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1 Unitary transformations as symmetries of quantum mechanics
Consider an arbitrary linear transformation of a state |α〉,

|α̃〉 = Û |α〉

If Ô is to be a symmetry of a quantum system, it must preserve physical probabilities, and therefore, it must
preserve the norms of all states, Therefore, for symmetries we demand

〈α̃ | α̃〉 = 〈α | α〉
〈α| Û†Û |α〉 = 〈α | α〉

This, in turn, requires
Û†Û = 1

so Û preserves norms if and only if it is unitary.
The action of a general transformations on the Schrödinger equation,

Ĥ |ψ〉 = i~
∂

∂t
|ψ〉

is found by acting with any time-independent operator Ô on both sides,

ÔĤ |ψ〉 = i~
∂

∂t
Ô |ψ〉

Then we may insert the identity operator, 1 = Ô−1Ô between the Hamiltonian and the state

ÔĤÔ−1Ô |ψ〉 = i~
∂

∂t
Ô |ψ〉

The fprm Schrödinger equation, and indeed any vector equation, is preserved by on the new state
∣∣∣ψ̃〉 ≡ Ô |ψ〉

as long as all linear operators are simultaneously transformed by a similarity transformation,

ˆ̃H ≡ ÔĤÔ−1

By a symmetry of a quantum system we mean a transformation that takes solutions of the Schrödinger
equation to other solutions of the same equation. Such a transformation must leave the Hamiltonian invari-
ant,

Ĥ = ÔĤÔ−1

For quantum mechanics, we require more, since we must preserve Hermiticity of all observables. We therefore
demand

ˆ̃A
†
≡ ˆ̃A
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whenever
Â† ≡ Â

As a consequence, (
ÔÂÔ−1

)†
= ÔÂÔ−1(

Ô−1
)†
Â†Ô† = ÔÂÔ−1(

Ô−1
)†
ÂÔ† = ÔÂÔ−1

Multiplying on the right by Ô and on the left by Ô−1,

Â =

(
Ô−1

(
Ô−1

)†)
Â
(
Ô†Ô

)
and since only the identity transformation leaves every operator invariant, we must have Ô†Ô = 1, and again
find that Ô must be unitary.

A symmetry of a quantum system is therefore given by any unitary transformation of the states that
leaves the Hamiltonian invariant:

|α̃〉 = Û |α〉
Ĥ = ÛĤÛ†

2 Properties of continuous symmetries
A continuous symmetry is a family of unitary symmetries which may be parameterized by a finite number
n ≥ 1 of continuous parameters

Û = Û (λ1, λ2, . . . , λn) = Û (λ)

We identify a few properties possessed or required by any such family, Û (λ):

1. (Closure) Since we may follow one transformation by another, the product of any two transformations
should be equivalent to another member of the family,

Û (λ) Û
(
λ′
)

= Û
(
λ′′
)

for some λ,λ′,λ′′.

2. (Inverse) Since Û (λ) is unitary, its inverse exists and is given by Û† (λ).

3. (Identity) From properties 1 and 2, we see that the identity is one of our transformations. It is
convenitent to choose the parameters in such a way that Û (0) is the identity transformation.

4. (Associativity) Matrix multiplication is associative; we require this property in general.

These properties are a natural consequence of asking for a symmetry. Any set of objects with the properties
1-4 is called a group, and with the continuous parameterization is called a Lie group (pronounced “lee”).

For example, Û might the set of rotations of a plane

Û =

(
cos θ − sin θ
sin θ cos θ

)
We easily chech the group properties. Setting θ = 0 gives the identity, while the inverse rotation is given by
replacing θ by −θ. Matrix multiplication is always associative, and we know that two sequential rotations
by θ1 and θ2 are equivalent to a single rotation through θ1 + θ2. Therefore, rotations of the plane form a Lie
group.

