
1 Lecture 1: The beginnings of quantum physics
1. The Stern-Gerlach experiment

2. Atomic clocks

3. Planck (1900), blackbody radiation, and E = ~ω

4. Photoelectric effect

5. Electron diffraction through crystals, de Broglie (1924), and p = ~k

6. The Bohr atom

2 Lecture 2: The Bohr atom (1913) and the Schrödinger equation
(1925)

2.1 The Bohr atom
The Bohr atom assumes the usual electrostatic attraction between an electron and a proton,

F = −ke
2

r2
r̂

Then, for an electron in a circular orbit,

a = −v
2

r
r̂

To these classical elements, Bohr added a quantization rule: the angular momentum must be a multiple of
Planck’s reduced constant,

L = mvr = n~

Combining the classical elements, we have a relationship between the radius and velocity of circular
orbits,

ke2

r2
=

mv2

r

Solving for the velocity, we have

v =

√
ke2

mr

Then according to the Bohr quantization rule,

n~ = mvr

=
√
mrke2

or, solving for r,

rn =
n2~2

mke2

The total energy of the electron is
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E =
1
2
mv2 − ke2

r

= −ke
2

2r

= −mk
2e4

2n2~2

= −13.6eV
n2

This means that the energy of an electron that moves between two orbits will change by

E =
1
2
mv2 − ke2

r

= −ke
2

2r

= −mk
2e4

2n2~2

∆E = −13.6
(

1
n2
− 1
m2

)
eV

If this energy is given off in the form of a photon satisfying the Planck relation, then the frequency of the
emitted light will be

ω =
∆E
~

A formula of this form had already been determined experimentally, and was now explained by the Bohr
model.

2.2 The Schrödinger equation
The Bohr model restricts the electron to circular motion in a plane, and gives incorrect values of total angular
momentum for the electrons. A fuller picture was required, and is provided by writing a 3-dimensional wave
equation for the electron.

We may use the deBroglie wavelength and the Planck relation, together with the relativistic relationship
between energy and momentum, to derive a suitable equation. We have:

E = ~ω
p = ~k

The 4-momentum of a particle is given by

pα = muα

= mγ (c,v)

=
(
E

c
,p
)

and the norm of this equation is

ηαβp
αpβ = pαpα

= −
(
p0
)2

+ p2

= −E
2

c2
+ p2
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On the other hand, we have

ηαβp
αpβ = m2uαuα

= −m2c2

Equating these,

−E
2

c2
+ p2 = −m2c2

E2 = p2c2 +m2c4

Now suppose the electron is described by a plane wave,

ψ = Aei(k·x−ωt)

Then we may recover the wave number and frequency by differentiation,

∇2ψ = ∇2
[
Aei(k·x−ωt)

]
= −k2ψ

∂2

∂t2
ψ =

∂2

∂t2

[
Aei(k·x−ωt)

]
= −ω2ψ

Multiplying each derivative by i~, we have the energy and momentum,

(i~∇)2 ψ = ~2k2ψ

= p2ψ(
i~
∂

∂t

)2

ψ = ~2ω2ψ

= E2ψ

Substituting these operators,

pα =
(
−E
c
,p
)

= −i~
(

1
c

∂

∂t
,∇
)

= −i~ ∂

∂xα

into the energy-momentum relation,

E2 = p2c2 +m2c4(
i~
∂

∂t

)2

= (i~∇)2 c2 +m2c4

and allowing this operator relationship to act on a “wave function”, ψ,

−~2 ∂
2ψ

∂t2
= −~2c2∇2ψ +m2c4ψ

− 1
c2
∂2ψ

∂t2
+ ∇2ψ =

m2c2

~2
ψ

The differential operator

� ≡ − 1
c2
∂2

∂t2
+ ∇2

= ηαβ
∂

∂xα
∂

∂xβ
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is the spacetime generalization of the Laplacian, ∇2 = δij ∂
∂xi

∂
∂xj . The time dependence makes it a wave

operator, but because of the Planck and deBroglie relationships, it also describes particle-like energy and
momentum. Indeed, the plane-wave solutions may be written as

ψ = Ae
i
~ (p·x−Et)

The wave equation we have written,

�ψ =
m2c2

~2
ψ

is called the Klein-Gordon equation. It first appears in Schrödinger’s notes in 1925 before being published the
next year first by Oskar Klein and Walter Gordon, but also the same year by Vladimir Fock, Johann Kudar,
Théophile de Donder and Frans-H. van den Dungen, and Louis de Broglie. It is the obvious relativistic
generalization of the Schrödinger equation but fails to describe electron spin. Additionally, because the
equation is second order in time derivatives, it requires both initial position and velocity specifications, and
this is forbidden by the uncertainty principle. Finally, the equation leads to negative probability states.

