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April 9, 2017

We now may find a basis for states of angular momentum, that is, all finite-dimensional representations
for the three operators Ĵi. All results follow from the fundamental commutation relation for hermitian
rotational generators, [

Ĵi, Ĵj

]
= i~εijkĴk

where i, j, k each take values 1, 2, 3 and we sum on k.

1 A maximal set of commuting observables

To begin, we ask how many mutually commuting operators we can build from Ĵi. We can diagonalize any
one of Ĵ1, Ĵ2, Ĵ3, but since none commute with either or the others, we cannot diagonalize more than one.
We choose Ĵ3 diagonal. There is one further commuting combination – since rotations preserve lengths, the
length of Ĵi itself is preserved by rotations,[

Ĵi, Ĵ
2
]

=
[
Ĵi, ĴkĴk

]
= Ĵk

[
Ĵi, Ĵk

]
+
[
Ĵi, Ĵk

]
Ĵk

= Ĵki~εikmĴm + i~εikmĴmĴk
= i~εikm

(
ĴkĴm + ĴmĴk

)
= 0

where the last step follows because ĴkĴm + ĴmĴk is symmetric in mk while εikm is antisymmetric. In
particular, we have [

Ĵ3, Ĵ
2
]
= 0

so these may be simultaneously diagonalized. Since we already know that the Pauli matrices give a 2-
dimensional example for the generators, there cannot be more than two indepedent diagonal combinations.

Having found a maximal set of commuting observables, we may use their eigenvalues to label their
simultaneous eigenkets. Let

Ĵ2 |α, β〉 = α2~2 |α, β〉
Ĵ3 |α, β〉 = β~ |α, β〉

We take these kets to be orthonormal and seek all allowed values of the real eigenvalues, α, β.

2 Raising and lowering operators
We combine the remaing two generators in the useful combinations,

Ĵ± ≡ Ĵ1 ± iĴ2
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where we note that Ĵ†+ = Ĵ−. These satisfy:[
Ĵ+, Ĵ−

]
=

[
Ĵ1 + iĴ2, Ĵ1 − iĴ2

]
= −i

[
Ĵ1, Ĵ2

]
+ i
[
Ĵ2, Ĵ1

]
= 2~Ĵ3

and [
Ĵ3, Ĵ±

]
=

[
Ĵ3, Ĵ1 ± iĴ2

]
=

[
Ĵ3, Ĵ1

]
± i
[
Ĵ3, Ĵ2

]
= i~Ĵ2 ± i

(
−i~Ĵ1

)
= ±~Ĵ±

as well as commuting with the length, [
Ĵ±, Ĵ

2
]
= 0

Consider the actions of Ĵ2 and Ĵ3 on the state Ĵ+ |α, β〉,

Ĵ2Ĵ+ |α, β〉 = Ĵ+Ĵ
2 |α, β〉

= α2~2Ĵ+ |α, β〉

so this state is also an eigenstate of Ĵ2 with the eigenvalue α, while

Ĵ3Ĵ+ |α, β〉 =
([
Ĵ3, Ĵ+

]
+ Ĵ+Ĵ3

)
|α, β〉

= ~Ĵ+ |α, β〉+ Ĵ+Ĵ3 |α, β〉
= (β + 1) ~Ĵ+ |α, β〉

We once again have an eigenstate, but the eigenvalue β has increased by ~. Up to an overall constant λ we
have

Ĵ+ |α, β〉 = λ |α, β + 1〉

Exercise: Show that Ĵ+ |α, β〉 = λ |α, β − 1〉 for some constant λ.