Three-dimensional rotations also form a group, and we will study it in great detail. In this case there are
three parameters.
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3 Continuous symmetries and observables
Corresponding to any continuous symmetry, there is a corresponding conserved observable. Consider a
continuous family of unitary transformations, Û (λ). Let one parameter become infinitesmal while the
others, if any, vanish: λ = (0, 0, . . . , ε, 0, . . . , 0). Then we may write Û to first order as

Û = 1− i

~
εĜ

with the infinitesimal parameter written as − i
~ε for later convenience. To first order the inverse is Û−1 =

1 + iε
~ Ĝ since then

Û Û−1 =

(
1− i

~
εĜ

)(
1 +

iε

~
Ĝ

)
= 1− i

~
εĜ+

iε

~
Ĝ+

ε2

~2
ĜĜ

= 1 +O
(
ε2
)

while the adjoint is

Û† = 1 +
iε

~
Ĝ†

Unitarity Û† = Û−1, implies

1 +
iε

~
Ĝ† = 1 +

iε

~
Ĝ

Ĝ† = Ĝ

so G is Hermitian. G is called an infinitesimal generator of the group of transformations.
We may repeat this procedure for each of the parameters of the family. This will give one infinitesimal

generator for each parameter of the transformation group. Writing the parameters as λi for i = 1, 2, . . . , n,
we write the full set of generators as

Gi i = 1, 2, . . . , n

The set of all real linear combinations of the generators, V =
{∑n

i=1 a
iGi | ai ∈ Rn

}
is a vector space called

the Lie algebra of the transformation group.
If Û is a symmetry of the Hamiltonian we then have for each generator,(

1− iε

~
Ĝi

)
Ĥ

(
1 +

iε

~
Ĝi

)
= Ĥ[

Ĥ, Ĝi

]
= 0

This holds for the entire Lie algebra, since if Â =
∑n
i=1 a

iĜi = aiĜi for any real vector a,[
Ĥ, Â

]
=

[
Ĥ, aiĜi

]
= ai

[
Ĥ, Ĝi

]
= 0

If Û has no explicit time dependence, ∂Û∂t = 0, then we will show in a subsequent Note that

dĜ

dt
=
[
Ĥ, Ĝ

]
= 0
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so that the observable modeled by Ĝ is conserved.
Since Ĝ and Ĥ commute, we can form simultaneous eigenkets,

Ĥ |E, g〉 = E |E, g〉
Ĝ |E, g〉 = g |E, g〉

and since the time evolution operator is built from the Hamiltonian, the simultaneous eigenkets remain
simulataneous eigenkets.

Suppose that for some energy eigenket, |E〉, the transformation gives a distinct state,

Û |E〉 6= |E〉

Then since Û commutes with Ĥ, these distinct states have the same energy, so the energy is degenerate.
We will examine the cases of translations and rotations in detail, as well as the discrete symmetries of

parity and time reversal. We begin here by studying translations.

4 Translations
Given any function of position, f (x), we can consider a transformation to new coordinates, y = x+a for any
constant vector a. Such a coordinate transformation is called a translation. Classically, spatial translations
preserve the Hamiltonian of a free particle H (p) = p2

2m and therefore constitute a classical symmetry. Other
classical Hamiltonians are invariant under certain translations, for example, a spring potential along the
x-axis, V = 1

2kx
2 is invariant under translations in the y or z directions. We will see that similar results

hold in the quantum realm.
We now find the form of the translation operator and its associated conserved observable.

4.1 Basic properties of the translation operator
The basic properties of the translation operator, T̂ (a), are:

1. Translations commute: [
T̂ (a) , T̂ (b)

]
= 0

2. The inverse of any given translation is a translation by the opposite vector,

T̂ −1 (a) = T̂ (−a)

3. To be a symmetry, the translation operator must be unitary,

T̂ † (a) T̂ (a) = 1̂

To begin, write T̂ (a) as an exponential,

T̂ (a) = e−iÔ(a)

In this form, T̂ (a) is unitary whenever Ô is Hermitian, since then

T̂ † (a) T̂ (a) = eiÔ
†
e−iÔ

= eiÔe−iÔ

= eiÔ−iÔ

= 1̂
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where the product of exponentials is eiÔe−iÔ = eiÔ−iÔ because Ô commutes with itself. Ô (a) is therefore
an observable associated with translations.

