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As in classical mechanics, time is a parameter in quantum mechanics. It is distinct from space in the sense
that, while we have Hermitian operators, X̂, for position and therefore expect a measurement of postion to
yield any eigenvalue of X̂, there is no T̂ operator for measurements of time. We cannot expect measurements
to yield distributions of eigenvalues of time, perhaps because we are stuck in one particular time ourselves. In
any case, while there are differences between time and space, there does still exists a unitary time translation
operator, and its infinitesimal generator – energy – is an central observable.

In classical physics we make a distinction between active transformations which transform the physi-
cal position and other variables, and passive transformations which leave the physical particles fixed and
transform the coordinates. The same distinction occurs in quantum mechanics. A given time-dependent
wave function, ψ (x, t) = 〈x | ψ〉 (t), has the same two interpretations. We may describe the system by an
explicitly time-dependent ket,

|ψ〉 = |ψ, t〉

taking the basis kets, |a〉, (whatever they are) as fixed. The state is then a time varying vector in the space
spanned by the fixed basis kets.

ψ (x, t) = 〈x | ψ, t〉

Alternatively, we may let the state be a fixed ket, while the basis kets evolve in time, |a, t〉,

ψ (x, t) = 〈x, t | ψ〉

The two descriptions are equivalent, though one or the other may be convenient for a given problem. In
perturbation theory, it is even useful to mix the two pictures, giving part of the time dependence to the basis
and the rest to the state. For the moment, we consider time-dependent states in a fixed basis.

In quantum mechanics, the terms active and passive are replaced, respectively by speaking of the
Schrödinger picture and the Heisenberg picture. In the Schrödinger picture, the state vector becomes time
dependent with the basis fixed, coresponding to an active transformation in classical physics. The Heisenberg
picture begins by letting the operators become time dependent, with the consequence that their eigenstates
and therefore the basis, becomes time dependent.

1 The time translation operator
We define the time translation operator to be the mapping that takes any time-dependent state from some
initial time, t0, to a later time, t,

Û (t, t0) |ψ, t0〉 = |ψ, t0; t〉

In the limit as t→ t0, this must be the identity,

Û (t0, t0) |ψ, t0〉 = |ψ, t0; t0〉
= |ψ, t0〉
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We require time evolution to preserve probabilities, so by Wigner’s theorem it must be either unitary or
antiunitary, and there is no conflict in taking it to be unitary,

Û† (t, t0) Û (t, t0) = 1̂

In a fixed basis |a〉, we may expand any state as

|ψ, t〉 =
∑
a

ca (t) |a〉

Notice that the time dependence allows the state to move from one eigenstate to another. Since the state is
normalized at all times, we require

1 = 〈ψ, t0; t | ψ, t0; t〉

=

(∑
a′

c∗a (t) 〈a′|

)(∑
a

ca (t) |a〉

)
=

∑
a

∑
a′

c∗a (t) ca (t) 〈a′ | a〉

=
∑
a

∑
a′

c∗a (t) ca (t) δaa′

=
∑
a

|ca (t)|2

Unitarity of the time translation operator requires this to hold at every time t.
We may write Û (t, t0) as an exponential,

Û (t, t0) = e−
i
~ Ω̂(t)

Then, for an infinitesimal time change, t = t0 + dt,

Û (t0 + dt, t0) = 1̂− i

~
Ω̂ (t0) dt

where unitarity of Û (t, t0) requires Ω̂† = Ω̂.

2 The Schrödinger equation
Consider three sequential times, t0 < t1 < t2. It must be the case that acting with on an arbitrary state
with Û (t0, t2) gives the same result as acting with Û (t0, t1) followed by Û (t1, t2):

Û (t0, t2) |ψ, t0〉 = Û (t1, t2) Û (t0, t1) |ψ, t0〉

since both of these must give |ψ, t0; t2〉. Since the times are arbitrary, this gives an operator equality,

Û (t0, t2) = Û (t1, t2) Û (t0, t1)

Now examine the time evolution of the time translation operator, Û (t, t0), at some time t. Translating
the time t by an additional small amount ∆t,

Û (t+ ∆t, t0) = Û (∆t, t) Û (t, t0)

=

(
1̂− i

~
Ĥ (t) ∆t

)
Û (t, t0)

= Û (t, t)− i∆t

~
Ĥ (t) Û (t, t0)
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Rearranging,

Ĥ (t) Û (t, t0) = i~
Û (t+ ∆t, t0)− Û (t, t0)