3 Limits on eigenvalues

3.1 Inequalities on the eigenvalues
Products of Ĵ+ and Ĵ− may be expressed in term of our diagonal operators. For the product Ĵ+Ĵ−:

Ĵ+Ĵ− =
(
Ĵ1 + iĴ2

)(
Ĵ1 − iĴ2

)
= Ĵ2

1 + Ĵ2
2 − iĴ1Ĵ2 + iĴ2Ĵ1

= Ĵ2 − Ĵ2
3 − i

[
Ĵ1, Ĵ2

]
= Ĵ2 − Ĵ2

3 + ~Ĵ3
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Exercise: Show that Ĵ−Ĵ+ = Ĵ2 − Ĵ2
3 − ~Ĵ3

Since Ĵ†+ = Ĵ− and Ĵ†− = Ĵ+ we have inequalities from the norms of Ĵ+ |α, β〉 and Ĵ− |α, β〉:[
〈α, β| Ĵ†+

] [
Ĵ+ |α, β〉

]
= 〈α, β| Ĵ−Ĵ+ |α, β〉 ≥ 0[

〈α, β| Ĵ†−
] [
Ĵ− |α, β〉

]
= 〈α, β| Ĵ=Ĵ− |α, β〉 ≥ 0

These give, respectively,

0 ≤ 〈α, β| Ĵ−Ĵ+ |α, β〉

= 〈α, β|
(
Ĵ2 − Ĵ2

3 − ~Ĵ3
)
|α, β〉

=
(
α2 − β2 − β

)
~2 〈α, β |α, β〉

=
(
α2 − β2 − β

)
~2

and

0 ≤ 〈α, β| Ĵ+Ĵ− |α, β〉

= 〈α, β|
(
Ĵ2 − Ĵ2

3 + ~Ĵ3
)
|α, β〉

=
(
α2 − β2 + β

)
~2

so two distinct inequalities must hold:

β2 + β ≤ α2 (1)
β2 − β ≤ α2 (2)

3.2 The eigenvalues
Now, just as we did for the simple harmonic oscillator, we start with any eigenstate and lower the eigenvalue
k times,

Ĵ3

(
Ĵ−

)k
|α, β〉 = λβ−k (β − k) ~ |α, β − k〉

for some normalization constant, λβ−k. However, this series must terminate, since eq.(1) for the state
|α, β − k〉 leads to

(β − k)2 + (β − k) ≤ α2

k2 − 2βk − k + β2 + β ≤ α2

Regardless of the value of α and β, there is some value of k which is sufficiently large to violate this inequality.
Therefore, there must exist some βmin such that

Ĵ− |α, βmin〉 = 0

Since β = 0 satisfies both inequalities we must have βmin < 0, and therefore

β2
min − βmin ≤ α2

gives the strongest constraint on βmin.
Now we apply Ĵ+ to |α, βmin〉 to produce eigenkets of larger and larger β,

Ĵk+ |α, βmin〉 = λβmin+k |α, βmin + k〉

3



Once again we eventually reach a value of k which violates one of the inequalities, so there exists some
positive, maximum βmax, satisfying both inequalities. The strongest constraint is

β2
max + βmax ≤ α2

Notice that if βmin = −βmax = −m then both inequalities give

m (m+ 1) ≤ α2

Now acting on the highest state, |α, βmax〉 with Ĵ+, or acting on the lowest state, |α, βmin〉, with Ĵ−
must give zero

Ĵ+ |α, βmax〉 = 0

Ĵ− |α, βmin〉 = 0

and therefore, acting on the first with Ĵ− and the second with Ĵ+

0 = Ĵ−Ĵ+ |α, βmax〉

=
(
Ĵ2 − Ĵ2

3 − ~Ĵ3
)
|α, βmax〉

=
(
α2 − β2

max − βmax
)
~2 |α, βmax〉

and

0 = Ĵ+Ĵ− |α, βmin〉

=
(
Ĵ2 − Ĵ2

3 + ~Ĵ3
)
|α, βmin〉

=
(
α2 − β2

min + βmin
)
~2 |α, βmin〉

giving us two equalities for the maximum and minimum values:

α2 = β2
max + βmax

α2 = β2
min − βmin

We also know that βmax−βmin = k for some non-negative integer, k. Setting βmax = βmin+k and equating
the two expressions,

β2
min − βmin = β2

max + βmax

= (βmin + k)
2
+ (βmin + k)

β2
min − βmin = β2

min + 2βmink + k2 + βmin + k

0 = (k + 1) 2βmin + k (k + 1)

0 = 2βmin + k

βmin = −k
2

so that βmin is some negative integer or half-integer we will call −j:

βmin = −j ∈
{
0,−1

2
,−1,−3

2
,−2, . . .

