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Chapter 1

Review of Hamiltonian Mechanics

1.1 From classical particles to quantum fields
First, let’s review the use of the action in classical mechanics. I’ll reproduce here a condensation of my notes
from classical mechanics, available HERE. If you’d like a copy of the full version, just ask; what’s here is
more than enough for our purposes.

1.1.1 Hamiltonian Mechanics
Perhaps the most beautiful formulation of classical mechanics, and the one which ties most closely to quantum
mechanics, is the canonical formulation. In this approach, the position and velocity velocity variables of
Lagrangian mechanics are replaced by the position and conjugate momentum, pi ≡ ∂L

∂q̇i
. It turns out that

by doing this the coordinates and momenta are put on an equal footing, giving the equations of motion a
much larger symmetry.

To make the change of variables, we use a Legendre transformation. This may be familiar from thermo-
dynamics, where the internal energy, Gibb’s energy, free energy and enthalpy are related to one another by
making different choices of the independent variables. Thus, for example, if we begin with

dU = TdS − PdV

where T and P are regarded as functions of S and V, we can set

H = U + V P

and compute

dH = dU + PdV + V dP

= TdS − PdV + PdV + V dP

= TdS + V dP

to achieve a formulation in which T and V are treated as functions of S and P.
The same technique works here. We have the Lagrangian, L(qi, q̇i) and wish to find a function H(qi, pi).

The differential of L is

dL =

N∑
i=1

∂L

∂qi
dqi +

N∑
i=1

∂L

∂q̇i
dq̇i

=

N∑
i=1

ṗidqi +

N∑
i=1

pidq̇i
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where the second line follows by using the equations of motion and the definition of the conjugate momentum.
Therefore, set

H(qi, pi) =

N∑
i=1

piq̇i − L (1.1)

so that

dH =

N∑
i=1

dpiq̇i +

N∑
i=1

pidq̇i − dL

=

N∑
i=1

dpiq̇i +

N∑
i=1

pidq̇i −
N∑
i=1

ṗidqi −
N∑
i=1

pidq̇i

=

N∑
i=1

dpiq̇i −
N∑
i=1

ṗidqi

The function H is the Hamiltonian. In simple cases, it is of the same form as the energy.
Clearly, H is a function of the momenta. To see that we have really eliminated the dependence on velocity

we may compute directly,

∂H

∂q̇j
=

∂

∂q̇j

(
N∑
i=1

piq̇i − L(qi, q̇i)

)

=

N∑
i=1

piδij −
∂L

∂q̇j

= pj −
∂L

∂q̇j
= 0

so we have succeeded in replacing the velocity with the momentum.
The equations of motion are already built into the expression above for dH. Since the differential of H

may always be written as

dH =

N∑
i=1

∂H

∂qj
dqi +

N∑
i=1

∂H

∂pj
dpi

we can simply equate the two expressions:

dH =

N∑
i=1

dpiq̇i −
N∑
i=1

ṗidqi =

N∑
i=1

∂H

∂qi
dqi +

N∑
i=1

∂H

∂pi
dpi

Then, since the differentials dqi and dpi are all independent, we can equate their coefficients,

q̇i =
∂H

∂pj
(1.2)

ṗi = −∂H
∂qi

(1.3)

These are Hamilton’s equations.

1.1.1.1 Poisson brackets

Suppose we are interested in the time evolution of some function of the coordinates, momenta and time,
f(qi, pi, t). It could be any function – the area of the orbit of a particle, the period of an oscillating system,
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or one of the coordinates. The total time derivative of f is

df

dt
=
∑(

∂f

∂qi

dqi
dt

+
∂f

∂pi

dpi
dt

)
+
∂f

∂t

Using Hamilton’s equations we may write this as

df

dt
=
∑(

∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi

)
+
∂f

∂t

Define the Poisson bracket of H and f to be

{H, f} ≡
N∑
i=1

(
∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi

)
Then the total time derivative is given by

df

dt
= {H, f}+

∂f

∂t
(1.4)

If f has no explicit time dependence, so that ∂f
∂t = 0, then the time derivative is given completely by the

Poisson bracket:
df

dt
= {H, f}

We generalize the Poisson bracket to two arbitrary functions,

{f, g} ≡
N∑
i=1

(
∂g

∂qi

∂f

∂pi
− ∂g

∂pi

∂f

∂qi

)
(1.5)

The importance of the Poisson bracket stems from the underlying invariance of Hamiltonian dynamics.
Just as Newton’s second law holds in any inertial frame, there is a class of canonical coordinates which
preserve the form of Hamilton’s equations. One central result of Hamiltonian dynamics is that any trans-
formation that preserves certain fundamental Poisson brackets is canonical, and that such transformations
preserve all Poisson brackets. Essentially all truly physical properties of a system can be expressed in terms
of Poisson brackets.

In particular, we can write the equations of motion as Poisson bracket relations. Using the time evolution
relation above we have

dqi
dt

= {H, qi}

=

N∑
j=1

(
∂qi
∂qj

∂H

∂pj
− ∂qi
∂pj

∂H

∂qj

)

=

N∑
j=1

δij
∂H

∂pj

=
∂H

∂pi

and
dpi
dt

= {H, pi}

=

N∑
j=1

(
∂pi
∂qj

∂H

∂pj
− ∂pi
∂pj

∂H

∂qj

)
= −∂H

∂qi
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Notice that since qi, pi and are all independent, we have ∂qi
∂pj

= ∂pi
∂qj

= 0. Also, as coordinates, they are

independent of time, ∂qi∂t = ∂pi
∂t = 0 (The position of a particle may depend on time; the coordinates do not.)

We list some properties of Poisson brackets. Bracketing with a constant always gives zero

{f, c} = 0

The Poisson bracket is linear

{af1 + bf2, g} = a{f1, g}+ b{f2, g}

and Leibnitz

{f1f2, g} = f2{f1, g}+ f1{f2, g}

These three properties are the defining properties of a derivation, which is the formal generalization of
differentiation. The action of the Poisson bracket with any given function f on the class of all functions,
{f, ·} is therefore a derivation.

If we take the time derivative of a bracket, we can easily show
∂

∂t
{f, g} = {∂f

∂t
, g}+ {f, ∂g

∂t
}

The bracket is antisymmetric
{f, g} = − {g, f}

and satisfies the Jacobi identity,

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0

for all functions f, g and h. These properties are two of the three defining properties of a Lie algebra (the third
defining property of a Lie algebra is that the set of objects considered, in this case the space of functions,
be a finite dimensional vector space, while the space of functions is infinite dimensional).

Poisson’s theorem is of considerable importance not only in classical physics, but also in quantum theory.
Suppose f and g are constants of the motion. Then Poisson’s theorem states that thier Poisson bracket,
{f, g}, is also a constant of the motion. To prove the theorem, we start with f and g constant:

df

dt
=
dg

dt
= 0

Then it follows that
df

dt
= {H, f}+

∂f

∂t
= 0

dg

dt
= {H, g}+

∂g

∂t
= 0

Now consider the bracket:
d

dt
{f, g} = {H, {f, g}}+

∂

∂t
{f, g}

Using the Jacobi identity on the first term on the right, and the relation for time derivatives on the second
term, we have

d

dt
{f, g} = {H, {f, g}}+

∂

∂t
{f, g}

= −{f, {g,H}} − {g, {H, f}}+ {∂f
∂t
, g}+ {f, ∂g

∂t
}

= {f, {H, g}} − {g, {H, f}}+ {∂f
∂t
, g}+ {f, ∂g

∂t
}

= {f,
(
−∂g
∂t

)
} − {g,

(
−∂f
∂t

)
}+ {∂f

∂t
, g}+ {f, ∂g

∂t
}

= 0

We conclude our discussion of Poisson brackets by using them to characterize canonical transformations.
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1.1.1.2 Canonical transformations

Working with the Hamiltonian formulation of classical mechanics, we are allowed more transformations of
the variables than with the Newtonian, or even the Lagrangian, formulations. We are now free to redefine
our coordinates according to

qi = qi(xi, pi, t)

πi = πi(xi, pi, t)

as long as the basic equations still hold.
It is straightforward to show that given any function f = f(xi, qi, t) there is a canonical transformation

defined by

pi =
∂f

∂xi

πi = − 1

λ

∂f

∂qi

H ′ =
1

λ

(
H +

∂f

∂t

)
The first equation

pi =
∂f(xi, qi, t)

∂xi

gives qi implicitly in terms of the original variables, while the second determines πi. Notice that once we pick
a function qi = qi(pi, xi, t), the form of πi is fixed. The third equation gives the new Hamiltonian in terms
of the old one.

Sometimes it is more convenient to specify the new momentum πi(pi, xi, t) than the new coordinates
qi = qi(pi, xi, t). A Legendre transformation accomplishes this. Just replace f = g − λπiqi. Then

df = dg − dπiqi − πidqi = pidxi − λπidqi + (λH ′ −H) dt

dg = pidxi + λqidπi + (λH ′ −H) dt

and we see that g = g(xi, πi, t). In this case, g satisfies

pi =
∂g

∂xi

qi =
1

λ

∂g

∂πi

H ′ =
1

λ

(
H +

∂g

∂t

)
Since canonical transformations can interchange or mix up the roles of x and p, they are called canonically

conjugate. Within Hamilton’s framework, position and momentum lose their independent meaning except
that variables always come in conjugate pairs. Notice that this is also a property of quantum mechanics.

