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A discrete transformation is still a symmetry if it leaves the Hamiltonian invariant,

ÛĤÛ† = Ĥ

so discrete symmetries are constants of the motion. However, for discrete symmetries we cannot expand
infinitesimally, and a different approach is required. We study the cases of parity and time reversal invariance.

1 Discrete symmetry: Parity

1.1 Parity in classical physics
We first consider parity, or space inversion. Classically, parity is the reflection of position vectors through
the origin,

πx = −x

Any vector which transforms in this way is said to be odd under parity. Since time is unchanged by the
parity transformation, momentum is also of odd parity,

πp = π

(
m
dx

dt

)
= m

d (πx)

dt
= −p

On the other hand, angular momentum is even,

πL = π (x× p)

= (−x)× (−p)

= L

We now need to represent these relations quantum mechanically.

1.2 Parity of quantum operators
Define the parity operator by its action on the position basis,

π̂ |x〉 = |−x〉

Notice that a second application of π̂ returns us to the original state, so π̂ is its own inverse.
We may find the effect of parity on the position operator by letting X̂ act on a parity transformed state,

π̂ |x〉,
X̂π̂ |x〉 = X̂ |−x〉 = −x |−x〉
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Now act on both sides with π̂† = π̂−1 = π̂:

π̂†X̂π̂ |x〉 = −xπ̂† |−x〉
= −xπ̂ |−x〉
= −x |x〉
= −X̂ |x〉

Since the |x〉 states are complete, this proves the operator relationship,

π̂†X̂π̂ = −X̂

Using unitarity, π̂† = π̂−1 we may write this as

X̂π̂ + π̂X̂ ≡
{
X̂, π̂

}
= 0

so that the parity operator and the position operators anticommute.
Next, consider the action of the parity operator π̂ on momentum. Begin with the translation operator,

T̂ (a) = exp

(
− i
~
a · P̂

)
which has the effect

T̂ (a) |x〉 = |x + a〉

Transforming the translation operator with parity, T̂ (a) → π̂†T̂ (a) π̂, consider the action on a position
eigenket,

π̂†T̂ (a) π̂ |x〉 = π̂†T̂ (a) |−x〉
= π̂† |−x + a〉
= π̂ |−x + a〉
= |x− a〉
= T̂ (−a) |x〉

from which we see that
π̂†T̂ (a) π̂ = T̂ (−a)

For the case of an infinitesimal translation, T̂ (ε) = 1̂− i
~ε · P̂, this becomes

π̂†
(

1̂− i

~
ε · P̂

)
π̂ = 1̂ +

i

~
ε · P̂

1̂− i

~
ε · π̂†P̂π̂ = 1̂ +

i

~
ε · P̂

−ε · π̂†P̂π̂ = ε · P̂

and since ε is arbitrary, we see that the momentum operator is odd,

π̂†P̂π̂ = −P̂

Now, writing the angular momentum in components, L̂ = X̂× P̂,

π̂†L̂iπ̂ = π̂†
(
εijkX̂jP̂k

)
π̂

= εijkπ̂
†X̂j

(
π̂π̂†

)
P̂kπ̂

= εijk

(
π̂†X̂j π̂

)(
π̂†P̂kπ̂

)
= εijk

(
−X̂j

)(
−P̂k

)
= Li
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and we find the as in the classical case, angular momentum is even,

π̂†L̂π̂ = L̂

1.3 Parity of the wave function
Now consider a state, in the coordiante basis,

ψ (x) = 〈x | ψ〉

If we transform the state
π̂ |ψ〉

then the wave function becomes
Pψ (x) = 〈x| π̂ |ψ〉

Using π̂† = π̂−1 = π̂ this becomes

Pψ (x) = 〈x| (π̂ |ψ〉)
=

(
〈x| π̂†

)
|ψ〉

= 〈−x | ψ〉
= ψ (−x)

1.4 Conservation of parity
Suppose |ψ〉 is an eigenstate of parity, with eigenvalue π. Then π̂2 = 1̂ implies

π̂2 |ψ〉 = 1̂ |ψ〉
π2 |ψ〉 = |ψ〉

and the eigenvalues must be π = ±1. Now, if π̂ commutes with the Hamiltonian then any solution of the
stationary state Schrodinger equation

Ĥ |E〉 = E |E〉
may be made a simultaneous eigenket of parity, |E, π〉.

Let uE (x) = 〈x | E〉 be a stationary state solution with energy E, but not an eigenstate of parity.