}
The maximum value βmax = βmin + k = +k

2 = +j, and the remaining eigenvalue is

α2 =
k

2

(
k

2
+ 1

)
= j (j + 1)

4



The labeling of our states is complete. Letting β = m, the complete set of possible states for any fixed
half-integer j is given by the 2j + 1 states,

|α, β〉 = {|j,m〉 | m = −j,−j + 1, . . . , j + 1, j}

and we have one such set for every choice of j = 0, 12 , 1,
3
2 , 2,

5
2 , . . .. The eigenvalues of these states are given

by

Ĵ2 |j,m〉 = j (j + 1) ~2 |j,m〉 (3)
Ĵ3 |j,m〉 = m~ |j,m〉 (4)

These states will be referred to as “spin-j” representations.

3.3 Normalization of raising and lowering
We define these eigenstates to be normalized, and since they are nondegenerate, they are orthonormal,

〈j1,m1 |j2,m2〉 = δj1j2δm1m2

However, we need to know the effect of the raising and lowering operators. We already know that

Ĵ± |j,m〉 = λm±1 |j,m± 1〉

for some constants λm±1. To find λm±1, look again at the norm

〈j,m| Ĵ−Ĵ+ |j,m〉 = 〈j,m|
(
Ĵ2 − Ĵ2

3 − ~Ĵ3
)
|j,m〉

|λm+1|2 = (j (j + 1)−m (m+ 1)) ~2

λm+1 =
√
j (j + 1)−m (m+ 1)~

where we choose the phase so that λm+1 is real. For Ĵ− we have

〈j,m| Ĵ+Ĵ− |j,m〉 = 〈j,m|
(
Ĵ2 − Ĵ2

3 + ~Ĵ3
)
|j,m〉

|λm−1|2 = (j (j + 1)−m (m− 1)) ~2

λm−1 =
√
j (j + 1)−m (m− 1)~

Therefore, the action of the raising and lowering operators is

Ĵ± |j,m〉 =
√
j (j + 1)−m (m± 1)~ |j,m± 1〉 (5)

4 Examples of representations

4.1 Spin 0
For j = 0, we only have the single allowed value m = 0 and there is only one state,

|j,m〉 = |0, 0〉

These are scalars. We may find the expectation value of any component of angular momentum using

J1 =
1

2

(
Ĵ+ + Ĵ−

)
J2 =

1

2i

(
Ĵ+ − Ĵ−

)
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Since m = 0 = βmin = βmax, both Ĵ+ and Ĵ− must give zero:

Ĵ± |0, 0〉 = 0

and we have

Ĵ1 |0, 0〉 = 0

Ĵ2 |0, 0〉 = 0

Ĵ3 |0, 0〉 = 0

so the action of all generators is zero. Furthermore,

〈0, 0| Ĵx |0, 0〉 = 0

〈0, 0| Ĵy |0, 0〉 = 0

〈0, 0| Ĵz |0, 0〉 = 0

so every component of angular momentum has zero expectation value.
The effect of a general infinitesimal rotation on a scalar state is given by

D (n, ϕ) |0, 0〉 =

(
1̂− iϕ

~
n · Ĵ

)
|0, 0〉

= |0, 0〉

so scalars are unaffected by any rotation.