Finally, we return to our earlier claim that transformations that preserve certain fundamental Poisson
brackets, preserve Hamilton’s equations and preserve all Poisson brackets. Specifically, a transformation
from one set of phase space coordinates (xi, πi) to another (qi, pi) as canonical if and only if it preserves the
fundamental Poisson brackets

{qi, qj}xπ = {pi, pj}xπ = 0

{pi, qj}xπ = − {qi, pj}xπ = δij

8



Here the subscript on the bracket, {}xπ means that the partial derivatives defining the bracket are taken
with respect to qi and pi. Brackets {f, g}qp taken with respect to the new variables (qi, pi) are identical to
those {f, g}xπ with respect to (xi, π i) if and only if the transformation is canonical. In particular, replacing
f by H and g by any of the coordinate functions (xi, πi), we see that Hamilton’s equations are preserved by
canonical transformations.

1.1.1.3 Hamilton’s equations from the action

It is possible to write the action in terms of xi and pi and vary these independently to arrive at Hamilton’s
equations of motion. We have

S =

ˆ
Ldt (1.6)

We can write this in terms of xi and pi easily:

S =

ˆ
Ldt

=

ˆ
(piẋi −H) dt

=

ˆ
(pidxi −Hdt)

Since S depends on position and momentum (rather than position and velocity), it is these we vary. Thus:

δS = δ

ˆ
(piẋi −H) dt

=

ˆ (
δpiẋi + piδẋi −

∂H

∂xi
δxi −

∂H

∂pi
δpi

)
dt

= piδxi|t2t1 +

ˆ (
δpiẋi − ṗiδxi −

∂H

∂xi
δxi −

∂H

∂pi
δpi

)
dt

=

ˆ ((
ẋi −

∂H

∂pi

)
δpi −

(
ṗi +

∂H

∂xi

)
δxi

)
dt

and since the variations δpi and δxi are independent we conclude

ẋi =
∂H

∂pi
(1.7)

ṗi = −∂H
∂xi

(1.8)

as required.

1.1.1.4 Hamilton’s principal function and the Hamilton-Jacobi equation

Properly speaking, the action is a functional, not a function. That is, the action is a function of curves
rather than a function of points in space or phase space. We define Hamilton’s principal function S in the
following way. Pick an initial point of space and an initial time, and let S(x

(f)
i , t) be the value of the action

evaluated along the actual path that a physical system would follow in going from the initial time and place
to x(f)

i at time t :

S(x
(f)
i , t) = S |physical=

ˆ t

t0

L(xi(t), ẋi(t), t)dt

where xi(t) is the solution to the equations of motion and x(f)
i is the final position at time t.

9



Now consider the variation of the action. Recall that in general,

δS =

ˆ t

t0

(
∂L

∂xi
δxi +

∂L

∂ẋi
δẋi

)
dt

=

[
∂L

∂ẋi
δxi

]t
t0

+

ˆ t

t0

(
∂L

∂xi
− d

dt

∂L

∂ẋi

)
δxidt

Now suppose we hold the action constant at t0, and require the equations of motion to hold. Then we have
simply

δS |physical=
∂L

∂ẋi
δxi(t) = piδxi

This means that the change in the function S, when we change xi by dxi is

dS = δS |physical= pidxi

of
∂S
∂xi

= pi

To find the dependence of S on t, we write S = S |physical=
´
Ldt as

dS
dt

= L

But we also have
dS
dt

=
∂S
∂xi

ẋi +
∂S
∂t

Equating these and using ∂S
∂xi

= pi gives

L =
∂S
∂xi

ẋi +
∂S
∂t

= piẋi +
∂S
∂t

so that the partial of S with respect to t is

∂S
∂t

= L− piẋi = −H

Combining the results for the derivatives of S we may write

dS =
∂S
∂xi

dxi +
∂S
∂t
dt

= pidxi −Hdt

This is a nontrivial condition on the solution of the classical problem. It means that form pidxi −Hdt must
be a total differential, which cannot be true for arbitrary pi and H.

We conclude by stating the crowning theorem of Hamiltonian dynamics: for any Hamiltonian dynamical
system there exists a canonical transformation to a set of variables on phase space such that the paths of
motion reduce to single points. Clearly, this theorem shows the power of canonical transformations! The
theorem relies on describing solutions to the Hamilton-Jacobi equation, which we introduce first.

We have the following equations governing Hamilton’s principal function.

∂S
∂pi

= 0

∂S
∂xi

= pi

∂S
∂t

= −H

10



Since the Hamiltonian is a given function of the phase space coordinates and time, H = H(xi, pi, t), we
combine the last two equations:

∂S
∂t

= −H(xi, pi, t) = −H(xi,
∂S
∂xi

, t)

This first order differential equation in s + 1 variables (t, xi; i = 1, . . . s) for the principal function S is the
Hamilton-Jacobi equation. Notice that the Hamilton-Jacobi equation has the same general form as the
Schrödinger equation (and is equally difficult to solve!). It is this similarity that underlies Dirac’s canonical
quantization procedure.

It is not difficult to show that once we have a solution to the Hamiltonian-Jacobi equation, we can
immediately solve the entire dynamical problem. Such a solution may be given in the form

S = g(t, x1, . . . , xs, α1, . . . , αs) +A

where the αi are the additional s constants describing the solution. Now consider a canonical transformation
from the variables (xi, pi) using the solution g(t, xi, αi) as the generating function. We treat the αi as the
new momenta, and introduce new coordinates βi. Since g depends on the old coordinates xi and the new
momenta αi, we have the relations

pi =
∂g

∂xi

βi =
∂g

∂αi

H ′ =

(
H +

∂g

∂t

)
≡ 0

where the new Hamiltonian vanishes because g satisfies the Hamiltonian-Jacobi equation!. With H ′ = 0,
Hamilton’s equations in the new canonical coordinates are simply

dαi
dt

=
∂H ′

∂βi
= 0

dβi
dt

= −∂H
′

∂αi
= 0

with solutions

αi = const.

βi = const.

The system remains at the phase space point (αi, βi). To find the motion in the original coordinates as
functions of time and the 2s constants of motion, xi = xi(t;αi, βi), we can algebraically invert the s equations
βi = ∂g(xi,t,αi)

∂αi
. The momenta may be found by differentiating the principal function, pi = ∂S(xi,t,αi)

∂xi
. This

provides a complete solution to the mechanical problem.
We now apply these results to quantum theory.

1.1.2 Canonical Quantization
One of the most direct ways to quantize a classical system is the method of canonical quantization introduced
by Dirac. The prescription is remarkably simple. Here we go:

A dynamical variable is any function of the phase space coordinates and time, f(qi, pi, t). Given any two
dynamical variables, we can compute their Poisson bracket,

{f, g}
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as described in the previous section. In particular, the time evolution of any dynamical variable is given by

df

dt
= {H, f}+

∂f

∂t

and for any canonically conjugate pair of variables,

{pi, qj} = δij

To quantize the classical system, we let the canonically conjugate variables become operators (denoted
by a “hat”, ô), let all Poisson brackets be replaced by i

} times the commutator of those operators, and
let all dynamical variables (including the Hamiltonian) become operators through their dependence on the
conjugate variables:

{ , } → i

}
[ , ] (1.9)

(pi, qj) → (p̂i, q̂j) (1.10)

f(pi, qj , t) → f̂ = f(p̂i, q̂j , t) (1.11)

The operators are taken to act linearly on a vector space, and the vectors are called “states.” This is all often
summarized, a bit too succinctly, by saying “replace all Poisson brackets by commutators and put hats on
everything.”

The space of states
This simple set of rules works admirably, but we must say first what we actually mean by an operator. To
do this, we must define a vector space on which they act. In keeping with the usual rules of quantum theory,
we require a Hilbert space: a complete, comples, inner product vector space (a complete, normed vector
space is called a Banach space). In general, we denote these vectors as kets, |ψ〉, where the label ψ may be
any convenient list of properties. We then know that for any Hermitian operator has eigenstates with real
eigenvalues, so we may define position and momentum eigenkets,

x̂ |x〉 = x |x〉
p̂ |p〉 = p |p〉

and write the Schrödinger equation,

Ĥ |ψ〉 = i~
∂

∂t
|ψ〉 (1.12)

with the rules Eqs.(1.9) - (1.11), for canonical quantization leading to the Heisenberg equations of motion.
We can also arrive at the Schrödinger picture by choosing a set of functions as our vector space of states

by placing the states in a coordinate basis

ψ (x) ≡ 〈x |ψ〉

Our Hilbert space is now a function space. Let ψ(x) be an element of this vector space. Then we satisfy the
fundamental commutators,

[p̂i, x̂j ] = −i}δij
[x̂i, x̂j ] = 0

[p̂i, p̂j ] = 0

if we represent the operators as

x̂i = xi

p̂i = −i} ∂

∂xi

Ĥ = i}
∂

∂t
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These relationships may be derived by acting on infinitesimal expansions of kets with the various operators.
See Sakurai for details.

The representation of x̂i by xi simply means we replace the operator by the coordinate. Now consider
the time evolution of a state ψ. This is given by the action of the Eq.(1.12). If the Hamiltonian is that of a
single particle moving in a potential,

Ĥψ =
p̂2

2m
+ V (x̂)

then substitution of the coordinate forms of the operators immediately gives the familiar form of the
Schrödinger equation,

− }2

2m
∇2ψ + V (x)ψ = i}

∂ψ̂

∂t
(1.13)

Notice that while ψ is mathematically a field, this is not quantum field theory. The difference between this
Schrödinger field theory and quantum field theory is that the dynamical variables of quantum mechanics
are positions, momenta and so forth, while the dynamical variables of field theory are the fields. When
this is realized, we find little difference between the canonical quantization of mechanics and the canonical
quantization of field theory.