∆t

so taking the limit as ∆t→ 0,

Ĥ (t) Û (t, t0) = i~
∂

∂t
Û (t, t0) (1)

This is the Schrödinger equation for the time evolution operator. Finally, let this operator relation act on
an initial state, |ψ, t0〉, to give the time evolution equation for that state,

Ĥ (t) Û (t, t0) |ψ, t0〉 = i~
∂

∂t
Û (t, t0) |ψ, t0〉

This gives the time-dependent Schrödinger equation,

Ĥ (t) |ψ, t〉 = i~
∂

∂t
|ψ, t〉

This is basis independent form of the familiar Schrödinger equation.
Since the state is arbitrary, we recognize the generator of time translations as the Hamiltonian,

Ω̂ (t) = i~
∂

∂t
= Ĥ

3 The full time evolution operator
As we did the the translation operator, we may recover the form for a finite time translation trom the
infinitesimal solution. We distinguish three cases:

1. Ĥ independent of time

2. Ĥ depends on time, but
[
Ĥ (t) , Ĥ (t′)

]
= 0 for any two times, t, t′.

3.
[
Ĥ (t) , Ĥ (t′)

]
6= 0

The first case may be solved by direction integration of the Schrödinger equation for Û (t, t0),

Ĥ (t) Û (t, t0) = i~
∂

∂t
Û (t, t0)

With Ĥ (t) = Ĥ constant, this immediately gives

Û (t, t0) = e−
i
~ Ĥ(t−t0)

We may solve the second case by iterating the infinitesimal transformation. Dividing the time interval
t− t0 into n equal parts of length ∆t = t−t0

n , we take the product of n infinitesimal time translations, where
the kth time translation may be written to first order as

1̂− i

~
Ĥ (t0 + k∆t) ∆t = e−

i
~ Ĥ(t0+k∆t)∆t
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Then the finite transformation is

Û (t, t0) = lim
n→∞

(
1̂− i

~
Ĥ (t0) ∆t

)(
1̂− i

~
Ĥ (t0 + ∆t) ∆t

)(
1̂− i

~
Ĥ (t0 + 2∆t) ∆t

)
. . .

(
1̂− i

~
Ĥ (t−∆t) ∆t

)
= lim

n→∞

n−1∏
k=0

e−
i
~ Ĥ(t0+k∆t)∆t

= lim
n→∞

exp

(
− i
~

n−1∑
k=0

Ĥ (t0 + k∆t) ∆t

)

= exp

− i
~

tˆ

t0

Ĥ (t′) dt′


Notice that as n → ∞ the linear approximation becomes exact and the sum becomes an integral. Because
all of the Ĥ (t′) commute, we see directly that this form of Û (t, t0) satisfies the Schrödinger equation,

Ĥ (t) Û (t, t0) = i~
∂

∂t
Û (t, t0)

The general case is considerably more involved because we have to keep track of the order of the terms
in the power series. The result, called the Dyson series, has the form

Û (t, t0) = lim
n→∞

(
1̂− i

~
Ĥ (t0) ∆t

)(
1̂− i

~
Ĥ (t0 + ∆t) ∆t

)(
1̂− i

~
Ĥ (t0 + 2∆t) ∆t

)
. . .

=

∞∑
n=0

(
− i
~

)n tˆ

t0

Ĥ (t1) dt1

t1ˆ

t0

Ĥ (t2) dt2 . . .

tn−1ˆ

t0

Ĥ (tn) dtn

≡ T exp

− i
~

tˆ

t0

Ĥ (t′) dt′


The crucial step occurs in noticing that the nth term in the sum, may be extend each of the n integrals all
the way from t0 to the final time t and dividing by n!,(

− i
~

)n tˆ

t0

Ĥ (t1) dt1

t1ˆ

t0

Ĥ (t2) dt2 . . .

tn−1ˆ

t0

Ĥ (tn) dtn →
1

n!

− i
~

tˆ

t0

Ĥ (t′) dt′

n

with the caveat that in the resulting nth power on the right must be time ordered,

1

n!
T

− i
~

tˆ

t0

Ĥ (t′) dt′

n

meaning that the n factors of the Hamiltonian must be returned to the product form on the left with
t1 < t2 < . . . < tn in increasing order. This notational trick allows us to write the result as an exponential,
but the final exponential is simply shorthand for the whole series

Almost all of the applications we consider will involve time-independent Hamiltonians.