4.2 Spin 1/2
For j = 1

2 we have our familiar algebra of Pauli matrices, but we now have a more systematic labelling for
the states. When we wish to be explicit about the value of j, we will write∣∣∣∣12 ,±1

2

〉
instead of |±〉. Notice that in all cases here we are taking Ĵ3 diagonal. We already know the expectation
values of Ĵi in these states. For Ĵ2 and Ĵ± we have

Ĵ2

∣∣∣∣12 ,±1

2

〉
=

1

2

(
1

2
+ 1

)
~2
∣∣∣∣12 ,±1

2

〉
=

3

4
~2
∣∣∣∣12 ,±1

2

〉
and

Ĵ+

∣∣∣∣12 , 12
〉

= 0

Ĵ−

∣∣∣∣12 , 12
〉

=
√
j (j + 1)−m (m− 1)~

∣∣∣∣12 , 12 − 1

〉
=

√
1

2

(
3

2

)
− 1

2

(
−1

2

)
~
∣∣∣∣12 ,−1

2

〉
= ~

∣∣∣∣12 ,−1

2

〉

6



Ĵ−

∣∣∣∣12 ,−1

2

〉
=

√
1

2

(
3

2

)
−
(
−1

2

)(
−3

2

) ∣∣∣∣12 ,−1

2
− 1

〉
= 0

Ĵ+

∣∣∣∣12 ,−1

2

〉
=

√
j (j + 1)−m (m+ 1)~

∣∣∣∣12 , 12
〉

=

√
3

4
−
(
−1

2

)(
1

2

)
~
∣∣∣∣12 , 12

〉
= ~

∣∣∣∣12 , 12
〉

The spin- 12 states forem a 2-dimensional representation, so the generators are the Pauli matrices. Writing
the raising and lowering operators in matrix notation,

Ĵ+ = Ĵx + iĴy

=
~
2
(σx + iσy)

= ~
(

0 1
0 0

)
Ĵ− = ~

(
0 0
1 0

)
so that

Ĵ+

(
1
0

)
= 0

Ĵ+

(
0
1

)
= ~

(
1
0

)
Ĵ−

(
0
1

)
= 0

Ĵ+

(
1
0

)
= ~

(
0
1

)
Quite generally, the components of the raising and lowering operators are unit off-diagonal matrices.

4.3 Spin 1
We have a total of three j = 1 states,

|j,m〉 = |1, 1〉 , |1, 0〉 , |1,−1〉

related by

Ĵ− |1, 1〉 =
√
1 (1 + 1)− 1 (1− 1)~ |1, 1− 1〉

=
√
2~ |1, 0〉

and

Ĵ− |1, 0〉 =
√

1 (1 + 1)− 0 (0− 1)~ |1, 0− 1〉
=
√
2~ |1,−1〉

with similar relations for the raising operator. The eigenvalue of Ĵ2 is j (j + 1) ~2 = 2~2.

7



4.4 Spin 3/2
We have 2j + 1 = 4 states,

|j,m〉 =
∣∣∣∣32 , 32

〉
,

∣∣∣∣32 , 12
〉
,

∣∣∣∣32 ,−1

2

〉
,

∣∣∣∣32 ,−3

2

〉
related by

Ĵ−

∣∣∣∣32 , 32
〉

=

√
3

2

(
3

2
+ 1

)
− 3

2

(
3

2
− 1

)
~
∣∣∣∣32 , 12

〉
=
√
3~
∣∣∣∣32 , 12

〉
Ĵ−

∣∣∣∣32 , 12
〉

=

√
3

2

(
3

2
+ 1

)
− 1

2

(
1

2
− 1

)
~
∣∣∣∣32 ,−1

2

〉
= 2~

∣∣∣∣32 ,−1

2

〉
Ĵ−

∣∣∣∣32 ,−1

2

〉
=

√
3

2

(
3

2
+ 1

)
−
(
−1

2

)(
−1

2
− 1

)
~
∣∣∣∣32 ,−3

2

〉
=
√
3~
∣∣∣∣32 ,−3

2

〉
Ĵ−

∣∣∣∣32 ,−3

2

〉
= 0

with similar relations for the raising operator. The eigenvalue of Ĵ2 is j (j + 1) ~2 = 15
4 ~2.