In 1925, Schrödinger took a different approach. The problems arising from the second order time deriva-
tives may be avoided by first solving for the energy, then taking a non-relativistic approximation. We may
then also add a potential to the energy

E =
√

p2c2 +m2c4 + V

= mc2
√

1 +
p2

m2c2
+ V

For v � c we may expand
√

1 + p2

m2c2 in a Taylor series,√
1 +

p2

m2c2
= 1 +

p2

2m2c2
+ · · ·

≈ 1 +
p2

2m2c2

so the non-relativistic version is

E = mc2
(

1 +
p2

2m2c2

)
+ V

Making the same operator substitutions that led us to the Klein-Gordon equation, and allowing it to operate
on a function, φ, gives

i~
∂φ

∂t
= mc2φ− ~2

2m
∇2φ+ V φ

The constant mass term may be removed by the replacement

φ = ψe−
i
~mc

2t

Then we find

i~
∂

∂t

(
ψe−

i
~mc

2t
)

= mc2ψe−
i
~mc

2t − ~2

2m
∇2
(
ψe−

i
~mc

2t
)

+ V ψe−
i
~mc

2t

i~
(
∂ψ

∂t
e−

i
~mc

2t − i

~
mc2ψe−

i
~mc

2t

)
=

(
mc2ψ − ~2

2m
∇2ψ + V ψ

)
e−

i
~mc

2t

resulting in the familiar form of the Schrödinger equation,

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + V ψ
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2.3 The Pauli equation
Although this equation also fails to describe the electron spin, Pauli generalized the Schrödinger equation
in 1927. The resulting Pauli equation applies to a 2-component spinor and, when the potential for the
electromagnetic field is included using the Pauli matrices, allows for the correct description of non-relativistic
spin, including the Stern-Gerlach results. If we let

Ψ =
(
ψ1 (x, t)
ψ2 (x, t)

)
and (ϕ,A) be the scalar and vector potentials of electrodynamics, then the Pauli equation is

i~
∂Ψ
∂t

= − ~2

2m
[σ · (i~∇− eA)]2 Ψ + eϕΨ

for a spin-12 particle with charge e. Here, the Pauli matrices are given by

σ = (σx, σy, σz)

=
((

0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

))
and the quantity [σ · (i~∇− eA)]2 works out as

[σ · (i~∇− eA)]2 =
(
i~σi

∂

∂xi
− eσiAi

)2

=
(
i~σi

∂

∂xi
− eσiAi

)(
i~σj

∂

∂xj
− eσjAj

)
= −~2σjσi

∂2

∂xi∂xj
− i~σi

∂

∂xi
eσjAj − i~eσiσjAi

∂

∂xj
+ e2σiσjAiAj

From the exercises we know that
σjσi = δij1 + iεjikσk

Then, because εjik = −εijk while both ∂2

∂xi∂xj = ∂2

∂xj∂xi and AiAj = AjAi are symmetric, we have (remem-
bering that the derivatives must also act on a function),

[σ · (i~∇− eA)]2 Φ = −~2σjσi
∂2Φ

∂xi∂xj
− i~σi

∂

∂xi
(eσjAjΦ)− i~eσiσjAi

∂Φ
∂xj

+ e2σiσjAiAjΦ

= −~2∇2 − i~eσiσj
(
∂Aj
∂xi

Φ +Aj
∂Φ
∂xi

)
− i~eσiσjAi

∂Φ
∂xj

+ e2A2Φ

= −~2∇2Φ− i~e (δij1 + iεijkσk)
(
∂Aj
∂xi

Φ +Aj
∂Φ
∂xi

)
− i~e (δij1 + iεijkσk)Ai

∂Φ
∂xj

+ e2A2Φ

= −~2∇2Φ− i~e ((∇ ·A) Φ + A · ∇Φ)
+e~σk ((∇×A) Φ + (A×∇Φ))− i~eA ·∇Φ + e~ (A×∇Φ) · σ + e2A2Φ

= −~2∇2Φ + e~B · σΦ− i~e (∇ ·A) Φ
−2i~eA ·∇Φ + 2e~ (A×∇Φ) · σ + e2A2Φ

5