4 Energy eigenkets

Suppose we choose as a basis the eigenkets of an operator Â which commutes with the (time-independent)
Hamiltonian, [

Â, Ĥ
]

= 0
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This operator could be the Hamiltonian itself, or another observable, but in either case, the eigenkets, |a〉,
may be chosen to simultaneously be eigenkets of Ĥ,

Ĥ |a〉 = Ea |a〉

Consider the time evolution of an arbitrary initial state, |ψ, t0〉. In terms of the Â basis,

|ψ, t0〉 =
∑
a

|a〉 〈a | ψ, t0〉

=
∑
a

ca |a〉

where ca ≡ 〈a | ψ, t0〉. Then the time evolution is given by

|ψ, t0; t〉 = exp

(
− i
~
Ĥt

)
|ψ, t0〉

=
∑
a

ca exp

(
− i
~
Ĥt

)
|a〉

=
∑
a

ca exp

(
− i
~
Ent

)
|a〉

Defining time dependent expansion coefficients, ca (t) ≡ cae−
i
~Eat, the state becomes

|ψ, t0; t〉 =
∑
a

ca (t) |a〉

In general, this means that the probabilities for measuring the system to be in different states varies
with time. The only exceptions are the probatilities for measuring a fixed energy eigenstate. Concretely, the
probability for measuring the state to have energy Ea0 at time t is

P (Ea0) = |〈a0 | ψ, t0; t〉|2

= |ca0 (t)|2

=
∣∣∣ca0e− i

~Ea0
t
∣∣∣2

= |ca0 |
2

that is, the same as the original probability. However, the probability for finding a general superpostion
changes. Let |χ〉 = |E1〉+ |E2〉 be a superposition of eigenstates for energies E1 and E2. The probability of
measuring the system to be in the state |χ〉 is

P (χ) = |〈χ | ψ, t0; t〉|2

= |c1 (t) + c2 (t)|2

=
∣∣∣c1e− i

~E1t + c2e
− i

~E2t
∣∣∣2

We pull out a common phase and set ∆E = E2 − E1. Then

P (χ) =
∣∣∣e− i

2~E1te−
i
2~E2t

(
c1e

i
2~ ∆Et + c2e

− i
2~ ∆Et

)∣∣∣2
=

(
c1e

i
2~ ∆Et + c2e

− i
2~ ∆Et

)(
c∗1e
− i

2~ ∆Et + c∗2e
i
2~ ∆Et

)
= |c1|2 + |c2|2 + c1c

∗
2e

i
~ (E2−E1)t + c∗1c2e

− i
~ (E2−E1)t

= |c1|2 + |c2|2 + 2Re
(
c1c
∗
2e

i
~ (E2−E1)t

)
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which is time dependent unless the energy is degenerate with ∆E = 0.
The problem of quantum dynamics is now reduced to finding a maximal set of operators which commute

with the Hamiltonian. We may then label states using these and study the time evolution of arbitrary initial
states.

Exercise: Find the time evolution of a particle in an infinite square well,

V (x) =


∞ x < −L2
0 −L2 < x < L

2

∞ x > L
2

when its state at time t0 is:

1. 〈x | ψ, t0〉 =
√

2
L cos πxL

2. 〈x | ψ, t0〉 =
√

1
L cos πxL +

√
1
L cos 3πx

L

5 Expectation values of observables
Once we have the state of a system expanded in energy eigenkets, we can find the time dependence of the
expectation values for any observable, Ô,

〈ψ, t0; t| Ô |ψ, t0; t〉 =
∑
a,a′

〈ψ, t0; t | a′〉 〈a′| Ô |a〉 〈a′ | ψ, t0; t〉

=
∑
a,a′

c∗a′ (t) ca (t) 〈a′| Ô |a〉

=
∑
a,a′

c∗a′cae
− i

~ (Ea−Ea′ )t 〈a′| Ô |a〉

As an example, consider a 2-state system. The Hamiltonian for a spin- 1
2 particle with magnetic moment

