
One of the most important problems in quantum mechanics is the simple harmonic oscillator, in part
because its properties are directly applicable to field theory. The treatment in Dirac notation is particularly
satisfying.

1 Hamiltonian

Writing the potential 1
2kx

2 in terms of the classical frequency, ω =
√

k
m , puts the classical Hamiltonian in

the form

H =
p2

2m
+
mω2x2

2

Since there are no products of non-commuting operators, there is no ambiguity in the resulting Hamiltonian
operator,

Ĥ =
1

2m
P̂ 2 +

mω2

2
X̂2

We make no choice of basis.

2 Raising and lowering operators
Notice that (

x+
ip

mω

)(
x− ip

mω

)
= x2 +

p2

m2ω2

=
2

mω2

(
1

2
mω2x2 +

p2

2m

)
so that we may write the classical Hamiltonian as

H =
mω2

2

(
x+

ip

mω

)(
x− ip

mω

)
We can write the quantum Hamiltonian in a similar way. Choosing our normalization with a bit of

foresight, we define two conjugate operators,

â =

√
mω

2~

(
X̂ +

i

mω
P̂

)
â† =

√
mω

2~

(
X̂ − i

mω
P̂

)
The operator â† is called the raising operator and â is called the lowering operator. Notice that they are not
Hermitian. In taking the product of these, we must be careful with ordering since X̂ and P̂

â†â =
mω

2~

(
X̂ − iP̂

mω

)(
X̂ +

iP̂

mω

)

=
mω

2~

(
X̂2 +

i

mω
X̂P̂ − i

mω
P̂ X̂ +

P̂ 2

m2ω2

)

=
mω

2~

(
X̂2 +

i

mω

[
X̂, P̂

]
+

P̂ 2

m2ω2

)
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Using the commutator,
[
X̂, P̂

]
= i~1̂, this becomes

â†â =

(
1

~ω

)(
1

2
mω2

)(
X̂2 − ~

mω
+

P̂ 2

m2ω2

)

=
1

~ω

(
1

2
mω2X̂2 − 1

2
~ω +

P̂ 2

2m

)

=
1

~ω

(
Ĥ − 1

2
~ω
)

and therefore,

Ĥ = ~ω
(
â†â+

1

2

)

3 The number operator
This turns out to be a very convenient form for the Hamiltonian because â and a† have very simple properties.
First, their commutator is simply

[
â, â†

]
=

mω

2~

[(
X̂ +

iP̂

mω

)
,

(
X̂ − iP̂

mω

)]

=
mω

2~

([
X̂,− i

mω
P̂

]
+

[
i

mω
P̂ , X̂

])
= − 2i

mω

mω

2~

[
X̂, P̂

]
= − i

~
i~

= 1

Consider one further set of commutation relations. Defining N̂ ≡ â†â = N̂†, called the number operator,
we have [

N̂ , â
]

=
[
â†â, â

]
= â† [â, â] +

[
â†, â

]
â

= −â

and [
N̂ , â†

]
=

[
â†â, â†

]
= â

[
â†, â†

]
+ â†

[
â, â†

]
= â†

Notice that N̂ is Hermitian, hence observable, and that Ĥ = ~ω
(
N̂ + 1

2

)
.

4 Energy eigenstates

4.1 Positivity of the energy
Prove that expectation values of Hamiltonian, hence all energies, are positive.
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Q1: Consider an arbitrary expectation value of the Hamiltonian,

〈ψ| Ĥ |ψ〉 = 〈ψ| ~ω
(
â†â+

1

2

)
|ψ〉

= ~ω
(
〈ψ| â†â |ψ〉+

1

2
〈ψ | ψ〉

)
Use the fact that the norm of any state is positive, 〈ψ |ψ〉 > 0 to show that the energy of any
SHO state is positive:

〈ψ| Ĥ |ψ〉 = E > 0

Hint: It helps to define |β〉 ≡ â |ψ〉.

4.2 The lowest energy state
Suppose that |E〉 is any energy eigenket with

Ĥ |E〉 = E |E〉

Consider the new ket formed by acting on |E〉 with the lowering operator â.