(Proof: We show a more general result. Suppose two operators commute,
[
Â, B̂

]
= 0. Then eÂeB̂ =

eÂ+B̂ . To show this, insert a parameter and consider the derivative of the product, Ĉ (λ) = eiλÂe−iλB̂ ,

d

dλ
Ĉ (λ) =

d

dλ

(
eiλÂeiλB̂

)
= eiλÂiÂeiλB̂ + eiλÂiB̂eiλB̂

= i
(
Â+ B̂

)
eiλÂeiλB̂

= i
(
Â+ B̂

)
Ĉ (λ)

Since i
(
Â+ B̂

)
is independent of λ, we see that the differential equation is solved by

eiλÂe−iλB̂ = Ĉ (0) eiλ(Â+B̂)

Noting that Ĉ (0) = 1̂ and setting λ = 1, we arrive at

eiÂe−iB̂ = Ĉ (0) ei(Â+B̂)

In particular, setting Â = ∧O and B̂ = −∧O,
eiÔe−iÔ = 1̂

This demonstrates the claim.)
From property 2, together with the exponential form, T̂ −1 (a) = eiÔ(a) we see that

eiÔ(a) = e−iÔ(−a)

Ô (a) = −Ô (−a)

that is, Ô is an odd function of a.

4.2 Momentum as the generator of infinitesimal translations
Now consider an infinitesimal translation, a = dx. Since T̂ (a) depends continuously on a, T̂ (dx) must differ
infinitesimally from the identity operator,

T̂ (dx) = 1̂− idx · K̂

where the components of K̂ are the generators of infintesimal translations. From property 1 above,

0 =
[
T̂ (a) , T̂ (b)

]
=

[
1̂− ida · K̂, 1̂− idb · K̂

]
= −daidbj

[
K̂i, K̂j

]
and since the infinitesimal displacements are arbitrary, the K̂i commute with one another,

[
K̂i, K̂j

]
= 0.

We examine the effect of an infinitesimal translation by a fixed ∆x on a general state, |ψ〉,(
1̂− i∆x · K̂x

)
|ψ〉 = T̂ (∆x) |ψ〉
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=

ˆ
dx′ T̂ (∆x) |x′〉 〈x′ | ψ〉

=

ˆ
dx′ |x′ + ∆x〉 〈x′ | ψ〉

=

ˆ
dx′′ |x′′〉 〈x′′ −∆x | ψ〉

where we have set x′′ = x′ + ∆x. Now expand the wave function in a Taylor series,

〈x′′ −∆x | ψ〉 = ψ (x′′ −∆x)

= ψ (x′′)− ∂ψ

∂x′′
∆x

Then, substituting this for 〈x′′ −∆x | ψ〉 and looking at the resulting equation in the x-basis,

〈x|
(

1̂− i∆xK̂x

)
|ψ〉 = 〈x|

ˆ
dx′′ |x′′〉

(
ψ (x′′)− ∂ψ

∂x′′
∆x

)
ψ (x)− i∆x 〈x| K̂x |ψ〉 =

ˆ
dx′′ δ (x′′ − x)

(
ψ (x′′)− ∂ψ

∂x′′
∆x

)
ψ (x)− i∆x 〈x| K̂x |ψ〉 = ψ (x)− ∂ψ

∂x
∆x

〈x| K̂x |ψ〉 = −i∂ψ
∂x

and we see that the infinitesimal generator of translations is just a multiple of the momentum operator,

K̂x =
1

~
P̂x

The same result holds for the other components of K̂, so we conclude

K̂ =
1

~
P̂

The momentum is the generator of infinitesimal translations,

T̂ (dx) = 1̂− i

~
dx · P̂

5 Commutation with the position operator
The effect of a translation on a position ket is to give a new position ket,

T̂ (a) |x〉 = |x + a〉

We use this to compute the commutator of the momentum operator with the position operator. For an
infinitesmal translation in the direction da = idx+ jdy with X̂, the x-position operator, we have[