µ = e
mcS, in a magnetic field, B, is

Ĥ = −µ̂ ·B
= − e

mc
Ŝ ·B

Let B = −Bk̂ be constant, so the time-independent Hamiltonian is

Ĥ =
eB

mc
Ŝz

The energy eigenkets are then just the |±〉 eigenkets of Ŝz with energies

Ĥ |±〉 = E± |±〉

= ±e~B
2mc

|±〉

= ±~ω
2
|±〉

where ω ≡ eB
mc . Setting t0 = 0, the time evolution of a general normalized state,

|χ〉 = cos θ |+〉+ eiϕ sin θ |−〉
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is

|χ, t〉 = Û (t, 0) |χ〉

= e−
i
~ Ĥt |χ〉

= e−
i
~ Ĥt

(
cos θ |+〉+ eiϕ sin θ |−〉

)
= e−

i
~E+t cos θ |+〉+ e−

i
~E−teiϕ sin θ |−〉

= e−
iωt
2 cos θ |+〉+ e

iωt
2 eiϕ sin θ |−〉

= e−
iωt
2

[
cos θ |+〉+ ei(ωt+ϕ) sin θ |−〉

]
The probability for measuring the system to be in the spin-up state is then

|〈+ | χ, t〉|2 =
∣∣∣e− iωt

2

[
cos θ 〈+ | +〉+ ei(ωt+ϕ) sin θ 〈+ | −〉

]∣∣∣2
= cos2 θ

which is the same as the initial probability. However, if we look at the probability that the x-component of
spin is up, we find∣∣∣〈Ŝx,+ | χ, t〉∣∣∣2 =

∣∣∣∣( 1√
2
〈+|+ 1√

2
〈−|
)
e−

iωt
2

[
cos θ |+〉+ ei(ωt+ϕ) sin θ |−〉

]∣∣∣∣2
=

1

2

∣∣∣(cos θ + ei(ωt+ϕ) sin θ
)∣∣∣2

=
1

2

(
cos θ + ei(ωt+ϕ) sin θ

)(
cos θ + e−i(ωt+ϕ) sin θ

)
=

1

2

(
cos2 θ + sin2 θ +

(
e−i(ωt+ϕ) + ei(ωt+ϕ)

)
sin θ cos θ

)
=

1

2
(1 + sin 2θ cos (ωt+ ϕ))

6 Time-energy uncertainty
Consider a system with a continuous energy spectrum and many particles. Let the state be expanded in
energy eigenkets,

|ψ, t0; t〉 = exp

(
− i
~
Ĥt

)
|ψ, t0〉

=

ˆ
ρ (E) dE c (E) exp

(
− i
~
Ĥt

)
|E〉

=

ˆ
ρ (E) dE c (E) e−

i
~Et |E〉

where ρ (E) characterizes the distritubion of energy eigenstates and the orthonormality relation is

ρ (E′) 〈E′ | E〉 = δ (E − E′)

Consider the correlation between the initial state, |ψ, t0〉, and the state at time t,

C (t) ≡ 〈ψ, t0 | ψ, t0; t〉 = 〈ψ, t0 exp

(
− i
~
Ĥt

)
|ψ, t0〉

=

ˆ
ρ (E′) dE′ c∗ (E′) 〈E′|

ˆ
ρ (E) dE c (E) e−

i
~Et |E〉
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=

ˆ ˆ
ρ (E) ρ (E′) dEdE′ c∗ (E′) c (E) e−

i
~Et 〈E′ | E〉

=

ˆ
dE′
ˆ
ρ (E) dE |c (E)|2 e− i

~Et

=

ˆ
ρ (E) dE |c (E)|2 e− i

~Et

Suppose the initial distribution is peaked around some energy E0. Write C (t) as

C (t) =

ˆ
ρ (E) dE |c (E)|2 e− i

~Et

= e−
i
~E0t

ˆ
ρ (E) dE |c (E)|2 e− i

~ (E−E0)t

For energies far from E0, the exponential e−
i
~ (E−E0)t oscillates rapidly and the value of the integral is small

as long as ρ (E) and c (E) vary slowly, and (E − E0) ∆t � ~. On the other hand, there will be coherent
contributions for any time interval ∆t such that

(E − E0) ∆t

~
& 1

Therefore, times ∆t and energies E = E0 + ∆E contribute significantly, where

∆E∆t & ~

This is a very different statement than the necessary relationship between the uncertainties in conjugate
observables. In particular, recall that there is no Hermitian operator corresponding to a measurement of
time, so the general result for noncommuting operators does not hold.

7 The Heisenberg picture
Heisenberg developed a different formulation of quantum mechanics, originally based on matrices, in which
the dynamical equations of Hamiltonian mechanics take a very similar quantum form. Since the time-
dependent dynamical variables of mechanics are replaced by operators in the quantum realm, those operators
are time-dependent in the Heisenberg picture.