〈x| π̂ |E〉 = 〈−x | E〉
= uE (−x)

6= πuE (x)

so that the energy eigenstates are degenerate, i.e., there are two distinct states, |E〉 , π̂ |E〉, (or in a coordinate
basis, uE (x) , uE (−x)) with energy E. Call these states |E〉 = |E, 1〉 and π̂ |E〉 = |E, 2〉. They have the
property that

π̂ |E, 1〉 = |E, 2〉

and since π̂2 = 1̂,

π̂ |E, 2〉 = |E, 1〉

Therefore, we may construct simultaneous eigenkets,

|E,+〉 =
1√
2

(|E, 1〉+ |E, 2〉)

|E,−〉 =
1√
2

(|E, 1〉 − |E, 2〉)

such that
π̂ |E,±〉 = ± |E,±〉
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Exercises:

1. Verify that π̂ |E,±〉 = ± |E,±〉.

2. Let a free particle state be given by

〈x | ψ〉 =
Aeik·x

a2 + x2

for fixed A, a and k. Find the parity eigenstates.

3. Consider the symmetric infinite square well,

V (x) =


∞ x < −L

2

0 −L
2 < x < L

2

∞ x > L
2

(a) Show that
[
Ĥ, π̂

]
= 0.

(b) Find the simultaneous energy and parity eigenstates. Are the energies degenerate? Do there exist
energy eigenstates which are not also eigenstates of parity?

2 Time reversal
Our picture of symmetries as unitary transformations runs into a difficulty when we try to formulate time
reversal invariance, Θt = −t.

2.1 Time reversal in classical physics
In classical physics, Newton’s second law has this symmetry since it contains two time derivatives

F = m
d2x

dt2

so for a time-independent force, ΘF = F,

ΘF = Θm
d2x

dt2

F = m

(
− d

dt

)(
− d

dt

)
x

= m
d2x

dt2

and the equation of motion is invariant. For Maxwell’s equations,

∇ ·E = 4πρ

∇ ·B = 0

∇×B− 1

c2
∂E

∂t
=

4π

c
J

∇×E +
∂B

∂t
= 0

time reversal changes the equations to

∇ ·ΘE = 4πρ

∇ ·ΘB = 0

∇×ΘB +
1

c2
∂ΘE

∂t
= −4π

c
J

∇×ΘE− ∂ΘB

∂t
= 0
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where we expect that time reversal changes the direction of the current

ΘJ = −J

Gauss’s law shows that we need ΘE = E, while Ampere’s law applied to a current carrying wire show that
ΘB = −B, since time reversal will reverse the direction of flow of the current and therefore reverse the
magnetic field.

2.2 The problem with time reversal operator
For a quantum system, we consider the time evolution of a state, |α〉. We will see soon in detail that there
exists a time translation operator such that

|α, t〉 = Û (t) |α, 0〉

where the infinitesimal generator of time translations is proportional to the Hamiltonian. Now, suppose Û
is unitary and consider its action on a time reversed state,

Θ̂ |α, t〉 = Θ̂Û (t) |α, 0〉
|α,−t〉 = Θ̂Û (t) Θ̂†Θ̂ |α, 0〉
|α,−t〉 = Θ̂Û (t) Θ̂† |α, 0〉

This means that
Θ̂Û (t) Θ̂† = Û (−t)

There is a problem, however. If we expand the time translation operator infinitesimally,

Θ̂Û (t) = Û (−t) Θ̂

Θ̂

(
1̂− i

~
Ĥt

)
=

(
1̂ +

i

~
Ĥt

)
Θ̂

and therefore,
−Θ̂iĤ = iĤΘ̂ (1)

So far, this is correct, but if Θ̂ is unitary it means that

Θ̂Ĥ = −ĤΘ̂

so that for a system with unitary time reversal symmetry, time reversal anticommutes with the Hamiltonian{
Θ̂, Ĥ

}
= 0

This is the result we found for parity and momentum, but if |E〉 is an energy eigenket with energy E > 0
then

ĤΘ̂ |E〉 = −Θ̂Ĥ |E〉
= −EΘ̂ |E〉

so that the time reversed state Θ̂ |E〉 is also an energy eigenket, but with energy −E. Therefore, simultaneous
eigenkets give negative energies.

Additionally, in order for Θ̂ to be a symmetry, we require
[
Θ̂, Ĥ

]
= 0, and this together with the

anticommutation relation implies

Θ̂Ĥ = 0
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and since Θ̂ is necessarily invertible, vanishing Hamiltonian, Ĥ = 0.
Negative energies are a problem because quantum systems enter all available states in proportion to

their abundance (entropy increases!). Suppose the quantum harmonic oscillator had energy eigenstates,
|En〉, for negative En as well as positive. Then every state |En〉 would have a probability of a transition
to |En−1〉+ photon, and the latter is more abundant because the phase space available to a photon is large
since there are many, many states available to a given photon. This process would continue as the oscillator
dropped to lower and lower energies, emitting more and more photons.

There are different ways of reconciling this problem, including:

1. Introduce antiunitary operators, with the property that Θ̂i = −iΘ̂. Then eq.(1) gives only
[
Θ̂, Ĥ

]
= 0,

which we require for a symmetry anyway.