Q2: Show that â |E〉 is also an energy eigenket with energy E − }ω,

Ĥ (â |E〉) = (E − }ω) (â |E〉)

Since â |E〉 is an energy eigenket, we may repeat this procedure to show that â2 |E〉 is an energy eigenket

with energy E − 2~ω. Continuing in this way, we find that âk |E〉 will have energy E − k~ω. This process
cannot continue indefinitely, because the energy must remain positive. Let k be the largest integer for which
E − k~ω is positive,

Ĥâk |E〉 = (E − k~ω) âk |E〉

with corresponding state âk |E〉. Then applying the lowering operator one more time cannot give a new
state. The only other possibility is zero. Rename the lowest energy state |0〉 = A0â

k |E〉, where we choose
A0 so that |0〉 is normalized. We then must have

â |0〉 = 0

This is the lowest energy state of the oscillator, called the ground state.

4.3 The complete spectrum
Q3: Now that we have the ground state, we reverse the process, acting instead with the raising
operator. Show that, acting any energy eigenket, |E〉, the raising operator gives another energy
eigenket, â† |E〉, with energy E + ~ω,

Ĥ
(
â† |E〉

)
= (E + ~ω)

(
â† |E〉

)
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Q4: Find the energy of the state â† |0〉.

Q5: Define the normalized state to be |1〉 ≡ A1â
† |0〉. Find the normalization constant, A1.

There is nothing to prevent us continuing this procedure indefintely. Continuing n times, we have states

|n〉 = An
(
â†
)n |0〉

satisfying

Ĥ |n〉 =

(
n+

1

2

)
~ω |n〉

This gives the complete set of energy eigenkets.

4.4 Normalization
Now, consider the expectation of N̂ in the nth state, |n〉 = An

(
â†
)n |0〉.

Q6: Develop a recursion relation for the normalization constants, An, starting from 1 = 〈n | n〉.
Specifically, show that |An−1|2 = n |An|2. Iterating the recursion relation gives

|An|2 =
1

n
|An−1|2

=
1

n (n− 1)
|An−2|2

...

=
1

n!
|A1|2

so that, choosing all of the coefficients real, we have the complete set of normalized states

|n〉 =
1√
n!

(
â†
)n |0〉

Q7: Show that â† |n〉 =
√
n+ 1 |n+ 1〉 and find the corresponding relation for â |n〉.

5 Wave function
Choosing a coordinate basis to express the condition

â |0〉 = 0

gives

0 = 〈x| â |0〉

=

√
mω

2~
〈x|
(
X̂ +

i

mω
P̂

)
|0〉

=

√
mω

2~

(
〈x| X̂ |0〉+

i

mω
P̂ |0〉

)
=

√
mω

2~

(
x 〈x | 0〉+

i

mω
〈x| P̂ |0〉

)
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and since we have shown that 〈x| P̂ |0〉 = −i~ d
dx 〈x | 0〉 this becomes a differential equation,

d

dx
〈x | 0〉+

mωx

~
〈x | 0〉 = 0

Setting ψ0 (x) = 〈x | 0〉 and integrating,

dψ0

ψ0
= −mωx

~
dx

ln

(
ψ0 (x)

ψ0 (0)

)
= −mωx

2

2~

ψ0 (x) = ψ0 (0) e−
mωx2

2~

we find that the wave function of the ground state is a Gaussian, with the magnitude of the remaining
coefficient ψ0 (0) determined by normalizing the Gaussian,

ψ0 (x) =
(mω
π~

)1/4
e−

mωx2

2~

Now consider the wave function, ψn (x), for the eigenstates. We have already found that the ground state
is given by a normalized Gaussian,To find the wave functions of the higher energy states, consider

ψn (x) = 〈x | n〉

= 〈x| 1√
n!

(
â†
)n |0〉

=
1√
n
〈x| â† 1√

(n− 1)!