This change from particle mechanics to fields is thus not really a change in method at all, the only math-
ematical difference being in the way we take derivatives. In classical field theory we replace the Lagrangian
with a Lagrangian density,

L =

ˆ
L (φ, ∂αφ) d3x

where the density L is generally built from the fields and their derivatives, L = L (φ, ∂αφ). This means that
the Lagrangian is a functional of the fields and partial derivatives become functional derivatives,

∂L

∂q̇
=⇒ δL

δφ̇

We will define functional derivatives when they are required.

Operator ordering
One of our rules, eq.(1.14), however, still requires modification.

The point requiring caution with Eq.(1.11) is ordering ambiguity. The problem arises when the Hamil-
tonian, or any other dynamical variable of interest, depends in a more complicated way on position and
momentum. The simplest example is a Hamiltonian containing a term of the form

H1 = αp · x

For the classical variables, p · x = x · p, and we could equivalently write

Hβ = α (βp · x + (1− β)x · p)

for any real number β. But since quantum operators don’t commute

Ĥβ = α (βp̂ · x̂ + (1− β) x̂ · p̂)

= α (p̂ · x̂− 3i (1− β) })

is a different operator for every β. In many circumstances the symmetric choice

Ĥ1 =
α

2
(p̂ · x̂ + x̂ · p̂)

turns out to be preferable, and certain rules of thumb exist.
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This issue also means that, unlike Poisson brackets, commutators are order-specific. Thus, we can write
the Leibnitz rule as [

Â, B̂Ĉ
]

= B̂[Â, Ĉ] + [Â, B̂]Ĉ

but must remember that [
Â, B̂Ĉ

]
6=
[
Â, Ĉ

]
B̂ +

[
Â, B̂

]
Ĉ

For now it is enough to be aware of the problem.
A particularly important case is that of the harmonic oscillator. Given the conjugate pair, (p̂i, q̂j), we

define a new pair of operators,

âi =

√
mω

2~

(
q̂i +

i

mω
p̂i

)
â†i =

√
mω

2~

(
q̂i −

i

mω
p̂i

)
which satisfy [

â†j , âi

]
=

mω

2~

[(
q̂i −

i

mω
p̂i

)
,

(
q̂j +

i

mω
p̂j

)]
=

i

2~
[q̂i, p̂j ]−

i

2~
[p̂i, q̂j ]

= δij

[âi, âj ] =
[
â†i , â

†
j

]
= 0

Rewriting the Hamiltonian in terms of the new variables, we find

H = ~ω
(∑

â†i âi +
3

2

)
(1.14)

where the factor of 3 occurs because we have 3 independent oscillators. While are used to the idea of an
arbitrary zero point of energy, it is not so arbitrary in quantum mechanics since we know there should be
a minimum uncertainty to the momentum. This is not a problem for the simple harmonic oscillator, but
when we quantize fields we will find that the each of the infinite number of Fourier modes acts like âi or â

†
i ,

meaning that the vacuum energy diverges. At this point, we introduce normal ordering : a rule for operator
ordering chosen to eliminate the infinity.

Exercise: Canonically quantize the 3-dim simple harmonic oscillator. Find the form of Hamilton’s equations
of motion, and show that the Hamiltonian takes the form given in Eq.(1.14).

1.1.3 One dimensional field theory
Consider a 1-dimensional distribution of equal point masses, m, distributed along the x-axis at positions xi.
As the number of these particles increases, we may define a density.

Consider just one small length ∆l. In ∆l the density is

λ (x) ≈
∑
i∈∆lmi

∆l

The kinetic energy of this small length is then giving by its motion relative to its center of mass, x0. Setting
the displacement to φ = x− x0

T =
1

2
(λ (x0) ∆l) ẋ2

=
1

2
(λ (x0) ∆l) φ̇2

14



Now suppose the particles in ∆L move in a slowly changing potential, V (x), that depends only on the
displacement of each particle group from equilibrium, defined by

V (x0) = 0

dV

dx
(x0) = 0

Then expanding V in a Taylor series, we have

V (x) ≈ 1

2

d2V

dx2

∣∣∣∣
x=x0

(x− x0)
2

=
1

2
(∆l)

2 d
2V

dx2

∣∣∣∣
x=x0

(x− x0)

(∆l)
2

2

we may treat the ratio x−x0

∆l as a derivative of the displacement, φ (x0) = x− x0 of the cell centered on x0

x− x0

∆l
≈ dφ

dx

Let the constant be σ ≡ (∆l) d2V
dx2

∣∣∣
x=x0

.

Combining these results, the Lagrangian is

∆L = ∆T −∆V

=
1

2

[
λ (x0) φ̇2 − σ (x0)

(
dφ

dx

)2
]

∆l (x0)

Now we add up over all of the small lengths ∆l (x0) and take the limit to get an integral,

L =
1

2

ˆ [
λ (x) φ̇2 − σ (x)

(
dφ

dx

)2
]
dx

For a uniform material with the displacement φ small compared to ∆l, the functions λ (x) and σ (x) may be
taken constant. Then, defining 1

v2 ≡
λ
σ , the Lagrangian becomes

L = −σ
2

ˆ [
− 1

v2
φ̇2 +

(
dφ

dx

)2
]
dx

Finally, integrating to find the action,

S =

ˆ
Ldt

= −σ
2

ˆ ˆ
dxdt

[
− 1

v2
φ̇2 +

(
dφ

dx

)2
]

The action is now expressed as an integral over both space and time. Varying φ, we find

0 = δS

= −σ
2

ˆ ˆ
dxdt

[
−2

1

v2
φ̇δφ̇+ 2

dφ

dx

dδφ

dx

]
= −σ

ˆ ˆ
dxdt

[
− 1

v2

d

dt

(
φ̇δφ

)
+

1

v2
φ̈δφ+

d

dx

(
dφ

dx
δφ

)
− d2φ

dx2
δφ

]
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Integrating the total derivative terms to the time or space boundary, the variation vanishes and we are left
with

0 = −σ
ˆ ˆ

dxdt

[
1

v2
φ̈− d2φ

dx2

]
δφ

Since δφ is arbitrary we must have

1

v2
φ̈− d2φ

dx2
= 0

This is the wave equation for a field φ that propagates with velocity v.
If we were to do a similar calculation for a 3-dim array of particles we could arrive at

S =
σ

2

ˆ ˆ
dxdt

[
1

v2
φ̇2 − (∇φ)

2

]
The variation then leads to the full wave equation

1

v2
φ̈−∇2φ = 0

If the velocity is the speed of light this is the massless Klein-Gordon equation. This is the simplest
relativistic wave equation. If we wish to include a mass for φ, we arrive at the Klein-Gordon Lagrangian:

SKG =
1

2

ˆ ˆ
d3xdt

[
1

c2
φ̇2 − (∇φ)

2
+
m2c2

~2
φ2

]
Exercise: Vary SKG to find the massive Klein-Gordon equation,

�φ ≡ 1

c2
∂2φ

∂t2
−∇2φ = −m

2c2

~2
φ (1.15)

The wave operator � ≡ − 1
c2

∂2

∂t2 +∇2 is called the d’Alembertian.

The Klein-Gordon action is typical of field theories, which have the general form

S =

ˆ
dt

(ˆ
Ld3x

)
=

ˆ
d4x L

(
Φ, Φ̇

)
where Φ may be any collection of different types of field. L is called the Lagrange density. Note how the
integral is over both space and time, making it straightforward to write relativistic theories.

1.1.4 Canonical quantization of a field theory
Without going into careful detail yet, we can see some features of the quantization of a field theory. Let’s
consider the action for the relativistic scalar field φ. Well use Greek indices for spacetime α, β, . . . = 0, 1, 2, 3
and Latin for space i, j, . . . = 1, 2, 3. Let’s write

∂α = (∂0, ∂i)

where

∂0 =
1

c

∂

∂t
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We’ll use the metric

ηαβ =


1
−1

−1
−1


to raise and lower indices. For example, we can write the d’Alembertian � as

� = ηαβ∂α∂β

= ∂α∂α = ∂α∂
α

where

∂α ≡ ηαβ∂β = (∂0,− ∂i)

With this notation, the action for the relativistic wave equation is

S =
1

2

ˆ (
φ̇2 −∇φ · ∇φ

)
d4x

=
1

2

ˆ
∂αφ∂

αφ d4x

The relativistic summation convention always involves one raised index and one lowered index. Euclidean
summations are written with both the repeated indices in the same position. Thus, ∂α∂α = (∂0)

2
+∇2 is

the 4-dimensional Euclidean Laplacian.
Now we can illustrate the quantization. We know that the field φ is the limit of an uncountable infinity

of independent particle coordinates, so all we need to set up the canonical commutator is its conjugate
momentum. The usual conjugate momentum is

π =
∂L

∂φ̇

but now the Lagrangian is a functional of the fields,

L =
1

2

ˆ
∂αφ∂

αφ d3x

=
1

2

ˆ (
φ̇2 −∇φ · ∇φ

)
d3x

so we write a functional derivative, denoted by δ
δφ̇(x′)

,

π =
δL

δφ̇ (y)

=
1

2

δ

δφ̇ (y)

ˆ (
φ̇ (x)

2 −∇φ (x) · ∇φ (x)
)
d3x

=
1

2

ˆ
δ

δφ̇ (yj)
φ̇
(
xi
)2

d3x

=
1

2

ˆ
2φ̇
(
xi
) δφ̇ (xi)
δφ̇ (yj)

d3x

The functional derivative behaves here like an ordinary derivative, leaving us with

δφ̇
(
xi
)

δφ̇ (yj)
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This vanishes unless xi = yi, but to know what it is we make an analogy with the finite case, where

∂xi

∂yj
= δij

Holding j fixed and summing over i gives 1, and we ask the same for the continuous case where the sum
becomes an integral:

ˆ
d3x

δφ̇
(
xi
)

δφ̇ (yj)
= 1

Since we know that
δφ̇(xi)
δφ̇(yj)

vanishes when x 6= y, this implies

δφ̇
(
xi
)

δφ̇ (yj)
= δ3 (x− y)

Therefore, the conjugate momentum to φ is

π =

ˆ
φ̇ (x) δ3 (x− y) d3x

= φ̇ (y)

In quantizing, we change the dynamical variables φ and π to operators, φ̂ and π̂, and their Poisson bracket
becomes a commutator [

π̂, φ̂
]

= −i} (1.16)

Before continuing with further details of relativistic quantization, we need two things. First, we prove
Noether’s theorem, which relates symmetries to conserved quantities. The relationship is central to our
understanding of field theory. Second, in the next chapter, we develop group theory both because of the
relationship of group symmetries to conservation laws and because it is from group theory that we learn the
types of fields that are important in physics, including spinors. Then we will return to quantization.

