− ∂

∂θ
+ i

cos θ

sin θ

∂

∂ϕ

))
− ~2

∂2

∂ϕ2
+ i~2

∂

∂ϕ

= ~2
(
−cos θ

sin θ

∂

∂θ
+ i

cos2 θ

sin2 θ

∂

∂ϕ
+

(
∂

∂θ
+ i

cos θ

sin θ

∂

∂ϕ

)(
− ∂

∂θ
+ i

cos θ

sin θ

∂

∂ϕ

))
− ~2

∂2

∂ϕ2
+ i~2

∂

∂ϕ

= ~2
(
−cos θ

sin θ

∂

∂θ
− ∂2

∂θ2
− i ∂

∂ϕ
− cos2 θ

sin2 θ

∂2

∂ϕ2

)
− ~2

∂2

∂ϕ2
+ i~2

∂

∂ϕ

= ~2
(
−cos θ

sin θ

∂

∂θ
− ∂2

∂θ2
− ∂2

∂ϕ2
− cos2 θ

sin2 θ

∂2

∂ϕ2

)
= −~2

(
1

sin θ

(
cos θ

∂

∂θ
+ sin θ

∂2

∂θ2

)
+

1

sin2 θ

∂2

∂ϕ2

)
= −~2

(
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2

)
This last equation establishes the relationship between the spherical harmonics and the angular momen-

tum states, because the Laplace equation in spherical coordinates is

∇2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂ϕ2

=
1

r2
∂

∂r

(
r2
∂

∂r

)
− 1

~2r2
L̂2
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and we know that separation of variables leads to general solution of the Laplace equation, f (r, θ, ϕ) with
the angular solution given in terms of spherical harmonics,

f (r, θ, ϕ) =

∞∑
l=0

l∑
m=−l

Al (r)Y
l
m (θ, ϕ)

The spherical harmonics satisfy the separated angular eigenvalue equation,(
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2

)
Y lm (θ, ϕ) = −l (l + 1)Y lm (θ, ϕ)

for integer l and m = −l,−l + 1, . . .+ l. Expressing this in terms of L̂2,

L̂2 |ψ〉 = l (l + 1) ~2 |ψ〉

we see that |ψ〉 = |l,m〉 and therefore identify the spherical harmonics as the integer spin eigenstates of
angular momentum in a coordinate basis,

Y lm (θ, ϕ) = 〈θ, ϕ | l,m〉

These describe only integer j states.

4 Spherical harmonics
We can now use the quantum formalism to find the spherical harmonics, Y lm (θ, ϕ) = 〈θ, ϕ |l,m〉. For any
state |α〉, we know the effect of L̂z is given by eq.(4), so

〈θ, ϕ| L̂z |α〉 = −i~ ∂

∂ϕ
〈θ, ϕ | α〉

Since the eigenstates satisfy L̂z |l,m〉 = m~ |l,m〉 in general, placing this equation in a coordinate basis it
becomes

−i~ ∂

∂ϕ
〈θ, ϕ | l,m〉 = m~ 〈θ, ϕ | l,m〉

This is trivially integrated to give
〈θ, ϕ | l,m〉 = eimϕ 〈θ, ϕ | l〉

Furthermore, we know that the raising operator will anihilate the state with the highest value of m,

L̂+ |l,m = l〉 = 0

Again choosing a coordinate basis, L̂+ is given by eq.(5) so this translates to a differential equation,

0 = 〈θ, ϕ| L̂+ |l, l〉

= ~eiϕ
(
∂

∂θ
+ i

cos θ

sin θ

∂

∂ϕ

)
〈θ, ϕ | l,m = l〉

= ~eiϕ
(
∂

∂θ
+ i

cos θ

sin θ

∂

∂ϕ

)(
eilϕ 〈θ, ϕ | l〉

)
= ~ei(l+1)ϕ

(
∂

∂θ
〈θ, ϕ | l〉 − l cos θ

sin θ
〈θ, ϕ | l〉

)
Setting 〈θ, ϕ | l〉 = fl (θ), we rewrite this as

0 = sin θ
∂fl
∂θ
− l cos θfl
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This is solved by fl = sinl θ, so we have, for m = l

Y l l (θ, ϕ) = Alle
ilϕ sinl θ

Now we can find all other Y l m (θ, ϕ) by acting with the lowering operator,

〈θ, ϕ| L̂− |l,m〉 =
√
l (l + 1)−m (m− 1)~ 〈θ, ϕ | l,m− 1〉

Inserting the coordinate expression, eq.(6), for 〈θ, ϕ| L̂− |l,m〉 and solving for the next lower state, we have

〈θ, ϕ | l,m− 1〉 =
e−iϕ√

l (l + 1)−m (m− 1)

(
− ∂

∂θ
+ i

cos θ

sin θ

∂

∂ϕ

)
〈θ, ϕ | l,m〉

= − e−iϕeimϕ√
l (l + 1)−m (m− 1)

(
∂

∂θ
+m

cos θ

sin θ

)
〈θ | l〉

thereby defining all Y l m (θ, ϕ) recursively.

Exercise: Find the Y 1
m (θ, ϕ) for all allowed m.
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