(
â†
)n−1 |0〉

=
1√
n

√
mω

2~
〈x|
(
X̂ − i

mω
P̂

)
|n− 1〉

=
1√
n

√
mω

2~

(
x 〈x | n− 1〉 − i

mω

(
−i~ d

dx

)
〈x | n− 1〉

)
=

√
mω

2n~

(
x− ~

mω

d

dx

)
ψn−1 (x)

Therefore, we can find all states by iterating this operator,

ψn (x′) =
(mω

2n~

)n
2

(
x− ~

mω

∂

∂x

)n
ψ0 (x)

The result is a series of polynomials, the Hermite polynomials, times the Gaussian factor.

Q8: Find ψ1 (x) and ψ2 (x).

6 Time evolution of a mixed state of the oscillator
Consider the time evolution of the most general superposition of the lowest two eigenstates

|ψ〉 = cos θ |0〉+ eiϕ sin θ |1〉
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Applying the time translation operator with t0 = 0,

|ψ, t〉 = U (t) |ψ〉

= e−
i
~ Ĥt |ψ〉

= cos θe−
i
~ Ĥt |0〉+ eiϕ sin θe−

i
~ Ĥt |1〉

= cos θe−
i
2ωt |0〉+ eiϕ sin θe−

3
2 iωt |1〉

= e−
i
2ωt
(
cos θ |0〉+ eiϕ sin θe−iωt |1〉

)
Now look at the time dependence of the expectation value of the position operator, which we write in terms

of raising and lowering operators as X̂ =
√

~
2mω

(
â+ â†

)
. Remembering that the states are orthonormal,

〈ψ, t| X̂ |ψ, t〉 =
(
cos θ 〈0|+ e−iϕ sin θeiωt 〈1|

)
e

i
2ωtX̂e−

i
2ωt
(
cos θ |0〉+ eiϕ sin θe−iωt |1〉

)
=

√
~

2mω

(
cos θ 〈0|+ e−iϕ sin θeiωt 〈1|

) (
â+ â†

) (
cos θ |0〉+ eiϕ sin θe−iωt |1〉

)
=

√
~

2mω

(
cos θ 〈0|+ e−iϕ sin θeiωt 〈1|

) (
cos θ |1〉+ eiϕ sin θe−iωt

(
|0〉+

√
2 |2〉

))
=

√
~

2mω

(
cos θ sin θe−i(ωt−ϕ) + sin θ cos θei(ωt−ϕ)

)
=

√
~

2mω
sin 2θ cos (ωt− ϕ)

where we have used â |0〉 = 0, â |1〉 = |0〉 , â† |0〉 = |1〉 and â† |1〉 =
√

2 |2〉. We see that the expected position

oscillates back and forth between ±
√

~
2mω sin 2θ with frequency ω. Superpositions involving higher excited

states will bring in harmonics, nω, and will then allow for varied traveling waveforms.

Q9: Find the expectation value of the momentum, P̂ = 1
2i

√
2~mω

(
â− â†

)

Q10: Find the uncertainty in position, (∆X)
2

=

〈(
X̂ −

〈
X̂
〉)2〉

=
〈
X̂2
〉
−
〈
X̂
〉2

7 Coherent states and the correspondence principle
Any alternative physical theory must approach, in some suitable limit, the previously tested and accepted
standard model. Such a limit was stated concretely for quantum mechanics by Niels Bohr in 1920. The
correspondence principle states that in the limit of large numbers of quanta, quantum systems should replicate
classical behavior. We can see this for the simple harmonic oscillator by finding states that oscillate with the
natural frequency ω and its overtones. Schrödinger found that such states are given by minimum uncertainty
wave packets called coherent states.