2. Weaken the condition Ĥ = 0 by requiring only that the Hamiltonian vanish when acting on physical
states. In a gauge theory, this means that the Hamiltonian may still be built from purely gauge-
dependent terms, and this can give satisfactory results.

3. Invoke the Stückelberg-Feynman interpretation, which reinterprets the negative energy, time reversed
states as antiparticles of positive energy traveling forward in time. This view is widely accepted in
quantum field theory.

In relativistic theories, it is not possible to simply replace t → −t to define time reversal. Elapsed time
is not universal – proper time increases differently along different world-lines. The problem is simplified
in quantum mechanics because time is a parameter just as in classical mechanics. This allows us to avoid
this problem in quantum mechanics by defining antiunitary operators. When we introduce time reversal as
an antiunitary operator, we avoid the negative energies. The situation is different in quantum field theory,
where the negative energy states are reinterpreted as antiparticles.

We continue with the introduction of an antiunitary time reversal operator.

2.3 Antiunitary operators and Wigner’s theorem
We define an antiunitary operator to be one which satisfies〈

β̃ | α̃
〉

= 〈β | α〉∗

Θ̂ (c1 |α〉+ c2 |β〉) = c∗1 |α̃〉+ c∗2

∣∣∣β̃〉
where |α̃〉 ≡ Θ̂ |α〉 an

∣∣∣β̃〉 ≡ Θ̂ |β〉 are the transformed states. If we take c1 = i and c2 = 0 we have

Θ̂i |α〉 = −i |α̃〉 = −iΘ̂ |α〉

and therefore, Θ̂i = −iΘ̂.
Suppose:

1. Θ̂i = −iΘ̂

2. Real numbers commute with Θ̂

3. Θ̂ is distributive over addition, Θ̂ (c1 |α〉+ c2 |β〉) = Θ̂ (c1 |α〉) + Θ̂ (c2 |β〉)

Then for every complex numbers c1 = a1 + ib1, c2 = a2 + ib2,

Θ̂ (c1 |α〉+ c2 |β〉) = Θ̂ ((a1 + ib1) |α〉) + Θ̂ ((a2 + ib2) |β〉)
= (a1 − ib1) Θ̂ |α〉+ (a2 − ib2) Θ̂ |β〉

= c∗1 |α̃〉+ c∗2

∣∣∣β̃〉
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Suppose Θ̂ is any antiunitary operator and Û is any unitary operator. Let Ψ̂ ≡ Θ̂Û . Then letting
∣∣∣β̃〉 = Ψ̂ |β〉

we have 〈
β̃ | α̃

〉
=

(
〈β| Ψ̂†

)(
Ψ̂ |α〉

)
=

(
〈β| Û†

)
Θ̂†Θ̂

(
Û |α〉

)
=

(
〈β| Û†Û |α〉

)∗
= 〈β | α〉∗

and for the second condition,

Ψ̂ (c1 |α〉+ c2 |β〉) = Θ̂Û (c1 |α〉) + Θ̂Û (c2 |β〉)

= Θ̂
(
c1Û |α〉

)
+ Θ̂

(
c2Û |β〉

)
= c∗1Θ̂Û |α〉+ c∗2Θ̂Û |β〉

= c∗1 |α̃〉+ c∗2

∣∣∣β̃〉
so that Ψ̂ is also antiunitary. Now let Ψ̂ and Θ̂ be any two antiunitary operators. Then their product satisfies〈

β̃ | α̃
〉

=
(
〈β| Θ̂†Ψ̂†

)(
Ψ̂Θ̂ |α〉

)
=

(
〈β| Θ̂†

)
Ψ̂†Ψ̂

(
Θ̂ |α〉

)
=

(
〈β| Θ̂†Θ̂ |α〉

)∗
=

(
〈β | α〉∗

)∗
= 〈β | α〉

and

Ψ̂Θ̂ (c1 |α〉+ c2 |β〉) = Ψ̂
(
c∗1Θ̂ |α〉+ c∗2Θ̂ |β〉

)
= c1Ψ̂Θ̂ |α〉+ c2Ψ̂Θ̂ |β〉

= c1 |α̃〉+ c2

∣∣∣β̃〉
so the product is some unitary operator,

Û = Ψ̂Θ̂

Inverting Ψ̂, we see that Ψ̂−1Û = Θ̂. Choose the complex conjugation operator, K̂, where K̂i = −iK̂, Ψ̂−1.
Then for any other antiunitary operator Θ̂ there is a unitary operator Û such that

Θ̂ = K̂Û

We see that every antiunitary operator may be decomposed into the product, ÛK̂, of a unitary operator, Û ,
times the complex conjugation operator.