1.1.5 Special Relativity
Since we have just introduced some relativitistic notation, this seems like a good place to review special
relativity, and especially the reason that the notation is meaningful.

1.1.5.1 The invariant interval

The first thing to understand clearly is the difference between physical quantities such as the length of a
ruler or the elapsed time on a clock, and the coordinates we use to label locations in the world. In 3-dim
Euclidean geometry, for example, the length of a ruler is given in terms of coordinate intervals using the
Pythagorean theorem. Thus, if the positions of the two ends of the ruler are (x1, y1, z1) and (x2, y2, z2), the
length is

L =

√
(x2 − x1)

2
+ (y2 − y1)

2
+ (z2 − z1)

2

Observe that the actual values of (x1, y1, z1) are irrelevant. Sometimes we choose our coordinates cleverly,
say, by aligning the x-axis with the ruler and placing one end at the origin so that the endpoints are at
(0, 0, 0) and (x2, 0, 0). Then the calculation of L is trivial:

L =

√
(x2 − x1)

2
+ (y2 − y1)

2
+ (z2 − z1)

2

= x2
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but it is still important to recognize the difference between the coordinates and the length.
With this concept clear, we next need a set of labels for spacetime. Starting with a blank page to represent

spacetime, we start to construct a set of labels. First, since all observers agree on the motion of light, let’s
agree that (with time flowing roughly upward in the diagram and space extending left and right) light beams
always move at 45 degrees in a straight line. An inertial observer (whose constant rate of motion has no
absolute reality; we only consider the relative motions of two observers) will move in a straight line at a
steeper angle than 45 degrees – a lesser angle would correspond to motion faster than the speed of light. For
any such inertial observer, we let the time coordinate be the time as measured by a clock they carry. The
ticks of this clock provide a time scale along the straight, angled world line of the observer. To set spatial
coordinates, we use the constancy of the speed of light. Suppose our inertial observer send out a pulse of
light at 3 minutes before noon, and suppose the nearby spacetime is dusty enough that bits of that pulse
are reflected back continuously. Then some reflected light will arrive back at the observer at 3 minutes after
noon. Since the trip out and the trip back must have taken the same length of time and occurred with the
light moving at constant velocity, the reflection of the light by the dust particle must have occurred at noon
in our observer’s frame of reference. It must have occurred at a distance of 3 light minutes away. If we take
the x direction to be the direction the light was initially sent, the location of the dust particle has coordinates
(noon, 3 lightminutes, 0, 0). In a similar way, we find the locus of all points with time coordinate t = noon
and both y = 0 and z = 0. These points form our x axis. We find the y and z axes in the same way. It is
somewhat startling to realize when we draw a careful diagram of this construction, that the x axis seems to
make an acute angle with the time axis, as if the time axis has been reflected about the 45 degree path of
a light beam. We quickly notice that this must always be the case if all observers are to measure the same
speed (c = 1 in our construction) for light.

This gives us our labels for spacetime events. Any other set of labels would work just as well. In particular,
we are interested in those other sets of coordinates we get by choosing a different initial world line of an
different inertial observer.

Any observer, in assigning coordinates xα = (ct, x, y, z) , α = 0, 1, 2, 3 to an event P , is specifying a vector,
and just as in classical mechanics we expect to be able to write vector equations for the motions of objects in
spacetime. This is an important distinction between special and general relativity. In general relativity, to
work with vectors we must use tangent spaces to the spacetime manifold but in special relativity, Minkowski
spacetime is a vector space. In order to map one observer’s vectors positions to another observer’s vector
positions, we must use a linear transformation. Thus, if a second observer at the same location but moving
with a relative velocity v assigns x′α = (ct′, x′, y′, z′) to the same event P , then there must be a linear
relationship of the form

x′α =

3∑
β=0

Λα βx
β (1.17)

where Λα β is a 4× 4 matrix dependent upon the velocity. Suppose a flash of light is emitted from the origin
at the moment that the observers pass. Each will describe an sphere of light expanding with velocity c,

x2 + y2 + z2 = c2t2

x′2 + y′2 + z′2 = c2t′2

Since the quantity x2 + y2 + z2 − c2t2 vanishes simultaneously for both observers, we must have

x′2 + y′2 + z′2 − c2t′2 = λ
(
x2 + y2 + z2 − c2t2

)
The factor λ is a conformal factor, which is allowed but we may set it to 1 here. Then if the relative motion
of the two observers lies in the x direction they can directly compare intervals in the yand z directions and
will find them the same. The transformation between the two reference frames therefore involves only x, t
and x′, t′, and we may write

x′ = ax+ bt

y′ = cx+ dt
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and require

x′2 − c2t′2 = x2 − c2t2

Let u = x+ ct and v = x− ct, and similarly for u′, v′. Then the transformation may be written as

u′ = αu+ βv

v′ = µu+ νv

condition becomes

u′v′ = uv

(αu+ βv) (µu+ νv) = uv

αµu2 + (αν + βµ) vu+ βνv2 = uv

so we must have either

β = µ = 0

ν =
1

α
(1.18)

or

α = ν = 0

µ =
1

β
(1.19)

Choosing the first and setting α = eξ we have

u′ = eξu

v′ = e−ξv

and therefore

x′ + ct′ = eξ (x+ ct)

x′ − ct′ = e−ξ (x− ct)

Adding and subtracting to solve for x′ and y′,

x′ =
1

2

(
eξ (x+ ct) + e−ξ (x− ct)

)
= x cosh ξ + ct sinh ξ

ct′ =
1

2

(
eξ (x+ ct)− e−ξ (x− ct)

)
= x sinh ξ + ct cosh ξ

so our matrix is

Λα β =


cosh ξ sinh ξ
sinh ξ cosh ξ

1
1


Finally, taking the differential of the transformation,

dx′ = dx cosh ξ + cdt sinh ξ

cdt′ = dx sinh ξ + cdt cosh ξ
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and taking the ratio,

1

c

dx′

dt′
=

dx cosh ξ + cdt sinh ξ

dx sinh ξ + cdt cosh ξ

=
1
c
dx
dt cosh ξ + sinh ξ

1
c
dx
dt sinh ξ + cosh ξ

=
1
c
dx
dt + tanh ξ

1
c
dx
dt tanh ξ + 1

we identify the velocity of an object in each of the two frames as u = dx
dt and u′ = dx′

dt′ . Multiplying by c, we
have

u′ =
u+ tanh ξc
u
c tanh ξ + 1

(1.20)

In the limit of small boost parameter, ξ � 1, we have tanh ξ ≈ ξ. Then taking all velocities small compared
to the speed of light and neglecting the very small second order quantity u

c ξ in the denominator, we identify
the Newtonian addition of velocities

u′ = u+ v

provided we identify
tanh ξ =

v

c

Then cosh ξ = 1√
1−tanh2 ξ

= 1√
1− v2

c2

≡ γ and sinh ξ = tanh ξ√
1−tanh2 ξ

= v/c√
1− v2

c2

= γ vc . The Lorentz transforma-

tion becomes,

Λα β =


γ γ vc
γ vc γ

1
1

 (1.21)

and the relationship between the velocities, Eq.(1.20) becomes

u′ =
u+ v

1 + uv
c2

The next step is the most important: we must find a way to write physically meaningful quantities.
These quantities, like length in Euclidean geometry, must be independent of the labels, the coordinates, that
we put on different points. If we get on the right track by forming a quadratic expression similar to the
Pythagorean theorem, then it doesn’t take long to arrive at the correct answer. In spacetime, we have a
pseudo-Euclidean length interval, given by the proper time τ , where

c2τ2 = c2t2 − x2 − y2 − z2 (1.22)

Exercise: Computeτ ′ in terms of τ by writing it in the primed frame:

c2τ ′2 = c2t′2 − x′2 − y′2 − z′2

and substituting using Eqs.(1.17) and (1.21).

Exercise: Find the form of transformation arising from the second solution, Eq.(1.19). What situation does
it correspond to?

Tau, τ , is called the proper time, and is invariant under Lorentz transformations. It plays the role of
L in spacetime geometry, and becomes the defining property of spacetime symmetry: we define Lorentz
transformations to be those transformations that leave τ invariant.
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1.1.5.2 Lorentz transformations

Notice that with this definition, 3-dim rotations are included as Lorentz transformations because τ only
depends on the Euclidean length x2 + y2 + z2; any transformation that leaves this length invariant also
leaves τ invariant. Lorentz transformations that map the three spatial directions into one another are
called rotations, while Lorentz transformations that involve time and velocity are called boosts. There are
therefore 6 independent Lorentz transformations: three planes ((xy), (yz), (zx)) of rotation and three planes
((tx), (ty), (tz)) of boosts.