7.1 The uncertainty in position and momentum
Schrödinger asked for simple harmonic oscillator states, |λ〉, for with the dimensionless forms of the position
and momentum operators,

X̂0 ≡
√
mω

2~
X̂ =

1

2

(
â+ â†

)
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P̂0 ≡
√

1

2~mω
P̂ =

1

2i

(
â− â†

)
have equal uncertainty,

∆X̂0 = ∆P̂0

and which achieve the minimum value in the uncertainty relation,

∆X̂0∆P̂0 ≥
~
2

The uncertainty in any operator in a state |λ〉 is defined to be ∆Â where(
∆Â
)2

≡ 〈λ|
(
Â−

〈
Â
〉)2
|λ〉

= 〈λ|
(
Â2 − 2Â

〈
Â
〉

+
〈
Â
〉2)
|λ〉

= 〈λ| Â2 |λ〉 − 2 〈λ| Â |λ〉
〈
Â
〉

+
〈
Â
〉2

=
〈
Â2
〉
−
〈
Â
〉2

where we define
〈
Â
〉
≡ 〈λ| Â |λ〉. The uncertainty for position is then found from the expection value of X̂0〈

X̂0

〉
=

1

2
〈λ|
(
â+ â†

)
|λ〉

=
1

2

(
〈â〉+

〈
â†
〉)

and the expectation value of X̂2
0 ,〈
X̂2

0

〉
=

〈
1

2

(
â+ â†

)2〉
=

1

4

〈(
â2 + ââ† + â†â+ â†2

)〉
=

1

4

〈(
â2 +

[
â, â†

]
+ 2N̂ + â†2

)〉
=

1

4

〈(〈
â2
〉

+ 2

(
N̂ +

1

2

)
+
〈
â†2
〉)〉

=
1

4

(〈
â2
〉

+
2

~ω

〈
Ĥ
〉

+
〈
â†2
〉)

to be given by (
∆X̂0

)2
=

1

4

(〈
â2
〉

+
2

~ω

〈
Ĥ
〉

+
〈
â†2
〉)
− 1

4

(
〈â〉2 + 2 〈â〉

〈
â†
〉

+
〈
â†
〉2)

=
1

4

(〈
â2
〉

+
2

~ω

〈
Ĥ
〉

+
〈
â†2
〉
− 〈â〉2 − 2 〈â〉

〈
â†
〉
−
〈
â†
〉2)

=
1

4

(
2

~ω

〈
Ĥ
〉

+ (∆â)
2

+
(
∆â†

)2 − 2 〈â〉
〈
â†
〉)

Similarly, we find
〈
P̂0

〉
,
〈
P̂ 2
0

〉
and

(
∆P̂0

)2
,〈

P̂0

〉
=

1

2i
〈λ|
(
â− â†

)
|λ〉
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=
1

2i
〈â〉 − 1

2i

〈
â†
〉

〈
P̂ 2
0

〉
= −1

4
〈λ|
(
â− â†

)2 |λ〉
= −1

4
〈λ|
(
ââ− 2N̂ − 1 + â†â†

)
|λ〉

=
1

4

(
2

~ω

〈
Ĥ
〉
−
〈
â2
〉
−
〈
â†2
〉)

(
∆P̂0

)2
=

1

4

(
2

~ω

〈
Ĥ
〉
−
〈
â2
〉
−
〈
â†2
〉)

+
1

4

(
〈â〉2 − 2 〈â〉

〈
â†
〉

+
〈
â†
〉2)

=
1

4

(
2

~ω

〈
Ĥ
〉
−
〈
â2
〉
−
〈
â†2
〉

+ 〈â〉2 − 2 〈â〉
〈
â†
〉

+
〈
â†
〉2)

=
1

4

(
2

~ω

〈
Ĥ
〉
−
〈
â2
〉

+ 〈â〉2 −
〈
â†2
〉

+
〈
â†
〉2 − 2 〈â〉

〈
â†
〉)

=
1

4

(
2

~ω

〈
Ĥ
〉
− (∆â)

2 −
(
∆â†

)2 − 2 〈â〉
〈
â†
〉)

7.2 Equality of uncertainties and the minimum uncertainty state

We demand equality of the uncertainties,
(

∆X̂0

)2
=
(

∆P̂0

)2
. Imposing this,

2

~ω

〈
Ĥ
〉

+ (∆â)
2

+
(
∆â†

)2 − 2 〈â〉
〈
â†
〉

=
2

~ω

〈
Ĥ
〉
− (∆â)

2 −
(
∆â†

)2 − 2 〈â〉
〈
â†
〉

(∆â)
2

+
(
∆â†

)2
= − (∆â)

2 −
(
∆â†

)2
and since both (∆â)

2 and
(
∆â†

)2 are nonnegative, both must vanish. Setting

(∆â)
2

= 0〈
â2
〉

= 〈â〉2

There are many ways to accomplish this equality, but the simplest choice is to let |λ〉 be an eigenstate of â,

â |λ〉 = λ |λ〉

since this always makes the dispersion vanish. It is easy to show that this choice also gives miniumum
uncertainty.