We take a different approach from the historical development. In keeping with the parallel between
active and passive transformations, we begin by placing the time dependence in the basis kets. Start with
the time-dependent wave function and let the basis carry the time dependence.

ψ (x, t) = 〈x | ψ〉 (t)
= 〈x, t | ψ〉

For this to agree with the Schrödinger picture result we set |ψ, t0〉 = |ψ〉 and require

〈x, t | ψ〉 = 〈x| Û (t, t0) |ψ〉

=
(
〈x| Û (t, t0)

)
|ψ〉

Since |ψ〉 is arbitrary

〈x| Û (t, t0) = 〈x, t|

and for the kets,
|x, t〉 = Û† (t, t0) |x, t0〉

Notice that while in the active Schrödinger picture states rotated with the action of Û (t, t0) = e−
i
~ Ĥ(t−t0),

the basis transforms in the reverse sense with the adjoint, Û† (t, t0) = e
i
~ Ĥ(t−t0).
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7.1 Time dependent operators and the Heisenberg equation of motion
Next, consider how this affects the definition of the position operator through its eigenvalue equation. At
the initial time, we have

X̂ |x〉 = x |x〉

Multiplying on the left by Û† (t, t0) and inserting the identity, 1̂ = Û (t, t0) Û† (t, t0) this becomes

Û†X̂Û Û† |x〉 = xÛ† |x〉
Û†X̂Û |x, t〉 = x |x, t〉

We see that the time-dependent basis kets are eigenkets of the time-dependent operator,

X̂ (t) ≡ Û† (t, t0) X̂ (t0) Û (t, t0)

A similar argument holds for any Schrödinger picture observable, ÂS , and we let all operators change their
time-dependence in this same way,

ÂH (t) ≡ Û† (t, t0) ÂSÛ (t, t0)

Notice that ÂS may or may not already have some additional explicit time dependence.
From the Schrödinger equation for the time translation operator, eq.(1), we immediately have

dÂH (t)

dt
=

∂Û†

∂t
ÂSÛ + Û† ∂ÂS

∂t
Û + Û†ÂS

∂Û
∂t

=
i

~
Û†Ĥ (t) ÂSÛ + Û† ∂ÂS

∂t
Û − i

~
Û†ÂSĤ (t) Û

=
i

~
Û†
[
Ĥ (t) , ÂS

]
Û + Û† ∂ÂS

∂t
Û

Since Û commutes with the Hamiltonian,

i

~
Û†
[
Ĥ (t) , ÂS

]
Û =

i

~

[
Ĥ (t) , ÂH

]
Writing the last term as Û†

(
∂Â
∂t

)
S
Û =

(
∂Â
∂t

)
H

we have the Heisenberg equation of motion,

dÂH (t)

dt
=

i

~

[
Ĥ (t) , ÂH (t)

]
+

(
∂Â (t)

∂t

)
H

(2)

This has exactly the form of the classical Hamiltonian equation of motion with the Poisson bracket {H,A}
replaced by i

~ times the commutator, i
~

[
Ĥ, Â

]
.

If a operator has no time dependence in the active picture ∂ÂS(t)
∂t = 0, and commutes with the Hamiltonian[

Ĥ, ÂH

]
= 0, then it is conserved

dÂH (t)

dt
= 0

again resembling the classical conservation result.

7.2 Ehrenfest’s Theorem
In the Heisenberg picture, let the Hamiltonian be given by

Ĥ =
1

2m
P̂2 + V

(
X̂
)
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Then the rate of change of the momentum operator is given by

dP̂

dt
=

1

i~

[
P̂, Ĥ

]
=

1

i~

[
P̂,

1

2m
P̂2 + V

(
X̂
)]

=
1

i~

[
P̂, V

(
X̂
)]

and we show in the next section that [
P̂, V

(
X̂
)]

= −i~∇V
(
X̂
)

Therefore, we reproduce an operator form of the classical equation of motion,

dP̂

dt
= −∇V

(
X̂
)

This holds only in the Heisenberg picture, but if we take expectation values, these are the same in both the
Schrödinger and Heisenberg pictures, and we have the Ehrenfest theorem,

d
〈
P̂
〉

dt
= −

〈
∇V

(
X̂
)〉

(3)

In the special case of a free particle, V = 0 and we may integrate,

dP̂

dt
= 0

P̂ (t) = P̂ (0)