We will always use the Einstein convention: Lorentz invariant summed indices always occur in pairs with
one up and one down. This allows us to omit the summation symbol in Eq.(1.17) and write

(x′)
α

=

3∑
β=1

Λα βx
β ≡ Λα βx

β (1.23)

where we assume a sum on β.
Any object that transforms in this same linear, homogeneous way, where Λα β is any boost or rotation

matrix, is called a Lorentz vector or a 4-vector. Thus, if

w′α = Λα βw
β

then wα is a 4-vector.
We have seen that the proper time is invariant under Lorentz transformations. In fact, a linear trans-

formation is a Lorentz transformation if and only if it leaves all proper times invariant. use this to express
Lorentz transformations in terms of a metric. Let

ηαβ ≡


1
−1

−1
−1

 (1.24)

as given in the previous section. Then the interval spanned by a 4-vector xα is

c2τ2 = ηαβx
αxβ

=
(
ct x y z

)
1
−1

−1
−1




ct
x
y
z


= c2t2 − x2 − y2 − z2

It is convenient to define two different forms of any 4-vector, called covariant (xα) and contravariant (xα).
These two forms exist anytime we have a metric. We define

xα ≡ ηαβxβ (1.25)

then we can write invariant intervals as

c2τ2 = xβx
β = xβxβ

where the second expression uses the symmetry of the metric, ηαβ = ηβα.
The defining property of a Lorentz transformation can now be written in a way that doesn’t depend on

the coordinates. Invariance of the interval requires

c2τ2 = ηαβx
αxβ = ηαβ (x′)

α
(x′)

β
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so that for any Lorentz vector xβ ,

ηµνx
µxν = ηαβ (x′)

α
(x′)

β

= ηαβ
(
Λα µx

µ
) (

Λβ νx
ν
)

=
(
ηαβΛα µΛβ ν

)
xµxν

Since xµ is arbitrary, and ηαβ is symmetric, this implies

ηµν = ηαβΛα µΛβ ν (1.26)

From now on, we will take this as the defining property of a Lorentz transformation.
Suppose wα is any 4-vector, so that

w′α = Λα βw
β (1.27)

where Λα β a Lorentz transformatoin. It follows immediately that wαwα is invariant under Lorentz trans-
formations.

Exercise Prove that wαwα = ηαβw
αwβ is invariant under Lorentz transformation (that is, ηαβw′αw′β =

ηαβw
αwβ , using w′α = Λα βw

β and Eq.(1.26).

Exercise Prove that if wα transforms according to Eq.(1.27) and the metric according to Eq.(1.26) then
wα transforms as w′α = Λ̄β αwβ where Λ̄β α is the inverse matrix to Λβ α. Use this fact to give an
alternative proof that wαwα is Lorentz invariant.

As long as we are careful to use only quantities that have such simple transformations (i.e., linear and
homogeneous) it is easy to construct Lorentz invariant quantities by “contracting” indices. Any time we sum
one contravariant vector index with one covariant vector index, we produce an invariant.

It is not hard to derive dynamical variables which are Lorentz vectors. Suppose we have a path in
spacetime (perhaps the path of a particle), specified parametrically by xβ(λ), so as λ increases, xβ(λ) gives
the coordinates of the particle. We can even let λ be the proper time along the world line of the particle,
since this increases monotonically as the particle moves along. In fact, this is an excellent choice. To compute
the parameter, consider an infinitesimal displacement along the path, dxβ . Then the change in the proper
time for that displacement is

dτ =
(
ηαβdx

αdxβ
)1/2

=

(
dt2 − 1

c2
(
dxi
)2)1/2

where the Latin index runs over the spatial coordinates so that dxidxi is the usual Euclidean interval. Now
we can integrate the infinitesimal proper time along the path to a general point at proper time τ :

τ =

ˆ
dτ

=

ˆ √
dt2 − 1

c2
(dxi)

2

=

ˆ
dt

√
1− 1

c2

(
dxi

dt

)2

=

ˆ
dt

√
1− v2(t)

c2

As soon as we know the path x(t), we can differentiate to find v(t), integrate to find τ(t), and invert to find
t(τ). This gives xα(τ) = (t(τ),x(τ)) . Note the useful relationship between infinitesimals,

dτ = dt

√
1− v2(t)

c2
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or
γdτ = dt

Once we have the path parameterized in terms of proper time, we can find the tangent to the path simply
by differentiating:

uβ =
dxβ

dτ
(1.28)

Since τ is Lorentz invariant and the Lorentz transformation matrix is constant (between two given inertial
frames), we have

(u′)
β

=
d (x′)

β

dτ ′

=
d
(
Λβ αx

α
)

dτ

= Λβ αu
α

so the tangent to the path is a Lorentz vector. It is called the 4 -velocity. It is easy to find the components
of the 4-velocity in terms of the usual “3-velocity”, v :

uβ =
dxβ

dτ

=
d

dτ
(ct,x)

=

(
c
dt

dτ
,
dx

dτ

)
=

dt

dτ

(
c,
dx

dt

)
= γ (c,v)

Since uα is a 4-vector, its length must be something that is independent of the frame of reference of the
observer. Let’s compute it to check:

uαuα = γ (c,v) · γ (c,−v)

= γ2
(
c2 − v2

)
=

c2 − v2

1− v2

c2

= c2

Indeed, all observers agree on this value!
Now let m be the (Lorentz invariant!) mass of a particle. We define the 4 -momentum,

pα = muα

Since uα is a Lorentz vector and m is invariant, pα is a Lorentz vector. Once again, the magnitude is
invariant, since pαpα = m2uαu

α = m2c2. Notice that if m is not Lorentz invariant, the 4-momentum is not
a 4-vector. The components of pα are called the (relativistic) energy and the (relativistic) 3-momentum.
Setting

pα = (E/c,p)

we find the familiar formulas,

E = γmc2

p = γmv
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Expanding the γ factor when v2 << c2,

γ =

(
1− v2

c2

)−1/2

= 1 +
v2

2c2
+O

(
v4

c4

)
we recover the non-relativistic expressions

E = mγc2 ≈ mc2 +
1

2
mv2

p = mγv ≈ mv

We will shortly see other objects with linear, homogeneous transformations under the Lorentz group.
Some have multiple indices, Tαβ...µ and transform linearly on each index,

(T ′)
αβ...µ

= Λα ρΛ
β
σΛµ νT

ρσ...ν

The collection of all such objects is called the set of Lorentz tensors. More specifically, we are discussing the
group of transformations (Exercise: prove that the Lorentz transformations form a group!) that preserves
the matrix diag(1,−1,−1,−1). This group is named O(1, 3), meaning the pseudo-orthogonal group that
preserves the 4-dimensional metric with 1 plus and 3 minus signs. In general the group of transformations
preserving diag(1, . . . 1,−1, . . .− 1) with p plus signs and q plus signs is named O(p, q). From the definition
of Λα µ via

ηµν = ηαβΛα µΛβ ν (1.29)

or, more concisely η = ΛtηΛ we see that (det Λ)
2

= 1. If we restrict to det Λ = +1, the corresponding group
is called SO(3, 1), where the S stands for “special”.

1.1.5.3 Lorentz invariant tensors

Notice that the defining property of Lorentz transformations, eq.(1.26) or eq.(1.29), states the invariance of
the metric ηαβ under Lorentz transformations. This is a very special property – in general, the components
of tensors are shuffled linearly by Lorentz transformations.

The Levi-Civita tensor, defined to be the unique, totally antisymmetric rank four tensor εαβµν with

ε0123 = 1

εαβµν = ε[αβµν]

is the only other independent tensor which is Lorentz invariant. To see that εαβµν is invariant, we first note
that it may be used to define determinants. For any matrix Mαβ , we may write

detM = εαβµνM
α0Mβ1Mµ2Mν3

If we let the fixt indices vary, we may write this in another way

detM =
1

4!
εγδρσεαβµνM

αγMβδMµρMνσ

=
1

4!
εγδρσεαβµνM

α
γM

β
δM

µ
ρM

ν
σ

because the required antisymmetrizations are accomplished by the Levi-Civita tensor. An alternative way
to write this is

(detM) εγδρσ = εαβµνM
α
γM

β
δM

µ
ρM

ν
σ
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because the right side is totally antisymmetric on γδρσ and if we set γδρσ = 0123 we get our original expres-
sion for detM. Since this last expression holds for any matrix Mα

γ , it holds for the Lorentz transformation
matrix, Λα γ :

(det Λ) εγδρσ = εαβµνΛα γΛβ δΛ
µ
ρΛ

ν
σ

However, since the determinant of a (proper) Lorentz transformation is +1, we have the invariance of the
Levi-Civita tensor,

εγδρσ = εαβµνΛα γΛβ δΛ
µ
ρΛ

ν
σ (1.30)

This also shows that under spatial inversion, which has det Λ = −1, the Levi-Civita tensor changes sign.
The presence of an odd number of Levi-Civita tensors in any relativistic expression therefore shows that that
expression is odd under parity.