4.5 Spin j
We summarize here the general results we have shown above.

For spin-j, where j = n
2 is any integer or half-integer there are 2j+1 = n+1 orthonormal states labeled

|j,m〉, where m ranges over all 2j + 1 values from −j to +j. The actions of Ĵ2, Ĵ3, Ĵ± on these are given by

Ĵ2 |j,m〉 = j (j + 1) ~2 |j,m〉
Ĵ3 |j,m〉 = m~ |j,m〉
Ĵ+ |j,m〉 =

√
j (j + 1)−m (m+ 1)~ |j,m+ 1〉

Ĵ− |j,m〉 =
√
j (j + 1)−m (m− 1)~ |j,m− 1〉

while the actions of Ĵ1, Ĵ2 may be found using

Ĵ1 =
1

2

(
Ĵ+ + Ĵ−

)
Ĵ2 =

1

2i

(
Ĵ+ − Ĵ−

)
There is a vector space of every positive integer dimension spanned by |j,m〉 for some j. Taken together,
these give all of the irreducible representations of the 3-dimensional rotation group. This means that any
tensor, i.e., any object that the 3-dim rotation group acts on multi-linearly and homogeneously, may be
decomposed into some combination of the |j,m〉 vector space.
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Exercise: Find all spin-2 states by acting repeatedly with Ĵ− on the highest state |2, 2〉, including
showing that Ĵ− |2,−2〉 = 0.

Exercise: Study the effect of infinitesimal rotations on spin-1 states. Consider rotations of
each of the three states about the z-axis by arbitrary amounts, and about the x-axis until you
can describe what is happening clearly.

5 Decomposition of tensors
We have observed previously that a matrix can be decomposed into its trace, its antisymmetric part, and
its traceless symmetric part:

Mij =
1

2
δijtrM +

1

2
(Mij −Mji) +

1

2

(
Mij +Mji −

2

3
trM

)
= Tij +Aij + Sij

When we rotate Mij with an orthogonal transformation,

M̃ij = O m
i O n

j Mmn

= O m
i Mmn

[
Ot
]m
i

M̃ = OMO−1

each of these parts is preserved. For example, the antisymmetric part of the new matrix is a linear combi-
nation of the components of only the antisymmetric part of the original matrix,

O
1

2

(
M −M t

)
O−1 =

1

2

(
OMO−1 −OM tO−1

)
=

1

2

(
M̃ − M̃ t

)
We say that the usual matrix representation Mij is reducible, and from the fact that these three invariant
subspace have one degree of freedom for the trace, three for the antisymmetric part, and five degrees of
freedom for the traceless symmetric part, we might guess that we can write M as a combination of the three
vector spaces,

|0, 0〉 , |1,m〉 , |2,m〉

which are of dimensions 1, 3 and 5, respectively. What we have accomplished is to find the irreducible
representations of the rotation group.

There is notation for this equivalence. Letting the boldface number 3 stand for each index of M , we
think of the nine components of M as the outer product of 3-dimensional things,

M → 3⊗ 3

and we write this as the sum, in the new notation, of three irreducible vector spaces:

3⊗ 3 = 1⊕ 3⊕ 5

There are more general objects that rotations can act on. By taking outer products of vectors, we
construct “tensors” with arbitrarily many indices,

Tij...k = uivj . . . wk

Since we can rotate each vector, we know how Tij...k changes under rotations. We may take abritrary linear
combinations of objects of this form to construct n-index objects with 3n degrees of freedom. For example,
a general tensor with three indices, Tijk, has 33 = 27 independent components.
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A systematic analysis along these same lines shows that a rank three tensor, that is, an object with three
indices like the Levi-Civita tensor, Tijk, may be decomposed into four irreducible parts,

3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10

The 1-dimensional subspace 1 is the totally antisymmetric part of Tijk. The two 8s are of definite mixed
symmetry and the 10 is the totally symmetric part. Notice that the degrees of freedom always match,
33 = 27 = 1+8+8+10, so we have accounted for all 27 independent components of Tijk. There are general
techniques for finding this decomposition for any tensor.