X̂, T̂ (da)
]
|x〉 =

[
X̂, 1̂− i

~
da · P̂

]
|x〉(

X̂T̂ (da)− T̂ (da) X̂ |x〉
)
|x〉 = − i

~
dx
[
X̂, P̂x

]
|x〉 − i

~
dy
[
X̂, P̂y

]
|x〉

X̂ |x + da〉 − T̂ (dx)x |x〉 = − i
~
dx
[
X̂, P̂x

]
|x〉 − i

~
dy
[
X̂, P̂y

]
|x〉

(x+ dx) |x + dx〉 − x |x + dx〉 = − i
~
dx
[
X̂, P̂x

]
|x〉 − i

~
dy
[
X̂, P̂y

]
|x〉

dx |x + dx〉 = − i
~
dx
[
X̂, P̂x

]
|x〉 − i

~
dy
[
X̂, P̂y

]
|x〉
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The ket |x + dx〉 will differ infinitesimally from |x〉, so to first order in dxi, we have dx |x + dx〉 ≈ dx |x〉.
Then we may treat this as an operator relation. Then since dx and dy are independent, we identify

dx = − i
~
dx
[
X̂, P̂x

]
0 = − i

~
dx
[
X̂, P̂y

]
Therefore, the position operator for the x-direction commutes with the momentum operator in the y-
direction, but for the position operator in the same direction as the translation,[

X̂i, P̂j

]
= i~δij 1̂

This is true for any pair of directions.

Exercise: Generalize the preceding argument to show that[
X̂i, P̂j

]
= iδij 1̂

where i, j = 1, 2, 3.

6 Finite translations
Using the infinitesimal form, we may recover the form of a finite translation.

Consider the effect of multiple translations:

T̂ (a) |x〉 = |x + a〉
T̂ (b) T̂ (a) |x〉 = |(x + a) + b〉

= |(x + b) + a〉
= T̂ (a) T̂ (b) |x〉

and furthermore we see that in general,

T̂ (a) T̂ (b) |x〉 = T̂ (a + b) |x〉

when acting on coordinate basis kets. For an arbitrary state,

T̂ (a) T̂ (b) |ψ〉 =

ˆ
d3xT̂ (a) T̂ (b) |x〉 〈x | ψ〉

=

ˆ
d3xT̂ (a + b) |x〉 〈x | ψ〉

= T̂ (a + b) |ψ〉

so the result holds on all states and therefore holds as an operator identity,

T̂ (a) T̂ (b) = T̂ (a + b)

Now, hold two components of the displacement a fixed and change the third by a small amount. For
concreteness, let a1 → a1 + ε. Then we have

T̂ (a + εi) = T̂ (a) T̂ (εi)

lim
ε→0

T̂ (a + εi)− T̂ (a)

ε
=

1

ε
T̂ (a)

(
T̂ (εi)− 1

)
d

da1
T̂ (a) =

1

ε
T̂ (a)

((
1− i

~
εP̂x

)
− 1

)
d

da1
T̂ (a) = − i

~
T̂ (a) P̂x
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This differential equation is satisfied by

T̂ (a) = Â
(
a2, a3

)
e−

i
~a

1P̂x

where Â is independent of a1. The same argument holds for a2 and a3 as well, and since all the P̂i it must
be the case that

T̂ (a) = Â0e
− i

~a
1P̂1e−

i
~a

2P̂2e−
i
~a

3P̂3

= Â0e
− i

~a·P̂

for some fixed operator Â0. Since T̂ (0) is the identity, we must have Â0 = 1̂.
We have shown that a finite translation is found by exponentiating a linear combination of the generators,

T̂ (a) = e−
i
~a·P̂

where a · P̂ is a general element of the Lie algebra.
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