In fact, we need only know this parity argument for a single Levi-Civita tensor, because any pair of them
may always be replaced by four antisymmetrized Kronecker deltas using

εαβµνεγδρσ = −4!δα[γδ
β
δ δ

µ
ρ δ
ν
σ]

where the square brackets around the indices indicate antisymmetrization over all 24 permutations of γδρσ,
with the normalization 1

4! . The minus sign occurs because to raise each of the four indices, with all different,
will require three signs from the signs in the inverse metric. By taking one, two, three or four contractions
we obtain the following identities:

εαβµνεαδρσ = −6δβ[δδ
µ
ρ δ
ν
σ]

εαβµνεαβρσ = −2
(
δµρ δ

ν
σ − δµσδνρ

)
εαβµνεαβµσ = −6δνσ

εαβµνεαβµν = −24

Similar identities hold in every dimension. In n dimensions, the Levi-Civita tensor is of rank n. For example,
the Levi-Civita tensor of Euclidean 3-space is εijk, where

ε123 = 1

and all other components follow using the antisymmetry. Along with the metric, ηij =

 1
1

1

 , εijk

is invariant under SO(3). It is again odd under parity, and satisfies the following identities

εijkεlmn = δi[lδ
j
mδ

k
n]

εijkεimn = δjmδ
k
n − δjnδkm

εijkεijn = 2δkn

εijkεijk = 6

Here there are no minus signs in the metric. These identities will be useful in our discussion of the rotation
group.

1.1.5.4 Discrete Lorentz transformations

In addition to rotations and boosts, there are two additional discrete transformations which preserve τ .
Normally these are taken to be parity (P) and time reversal (T ). Parity is defined as spatial inversion,

P : (t,x)→ (t,−x) (1.31)

We do not achieve new symmetries by reflecting only two of the spatial coordinates, e.g., (t, x, y, z) →
(t,−x,−y, z) because this effect is achieved by a rotation by π about the z axis. For the same reason,
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reflection of a single coordinate is equivalent to reflecting all three. The effect of the parity on energy and
momentum follows easily. Since the 4-momentum is defined by

pβ = m
dxβ

dτ
(1.32)

and because m and τ are Lorentz invariant, we have

P (E/c,p) = P
(
m
d (t,x)

dτ

)
= m

d

dτ
P (t,x)

= m
d

dτ
(t,−x)

= (E/c,−p)

Time reversal is chosen to mimic Newtonian time reversal. In the Newtonian case, time reversal is just
the replacement t→ −t,

TN : (t,x)→ (−t,x)

Acting on non-relativistic energy and momentum this gives

TNE = TN

(
1

2
m

(
dx

dt

)2
)

=
1

2
m

(
dx

d (−t)

)2

= E

TNp = TNm
(
dx

dt

)
= m

dx

d (−t)
= −p

so that Newtonian time reversal is given by

TN : (E,p)→ (E,−p)

Define: Relativistic time reversal, T , is the discrete Lorentz transformation which reduces in the non-
relativistic limit to Newtonian time reversal, TN .

An useful mnemonic for the effect of time reversal is to imagine filming some motion, then running the
movie backward. The backward running film is the time reversed motion. It follows that:

T : (t,x)→ (t,x)

T : (E,p)→ (E,−p) (1.33)

This transformation is a Lorentz transformation, since it preserves the fundamental invariant, τ = (xαxα)
1/2

.
However, the definition means that the 4-momentum is not a proper Lorentz vector, since it does not have
the same transformation law as the position vector. Correspondingly, we see that the relativistic norm of
xα + βpα is not invariant:

(xα + βpα) (xα + βpα) = τ2 + 2β (Et− p · x) +m2

but
(T xα + βT pα) (T xα + βT pα) = τ2 + 2β (Et+ p · x) +m2

In this case we might call the 4-momentum a pseudo-vector or a semi-vector. As with polar vectors in
classical mechanics, this distinction causes little confusion. However, there is an alternative definition of
time reversal which appears better suited to relativistic problems: chronicity.

We define chronicity as follows.
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Define: Chronicity, ×, is the reversal of the Cartesian time component of 4-vectors

× : (t,x)→ (−t,x) (1.34)

This is clearly a Lorentz transformation. Now we compute the effect of chronicity on energy and momentum
from their definitions in terms of the coordinates:

× (E/c,p) = ×
(
m
d (t,x)

dτ

)
= m

d

dτ
× (t,x) = m

d

dτ
(−t,x) = (−E/c,p)

With this definition of the symmetry, the energy-momentum is once again a proper 4-vector, but the non-
relativistic limit is exactly opposite to Newtonian time reversal.

Notice the unexpected role played by the invariance of the proper time. By contrast with Newtonian time
reversal, with the invariance of τ and the linearity of both E and p in τ, only the energy reverses sense. The
difference is easy to see in a spacetime diagram, where the old “run the movie backward” prescription is seen
to require some fine tuning. In spacetime, the “motion” of the particle is replaced by a world line. Under
chronicity, this world line flips into the past light cone. An observer (still moving forward in time in either
the Newtonian or the relativistic version) experiences this flipped world line in reverse order, so negative
energy appears to depart the endpoint and later arrive at the initial point of the motion. A collision at the
endpoint, however, imparts momentum in the same direction regardless of the time orientation (see fig.(1)).

In discussing the inevitable negative energy states that arise in field theories, and their relation to
antiparticles, chronicity plays a central role.

The subgroup of Lorentz transformations for which the coordinate system remains right handed is called
the proper Lorentz group, and the subgroup of Lorentz transformations which maintains the orientation of
time is called the orthochronous Lorentz group. The simply connected subgroup which maintains both the
direction of time and the handedness of the spatial coordinates is the proper orthochronous Lorentz group.

1.1.6 Noether’s Theorem
While now turn to a proof of Noether’s Theorem. This theorem establishes the relationship between symme-
try and conserved quantities. This important relationship means that the measurable quantities in physics
come from symmetries of the action.

By a symmetry we mean any set of transformations of the fields and/or coordinates that leaves the action
invariant. Generally we expect symmetries to form a group. We can argue this as follows. Certainly, if we can
transform a field from one value to another, we can transform back to the original field, showing that the set
of symmetry transformations include inverses. Also, we can always count the identity transformation, which
just leaves the fields alone, as an element of the set. And the set of transformations is closed: transforming a
field twice, we still have a field, so the composition of two symmetry transformations defines a third symmetry
transformation. The only remaining requirement for the set of transformations to be a group is that the
transformations be associative. This is a bit harder to argue qualitatively, so we won’t. But it turns out to
be the case in all of the symmetries we will consider.

To derive the theorem, suppose we have an action built from some fields φA, where A is any collection
of labels or indices. In this way, φA can represent any number of scalar, vector and/or other types of fields.
Let the transformation

φA → φ̃A = φA + ∆A(φB , x)

be a transformation that leaves S invariant, S
[
φA
]

= S
[
φ̃A
]
. The function ∆ is some specific function of

the coordinates and fields, not a general variation.
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To prove Noether’s theorem consider first consider an arbitrary variation of the action:

δS =
δ

δφA

ˆ
L

δS =

ˆ
d4x

(
∂L
∂φA

δφA +
∂L

∂ (∂µφA)
δ
(
∂µφ

A
))

=

ˆ
d4x

(
∂L
∂φA

δφA +
∂L

∂ (∂µφA)
∂µ
(
δφA

))
=

ˆ
d4x

(
∂L
∂φA

δφA + ∂µ

(
∂L

∂ (∂µφA)
δφA

)
− ∂µ

(
∂L

∂ (∂µφA)

)
δφA

)
=

ˆ
d4x

(
∂L
∂φA

− ∂µ
(

∂L
∂ (∂µφA)

))
δφA +

ˆ
d4x∂µ

(
∂L

∂ (∂µφA)
δφA

)
Next, we restrict the variation to the symmetry, δφA −→ ∆φA. Because ∆φA is a symmetry variation, δS
now vanishes, leaving

0 =

ˆ
d4x

(
∂L
∂φA

− ∂µ
(

∂L
∂ (∂µφA)

))
∆φA +

ˆ
d4x∂µ

(
∂L

∂ (∂µφA)
∆φA

)
Finally, we impose the field equation, ∂L

∂φA
− ∂µ

(
∂L

∂(∂µφA)

)
= 0, leaving only the divergence term,

0 =

ˆ
d4x∂µ

(
∂L

∂ (∂µφA)
∆φA

)
Since we may integrate over any volume, we may shrink the region to any point to find that the integrand
vanishes there. This means that the current defined by

Jµ ≡ ∂L
∂ (∂µφA)

∆A (1.35)

must be conserved,
∂µJ

µ = 0

The conserved current Jµ is the Noether current.
Now that we see how it works, we can generalize the theorem somewhat. The field equations are un-

changed by a variation that changes the action by the integral of a divergence, since such a term contributes
only on the boundary. We may therefore allow symmetry variations δ∆S such that

δ∆S =

ˆ
∂µK

µ

for any Kµ built from the fields and coordinates. Then, starting with the general variation as before,
restricting to δ∆ and imposing the field equations,

δS =

ˆ
d4x

(
∂L
∂φA

− ∂µ
(

∂L
∂ (∂µφA)

))
δφA +

ˆ
d4x∂µ

(
∂L

∂ (∂µφA)
δφA

)
δ∆S =

ˆ
d4x

(
∂L
∂φA

− ∂µ
(

∂L
∂ (∂µφA)

))
δ∆φ

A +

ˆ
d4x∂µ

(
∂L

∂ (∂µφA)
δ∆φ

A

)
ˆ
∂µK

µ =

ˆ
d4x∂µ

(
∂L

∂ (∂µφA)
δ∆φ

A

)
we now conclude that the current is

Jµ ≡ ∂L
∂ (∂µφA)

∆A −Kµ
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is conserved,
∂µJ

µ = 0

The most important symmetries of particle physics are the Poincaré transformations, consisting of space-
time translations and Lorentz transformations. We develop the general form for these, then consider scalar
and vector fields explicitly.