One familiar example of this sort of decomposition is given by the spherical harmonics. If we have any
bounded, piecewise continuous function on a sphere, f (θ, ϕ), it may be expanded in spherical harmonics,

f (θ, ϕ) =

∞∑
l=0

l∑
m=−l

AlmY
l
m (θ, ϕ)

But such functions form an infinite dimensional vector space, since sums of such functions give other functions
on the sphere. The collection of spherical harmonics for any fixed l,

{
Y lm (θ, ϕ) |m = −l,−l + 1, . . . , l

}
also

form a vector space, since we may take linear combinations of any two linear combinations of these, to form
another linear combinations of the same set. Moreover, these sets are rotationally invariant: any rotation
of the sphere (θ, ϕ) → (θ + α,ϕ+ β) mixes m but leaves l fixed. Since the dimension of these invariant
subspaces is 2l + 1, while the dimension of the function space is infinite, the sum above gives us an infinite
decomposition,

∞ = 1⊕ 3⊕ 5⊕ · · · ⊕ (2l+ 1)⊕ · · ·

We show in the next set of notes that these odd-dimensional vector spaces are, in fact, spanned by the
spherical harmonics.

The importance of such decompositions becomes evident when we look at atoms, nuclei, mesons or
baryons, all of which are composite. Atoms are described by electrons orbiting nuclei, while the others are
comprised of quarks and gluons. In each of these multi-particle systems, the constituents may have both
orbital angular momentum and spin, and we need to know how these various contributions to the total
angular momentum combine to give a total number of states for the system. Therefore, we will develop rules
for the addition of angular momentum states.

6 Rotation matrices
We conclude with the form of the matrix elements of the finite rotation operators,

D̂ (n, ϕ) = e−
iϕ
~ n·Ĵ

Since the generators

Ĵ =
(
Ĵ1, Ĵ2, Ĵ3

)
=

(
1

2

(
Ĵ+ + Ĵ−

)
,
1

2i

(
Ĵ+ − Ĵ−

)
, Ĵ3

)
change m but never change the value of j, we have

〈j1,m1| D̂ (n, ϕ) |j2,m2〉 = 〈j1,m1

∑
m

cm |j2,m′〉

=
∑
m

cm 〈j1,m1 |j2,m′〉
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and this vanishes unless j1 = j2. We therefore need consider only matrix elements of a single fixed value of
j. The matrix element of rotations of spin-j states is then the (2j + 1)× (2j + 1) matrix D̂j

m′,m (n, ϕ) with
elements

D̂j
m′,m (n, ϕ) ≡ 〈j,m′| e−

iϕ
~ n·Ĵ |j,m〉

In general, if we start with a given state, |j,m〉, and rotate it, the result is given by acting with these
matrices. Concretely, by multiplying by the identity matrix,

1̂ =
∑
j

j∑
m=−j

|j,m〉 〈j,m|

we have

D̂ (n, ϕ) |j,m〉 =

∑
j′

j′∑
m′=−j′

|j′,m′〉 〈j′,m′|

 D̂ (n, ϕ) |j,m〉

=
∑
j′

j′∑
m′=−j′

|j′,m′〉 δj′j 〈j,m′| D̂ (n, ϕ) |j,m〉

=

j∑
m′=−j

|j′,m′〉 D̂j
m′m (n, ϕ)

Exercise: Find the matrix elements for the j = 1
2 rotations D̂

1
2

m′m (n, ϕ).
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