We also need
(
∆â†

)2
= 0, but this follows automatically,〈

â†2
〉
−
〈
â†
〉2

= 〈λ|
(
â† −

〈
â†
〉)2 |λ〉

= 〈λ| â†â† |λ〉 −
〈
â†
〉2

= 〈λ| ââ |λ〉∗ −
〈
â†
〉2

= λ∗2 − 〈â〉∗2

= λ∗2 − λ∗2

= 0

The condition
â |λ〉 = λ |λ〉

is therefore sufficient to guarantee that the uncertainties in position and momentum will be equal.
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When this condition holds, the uncertainties are(
∆X̂0

)2
=

1

2

(
1

~ω

〈
Ĥ
〉
− 〈â〉

〈
â†
〉)

(
∆P̂0

)2
=

1

2

(
1

~ω

〈
Ê
〉
− 〈â〉

〈
â†
〉)

with product (
∆X̂0

)2 (
∆P̂0

)2
=

1

4

(
λ∗λ+

1

2
− λ∗λ

)2

∆X̂0∆P̂0 =
1

4

and putting the units back in terms of position and momentum,

∆X̂∆P̂ =
~
2

so this condition also gives a minimum uncertainty wave packet.

7.3 Coherent states
We define a coherent state of the harmonic oscillator to be an eigenstate of the lowering operator,

â |λ〉 = λ |λ〉

To find such states explicitly, expand in the complete number basis,

|λ〉 =

∞∑
n=0

cn |n〉

Q11: Find the form of coherent states. Writing

â
∑
n

cn |n〉 = λ
∑
n

cn |n〉

work out the effect of â on the left to show that
∞∑
n=1

cn
√
n |n− 1〉 =

∞∑
m=0

cm+1

√
m+ 1 |m〉

This gives a recursion relation for the coefficients cn. Shifting the summation index to m = n− 1 on the

left,
∞∑
n=1

cn
√
n |n− 1〉 =

∞∑
m=0

cm+1

√
m+ 1 |m〉

and renaming m = n on the right,
∞∑
m=0

cm+1

√
m+ 1 |m〉 = λ

∞∑
m=0

cm |m〉

so that term by term equality gives

cm+1 =
λ√
m+ 1

cm
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Iterating this recursion relationship, we find

cn =
λn√
n!

for all n. The coherent state is therefore given by

|λ〉 =
∑
n

λn√
n!
|n〉 (1)

Finally, substituting the expression for the nth number state, |n〉 = 1√
n!

(
â†
)n |0〉, we express the eigenstates

of the lowering operator as

|λ〉 =
∑
n

λn

n!

(
â†
)n |0〉

= eλâ
†
|0〉 (2)

These are the coherent states of the simple harmonic oscillator. They correspond to a Poisson distribution
of number states.

Q12: Normalize the states. Show using eq.(1) that normalized coherent states are given by

e−
1
2 |λ|

2

eλâ
†
|0〉

7.4 Time dependence of coherent states
Q13: Show that the time dependence of a coherenet state, given by acting with Û (t, t0).

Setting t0 = 0 and |λ, t0〉 = |λ〉 show that

|λ, t〉 = e−
iωt
2

∣∣λe−iωt〉
that is, up to an overall phase the complex parameter λ is just replaced by λe−iωt in the original
state.

Q14: Show that the expectation values of X̂ and P̂ oscillate harmonically just as their classical
counterparts. (If you like, show that the wave function is a Gaussian centered on

〈
X̂
〉
!)
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