1.1.6.1 Translation invariance

Consider an action of the form
S =

ˆ
L(φA, ∂φA)d4x

Since the integral is over all of spacetime, the value of the integral cannot depend on a translation of the
coordinates, either in time or space. If aµ is an arbitrary constant 4-vector then a translation,

xµ → xµ + aµ (1.36)

leaves S unchanged. The change in the fields for infinitesimal aµ is

φA(x)→ φA(x+ a) ≈ φA(x) +
∂φA

∂xα
aα

so that δ∆φA = ∂φA

∂xα a
α. Then

δ∆
(
∂µφ

A
)

= ∂µ
(
δ∆φ

A
)

= ∂µ

(
∂φA

∂xα
aα
)

=
∂2φA

∂xµ∂xα
aα

so that the variation of the Lagrangian density is a total divergence,

δ∆L =
∂L
∂φA

δ∆φ
A +

∂L
∂ (∂µφA)

δ∆
(
∂µφ

A
)

=
∂L
∂φA

∂φA

∂xα
aα +

∂L
∂ (∂µφA)

∂2φA

∂xµ∂xα
aα

=
∂L
∂xα

aα

=
∂

∂xα
(Laα)

In this case, the general variation of the action is a pure surface term, δS =
´
∂α (Laα). Imposing the

Euler-Lagrange field equations we are left with

Jµ =
∂L

∂ (∂µφA)
δ∆φ

A −Kµ

=
∂L

∂ (∂µφA)

∂φA

∂xα
aα − Laµ

=

(
∂L

∂ (∂µφA)

∂φA

∂xα
− Lδµα

)
aα

as the conserved Noether current. Notice that there is a current for each of the four (3 space and 1 time)
translations. For each different translation we get a distinct conserved current. Since aµ is constant, we can
extract it from the derivative

0 = aα∂µ

(
∂L

∂ (∂µφA)

∂φA

∂xα
− Lδµα

)
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and since it is arbitrary we can drop it altogether

0 = ∂µ

(
∂L

∂ (∂µφA)

∂φA

∂xα
− Lδµα

)
We therefore define four independent currents

Tµ α ≡ ∂L
∂ (∂µφA)

∂φA

∂xα
− Lδµα

Raising an index with the metric,

Tµν ≡ ηναTµ α

= ηνα
∂L

∂ (∂µφA)

∂φA

∂xα
− Lηµν (1.37)

The conservation law now takes the form
∂µT

µν = 0 (1.38)

The 2nd rank tensor (matrix) Tµν is called the energy-momentum tensor (or sometimes the stress-energy
tensor). Although our expression here is not necessarily symmetric (Tµν 6= T νµ in general), we can always
add a total vanishing divergence to make it symmetric. It is the symmetric version of the stress-energy
tensor that provides the source for curvature in general relativity. Therefore, even though many solutions
in general relativity use macroscopic versions of Tµν in which the elements correspond to energy density,
pressures and stresses, the field theory approach shows that it is really built from fundamental particle fields.
Of course, a statistical average of the fundamental fields gives the pressures and stresses in the macroscopic
form, but in a truly fundamental theory Tµν is built purely from quantum fields. For example, researchers
studying the early universe will drive the cosmological model by introducing a scalar field, the inflaton, to
produce an inflationary phase to the overall cosmological expansion.

We construct conserved charges by integrating the time component of each current over a spatial 3-volume
Σ

Pα =

ˆ
Σ

T 0αd3x

Then using 0 = ∂µT
µν = ∂0T

0ν + ∂iT
iν , and the divergence theorem,

dP β

dt
=

d

dt

ˆ
Σ

T 0βd3x

=

ˆ
Σ

∂

∂t
T 0βd3x

= −
ˆ

Σ

∂iT
iβd3x

= −
ˆ
δΣ

T iβnid
2x

where ni is normal to the 2-dimensional boundary, δΣ, of the 3-volume, Σ. Therefore, the time rate of change
of P β is given by the rate of flow of T iβ across the boundary.

These charges are the conserved energy and momentum of the field. It is interesting that conservation of
momentum arises from invariance of the action under spatial translations while conservation of energy arises
from invariance under displacement in time.

1.1.6.2 Lorentz invariance

We are only interested in relativistic field theories, and therefore demand that the actions we consider must
be Lorentz invariant. This requirement also leads to conserved charges. For this example, we will assume
that we have made the energy-momentum tensor symmetric. This is always possible.
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First, we find the form of an infinitesimal Lorentz transformation. The defining property is

ηµν = ηαβΛα µΛβ ν

We let Λα µ be infinitesimally close to the identity

Λα µ = δα µ + εα µ

and expand to first order in epsilon:

ηµν = ηαβΛα µΛβ ν

= ηαβ
(
δα µ + εα µ

) (
δβ ν + εβ ν

)
= ηαβ

(
δα µδ

β
ν + δα µε

β
ν + εα µδ

β
ν + εα µε

β
ν

)
≈ ηµν + ηµβε

β
ν + ηανε

α
µ

The ηµν terms cancel, leaving

0 = ηµβε
β
ν + ηανε

α
µ

= εµν + ενµ

which simply says that εµν is antisymmetric. Since an antisymmetric 4 × 4 matrix has 6 independent
components, we see directly the six independent degrees of freedom of the Lorentz transformations.

Now consider the Noether currents. This time, the infinitesimal transformation of the fields depends not
only on the change in the coordinates,

xβ → Λβ νx
ν = xβ + εβ νx

ν

δxβ = εβ νx
ν

but also on what type of field we consider. For example, scalar, contravariant vector fields and covariant
vector fields change as

φ(x) → φ(Λx) = φ(x) +
∂φ

∂xα
δxα

vα(x) → Λα µv
µ(Λx) =

(
δα µ + εα µ

)(
vµ(x) +

∂vµ

∂xβ
δxβ

)
vα(x) → vµ(Λx)

(
Λ−1

)µ
α

=

(
vµ(x) +

∂vµ
∂xβ

δxβ
)

(δµ α − εµ α)

Other types of fields have other transformation properties. Notice the use of the inverse Lorentz transfor-
mation for covariant vectors. This follows from the Lorentz invariance of vαvα. The infinitesimal expression
δµ α − εµ α is easily shown to be the inverse to δα µ + εα µ to first order in epsilon.

Example 1: Scalar field

Energy-momentum:

Tµν ≡ ηναTµ α

= ηνα
∂L

∂ (∂µφ)

∂φ

∂xα
− Lηµν

Since

L =
1

2

(
∂µφ∂µφ−m2φ2

)
∂L

∂ (∂µφ)
= ∂µφ
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we have

Tµν = ∂µφ∂νφ− 1

2
ηµν

(
∂αφ∂αφ−m2φ2

)
(1.39)

and we check explicitly that the divergence vanishes,

∂µT
µν = ∂µ∂

µφ∂νφ+ ∂µφ∂µ∂
νφ− 1

2
∂ν
(
∂αφ∂αφ−m2φ2

)
= �φ∂νφ+ ∂µφ∂µ∂

νφ− ∂ν∂αφ∂αφ+m2φ∂νφ

=
(
�φ+m2φ

)
∂νφ

= 0

Angular momentum: Let’s find the general form. First note that the variation of the Lagrangian density
is a total divergence,

δ∆L =
(
∂µφ∂µ∂αφ−m2φ∂αφ

)
εα νx

ν

=
1

2
∂α
(
∂µφ∂µφ−m2φ2

)
εα νx

ν

= ∂αL εα νx
ν

= ∂α (L εα νx
ν)

Therefore, the variation of the action restricted to the symmetry is a pure surface term, δ∆S =
´
∂α (Laα).

Now find the general variation of the action and impose the Euler-Lagrange field equations, which gives a
surface term as before,

δS =

ˆ
d4x∂µ

(
∂L

∂ (∂µφ)
δ∆φ

)
=

ˆ
d4x∂µ

(
∂L

∂ (∂µφ)
∂αφ ε

α
νx

ν

)
This must equal the integral of the variation of L

ˆ
d4x∂µ (L εµ νx

ν) =

ˆ
d4x∂µ

(
∂L

∂ (∂µφ)
∂αφ ε

α
νx

ν

)
so we have the vanishing divergence

0 = ∂µ

(
∂L

∂ (∂µφ)
∂αφ ε

α
νx

ν − L εµ νx
ν

)
= ∂µ

((
∂L

∂ (∂µφ)
∂αφ− Lδµα

)
εα νx

ν

)
= ∂µ (Tµα ε

α
νx

ν)

= ∂µ (εανT
µαxν)

= ∂µ

(
1

2
εαν (Tµαxν − Tµνxα)

)
Therefore, we define

Mαβν = Tαβ xν − Tαν xβ (1.40)

and drop the arbitrary antisymmetric constant 1
2εαν , it is conserved:

∂αM
αβν = 0 (1.41)
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Notice that if the stress-energy tensor is not symmetric, Mαβν is not conserved, because then we have

∂αM
αβν = ∂α

(
Tαβ xν − Tαν xβ

)
= ∂αT

αβ xν − ∂αTαν xβ + Tαβ∂α x
ν − Tαν∂α xβ

= Tαβδνα − Tανδβα
= T νβ − T βν

Therefore, we return to consider what to do when Tαβ is asymmetric.