There are several properties to note, which we quote without proof:

1. Clearly, antiunitary operators preserve probabilities, since
〈
β̃ | α̃

〉
= 〈β | α〉∗ immediately implies∣∣∣〈β̃ | α̃〉∣∣∣2 = |〈β | α〉|2. The converse to this is Wigner’s theorem: Every invertible operator which

preserves transition probabilities is either unitary or antiunitary.
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2. We only define the action of K̂ on kets, not bras, |α̃〉 = K̂ |α〉.

3. The charge conjugation operator does not change base kets. Therefore, if we expand |α〉 =
∑

a |a〉 〈a | α〉 =∑
a 〈a | α〉 |a〉, we have

|α̃〉 = K̂ |α〉
= K̂

∑
a

〈a | α〉 |a〉

=
∑
a

〈a | α〉∗ K̂ |a〉

=
∑
a

〈a |α̃〉∗ |a〉

The last requirment makes the definition of K̂ dependent on the basis, since another basis may be defined
by a complex linear combination, |b〉 =

∑
a cba |a〉. To find the form of K̂ in a new basis, let the change of

basis given by a unitary transformation Û ,
|b〉 = Û |a〉

Given the form of K̂ which leaves the|a〉 basis invariant, and letting ˆ̃K |b〉 = |b〉 we find

ˆ̃K |b〉 = |b〉
ˆ̃KÛ |a〉 = Û |a〉

= ÛK̂ |a〉
ˆ̃KÛ = ÛK̂

ˆ̃K = ÛK̂Û†

so the new form of K̂ is given by a similarity transformation.

2.4 Time reversal
Now, revisit the infinitesimal time translation operator. We had reached the conclusion that

−Θ̂iĤ = iĤΘ̂

so that, continuing with Θ̂ antiunitary, we have

iΘ̂Ĥ = iĤΘ̂

and the Hamiltonian commutes with time reversal.
With a bit of work, we may classify states by their behavior under time reversal. Let Â be a linear

operator, and

|α̃〉 = Θ̂ |α〉∣∣∣β̃〉 = Θ̂ |β〉

Define an intermediate state,
|γ〉 = Â† |β〉

and its dual,
〈γ| = 〈β| Â
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Then

〈β| Â |α〉 = 〈γ | α〉

and since
〈γ | α〉 = 〈α | γ〉∗ = 〈α̃ | γ̃〉

for an antiunitary operator, we have

〈β| Â |α〉 = 〈α̃ | γ̃〉
= 〈α̃| Θ̂ |γ〉
= 〈α̃| Θ̂Â† |β〉
= 〈α̃| Θ̂Â†Θ̂−1Θ̂ |β〉

= 〈α̃| Θ̂Â†Θ̂−1
∣∣∣β̃〉

This shows the effect of an antiunitary similarity transformation on an operator, Â†. If Â is Hermitian, then

〈β| Â |α〉 = 〈α̃| Θ̂ÂΘ̂−1
∣∣∣β̃〉

We define an operator as even or odd under time reversal if

Θ̂ÂΘ̂−1 = ±Â

For an even or odd Hermitian operator,

〈α| Â |α〉 = ±〈α̃| Â |α̃〉

so that expectation values in the time reversed state result in a factor of ±1.
Under time reversal, we require the momentum operator to be odd just as for the classical variable:

〈α| P̂ |α〉 = −〈α̃| P̂ |α̃〉

Comparing the two relations

〈α| P̂ |α〉 = 〈α̃| Θ̂P̂Θ̂−1 |α̃〉
〈α| P̂ |α〉 = −〈α̃| P̂ |α̃〉

we see that

Θ̂P̂Θ̂−1 = −P̂

We require expectation values of the position operator to be even,

〈α| X̂ |α〉 = 〈α̃| X̂ |α̃〉

and therefore,

Θ̂X̂Θ̂−1 = X̂

From these we see that the commutator of X̂ with P̂ satisfies

Θ̂
[
X̂i, P̂j

]
Θ̂−1 = Θ̂

(
X̂iP̂j − P̂jX̂i

)
Θ̂−1

= Θ̂X̂iΘ̂
−1Θ̂P̂jΘ̂

−1 − Θ̂P̂jΘ̂
−1Θ̂X̂iΘ̂

−1

= −X̂iP̂j + P̂jX̂i

= −
[
X̂i, P̂j

]
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which agrees with the right hand side of the commutator,

Θ̂
[
X̂i, P̂j

]
Θ̂−1 = Θ̂i~δijΘ̂−1

= −i~δijΘ̂Θ̂−1

= −i~δij

so the commutator is preserved.
By considering the fundamental commutator for angular momentum, we see that

Θ̂
[
Ĵi, Ĵj

]
Θ̂−1 = Θ̂i~εijkĴkΘ̂−1

is only consistent if Θ̂ĴΘ̂−1 = −Ĵ, so Ĵ is odd under time reversal.
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