The position operator follows from

dX̂

dt
=

1

i~

[
X̂,

1

2m
P̂2

]
=

1

m
P̂ (t)

=
1

m
P̂ (0)

so integrating

X̂ (t) = X̂ (0) +
1

m
P̂ (0) t

Notice that [
X̂i (0) , X̂j (t)

]
=

1

m

[
X̂i (0) , P̂j (0)

]
t

=
i~t
m
δij

and there is an uncertainty relation (
∆X̂ (t)

)2 (
∆X̂ (0)

)2

≥ ~2t2

4m2

Any initial spread in the expectation of the position therefore grows in time.
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8 Some useful commutation relations
First, consider the commutator of the position operator with a power of the momentum operator:

Âk ≡
[
X̂, P̂ kx

]
Using the identity [

Â, B̂Ĉ
]

= ÂB̂Ĉ − B̂ĈÂ

= ÂB̂Ĉ − B̂ÂĈ + B̂ÂĈ − B̂ĈÂ
=

[
Â, B̂

]
Ĉ + B̂

[
Â, Ĉ

]
and writing P̂ kx as the product P̂ k−1

x P̂x this becomes

Âk =
[
X̂, P̂ k−1

x P̂x

]
=

[
X̂, P̂ k−1

x

]
P̂x + P̂ k−1

x

[
X̂, P̂x

]
= Âk−1P̂x + i~P̂ k−1

x

This gives a recursion relation Âk = Âk−1P̂x + i~P̂ k−1
x for any Âk in terms of Âk−1. iterating, we have

Âk = Âk−1P̂x + i~P̂ k−1
x

=
(
Âk−2P̂x + i~P̂ k−2

x

)
P̂x + i~P̂ k−1

x

= Âk−2P̂
2
x + 2i~P̂ k−1

x

=
(
Âk−3P̂x + i~P̂ k−3

x

)
P̂ 2
x + 2i~P̂ k−1

x

= Âk−3P̂
3
x + 3i~P̂ k−1

x

and we suspect that continuing in this way will lead to

Âk = i~kP̂ k−1
x

To prove this conjecture, notice that it works for k = 1 since Â1 =
[
X̂, P̂x

]
= i~. Now suppose Ân−1 =

i~ (n− 1) P̂n−2
x . Then the recursion relation gives

Ân = Ân−1P̂x + i~P̂n−1
x

= i~ (n− 1) P̂n−2
x P̂x + i~P̂n−1

x

= i~nP̂n−1
x

completing the proof by induction.
Now, consider the commutator of the position operator with a function of the momentum operator:[

X̂, f
(
P̂
)]

where we define a function of an operator to be the Taylor series for the function, with the variable replaced
by the operator. First restricting our attention to the x-direction, we only need the Taylor series in the form

f (px, py, pz) =

∞∑
k=0

1

k!

(
∂

∂px

)k
f (0, py, pz) (px)

k

11



since X̂ commutes with P̂y and P̂z. Setting
(

∂
∂px

)k
f = f (k), and replacing px → P̂x,

f
(
P̂
)

=

∞∑
k=0

1

k!
f (k)

(
0, P̂y, P̂z

)(
P̂x

)k
Therefore, [

X̂, f
(
P̂
)]

=

∞∑
k=0

1

k!
f (k)

(
0, P̂y, P̂z

) [
X̂, P̂ kx

]
=

∞∑
k=0

1

k!
f (k)

(
0, P̂y, P̂z

)
i~kP̂ k−1

x

=

∞∑
k=0

1

(k − 1)!
f (k)

(
0, P̂y, P̂z

)
i~P̂ k−1

x

Substituting back into our original commutation relation,[
X̂, f

(
P̂
)]

=

∞∑
k=0

1

k!
f (k)

(
0, P̂y, P̂z

) [
X̂, P̂ kx

]
=

∞∑
k=0

1

k!
f (k)

(
0, P̂y, P̂z

)
i~kP̂ k−1

x

= i~
∞∑
k=0

1

(k − 1)!
f (k)

(
0, P̂y, P̂z

)
P̂ k−1
x

and we recognize the Taylor series for
ˆ(
∂f
∂px

)
. Therefore,

[
X̂, f

(
P̂
)]

= i~
ˆ(
∂f

∂px

)
The corresponding result holds for each component, so the derivative becomes a gradient,[

X̂, f
(
P̂
)]

= i~∇P̂ f

Exercise:
Prove that [

P̂, f
(
X̂
)]

= −i~∇X̂f
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