1.1.6.3 Asymmetric stress-energy vector field (optional)

We will consider the case of a vector field, which may have an antisymmetric stress-energy tensor. For
example, let’s figure out the stress-energy tensor for the simplest actoin involving a complex vector field:

S =

ˆ
d4x

(
∂αv̄β∂αvβ

)
where v̄β is the complex conjugate of vβ . The stress-energy tensor is then

Tµβ =
∂L

∂ (∂µφA)
∂βφA − Lηµβ

=
∂L

∂ (∂µvα)
∂βvα − Lηµβ

= ∂µv̄α∂
βvα − Lηµβ

The first term can be antisymmetric:

Tµν − Tνµ = ∂µv̄α∂νv
α − ∂ν v̄α∂µvα 6= 0

It is easy to write down other asymmetric examples.
To handle this case, we will compute the variations in a slightly different way. For vectors (and other

rank tensors) there are two ways to look at Lorentz transformations. First, like the scalar field, we have the
coordinate dependence,

xα → Λα βx
β

which induces a change in vα(x). Second, since vα is a Lorentz vector, the vector itself transforms according
to

vα → Λα βv
β

This transformation law is the definition of a Lorentz vector; similarly, Lorentz tensors are objects with any
number of indices, which transform linearly and homogeneously under Lorentz transformations:

Tα...β → Λα µ . . .Λ
β
νT

µ...ν

Since covariant tensors (with lowered indices) transform by
(
Λ−1

)α
µ
, it is easy to build actions which

are invariant under this second form of transformation simply by making sure that every raised index is
contracted with a lowered index, and vice versa. For example, we have

vαvα → Λα βv
βvµ

(
Λ−1

)µ
α

=
(
Λ−1

)µ
α

Λα βv
βvµ

= δµ βv
βvµ

= vβvβ
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and the contraction is invariant.
The separate invariance of the theory under transformations of the fields and transformations of the

coordinates makes it possible to consider the two types of transformation independently. This simplifies the
calculations.

First, consider the transformation of a vector field without a change of coordinates:

vα(x) → Λα βv
β(x) = vα + εα βv

β

δvα = εα βv
β

Then for derivatives we have
∂µ (δvα) = εα β∂µv

β + (∂βv
α) εβ µ

The second term arises because the derivative of vα is a second rank tensor, and each index of a tensor must
be transformed. Now the variation of vα under a Lorentz transformation is

δ∆L =
∂L
∂vα

δ∆v
α +

∂L
∂ (∂µvα)

δ∆ (∂µv
α)

=
∂L
∂vα

(
εα βv

β
)

+
∂L

∂ (∂µvα)

(
εα β∂µv

β + (∂βv
α) εβ µ

)
=

∂L
∂vα

(
εα βv

β
)

+
∂L

∂ (∂µvα)
εα β∂µv

β +
∂L

∂ (∂µvα)
(∂βv

α) εβ µ

Because we are only considering the active transformation of the fields and not of the coordinates, the
Lagrangian density is invariant. So we can simply set δ∆L = 0 :

0 = δ∆L

=
∂L
∂vα

(
εα βv

β
)

+
∂L

∂ (∂µvα)
εα β∂µv

β +
∂L

∂ (∂µvα)
(∂βv

α) εβ µ

Now we assume a general variation, so we can use the field equations,

0 =
∂L
∂vα

− ∂µ
(

∂L
∂ (∂µvα)

)
We also use the expression for the stress-energy tensor.

Tµ α =
∂L

∂ (∂µvβ)
∂αv

β − Lδµα

Then, combining these with the vanishing symmetry variation,

0 =
∂L
∂vα

(
εα βv

β
)

+
∂L

∂ (∂µvα)
εα β∂µv

β +
∂L

∂ (∂µvα)
(∂βv

α) εβ µ

= ∂µ

(
∂L

∂ (∂µvα)

)(
εα βv

β
)

+
∂L

∂ (∂µvα)
εα β∂µv

β +
(
Tµ β + Lδµβ

)
εβ µ

= ∂µ

(
∂L

∂ (∂µvα)

)(
εα βv

β
)

+
∂L

∂ (∂µvα)
εα β∂µv

β + Tµ βε
β
µ

= ∂µ

(
∂L

∂ (∂µvα)
vβ
)
εα β + Tµβεβµ

= ∂µ

(
∂L

∂ (∂µvα)
vβ
)
εα β +

1

2

(
Tµβ − T βµ

)
εβµ

where we used δµβε
β
µ = εβ β = 0. Notice the explicit appearance of the antisymmetric part of the stress-

energy tensor. Extract the arbitrary matrix εβµ :

0 =
1

2

(
∂µ

(
∂L

∂ (∂µvα)
vβ
)
− ∂µ

(
∂L

∂ (∂µvβ)
vα
)
−
(
Tαβ − T βα

))
εαβ

35



Since the expression contracted with εαβ is now explicitly antisymmetric we can drop the εαβ .

0 = ∂µ

(
∂L

∂ (∂µvα)
vβ
)
− ∂µ

(
∂L

∂ (∂µvβ)
vα
)
−
(
Tαβ − T βα

)
(1.42)

This is our first result.
Eq.(1.42) gives us the tool we need to construct a new, symmetric form of the stress energy tensor. To

see why, suppose we have any tensor Σµαβ which is antisymmetric on the first two indices,

Σµαβ = −Σαµβ

Then its divergence ∂µΣµαβ is automatically divergence free:

∂α∂µΣµαβ = 0

This follows because the mixed partials are symmetric on µα while sigma is antisymmetric. Therefore,

Θαβ = Tαβ + ∂µΣµαβ

is conserved as long as Tαβ is. In addition, Θαβ will be symmetric provided

0 = Θαβ −Θβα

= Tαβ + ∂µΣµαβ − T βα − ∂µΣµβα

Let’s find what Σµαβ must be. If we define

λµαβ =
∂L

∂ (∂µvα)
vβ

then the condition of Lorentz symmetry, eq.(1.42), may be written more compactly:

Tαβ − T βα = ∂µλ
µαβ − ∂µλµβα

Therefore, we have two conditions on Σµβα :

∂µΣµβα − ∂µΣµαβ = Tαβ − T βα

= ∂µλ
µαβ − ∂µλµβα

and

Σµαβ = −Σαµβ

It is sufficient (but not necessary) to drop the divergence on each term of the first equation. Then

Σµβα − Σµαβ = λµαβ − λµβα

Σµαβ = −Σαµβ

This is not hard to sort out if you know the trick. Write the first equation three times, permuting the indices
each time:

Σµβα − Σµαβ = λµαβ − λµβα

Σβαµ − Σβµα = λβµα − λβαµ

Σαµβ − Σαβµ = λαβµ − λαµβ
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Each of these is a correct equation, so we can combine them freely. The trick is to add the first two equations
and subtract the third. For the left side this gives

LHS = Σµβα − Σµαβ + Σβαµ − Σβµα − Σαµβ + Σαβµ

=
(
Σµβα − Σβµα

)
−
(
Σµαβ + Σαµβ

)
+
(
Σβαµ + Σαβµ

)
= 2Σµβα

Where we use our second condition, the antisymmetry of sigma on the first two indices. Since the right hand
side is just

RHS = λβµα − λβαµ + λµαβ − λµβα − λαβµ + λαµβ

we have solved for the required form of sigma:

Σµβα =
1

2

(
λβµα − λβαµ + λµαβ − λµβα − λαβµ + λαµβ

)
Therefore, the symmetric form of the stress energy is (interchanging α and β to get the right form):

Θαβ = Tαβ + ∂µΣµαβ

= Tαβ +
1

2
∂µ
(
λαµβ − λαβµ + λµβα − λµαβ − λβαµ + λβµα

)
where

λµαβ =
∂L

∂ (∂µvα)
vβ

This object is called the Belinfante tensor (see Weinberg, vol I, p. 316; ref to Belinfante, Physica 6, 887
(1939)).

If we substitute this expression for Tαβ in the equation for Lorentz invariance we now get zero automat-
ically:

∂µλ
µαβ − ∂µλµβα −

(
Tαβ − T βα

)
= ∂µλ

µαβ − ∂µλµβα + ∂µΣµαβ − ∂µΣµβα

= 0

What has happened to the conservation law? We replaced Tαβ by Θαβ and we still have ∂αΘαβ = 0
for translation invariance, but what about Lorentz invariance? The answer lies in the remaining part of the
calculation, namely, the coordinate transformations. We considered only the invariance of the Lagrangian
density under Lorentz transformations of the fields, but not under transformations of the coordinates. We
can demand both. Therefore, we now consider what happens when we let

δxβ = εβ νx
ν

as we did for the scalar field.
The symmetry variation of the Lagrangian for this case is simply

δ∆L =
∂L
∂xα

δ∆x
α =

∂L
∂xα

εα βx
β

Now, quite generally, Lagrangian densities depend directly on the coordinates only in the volume density,
and it is not hard to show that the volume density is Lorentz invariant. Any other dependence is through
the fields using the chain rule

δ∆L ∼ ∂L
∂vα

∂vα

∂xµ
δxµ +

∂L
∂ (∂βvα)

∂µ∂βv
αδxµ

=
∂L
∂vα

δvα +
∂L

∂ (∂βvα)
δ (∂βv

α)
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and these have already been set to zero. Therefore, ∂ L
∂xα = 0 and the variation gives zero, δ∆L = 0. Therefore

(∂µL) εµ βx
β = 0

We expand this expression and use the field equations

0 = ∂µLεµ βx
β

=

(
∂L
∂vα

∂µv
α +

∂L
∂ (∂βvα)

∂µ∂βv
α

)
εµ νx

ν

=

(
∂β

(
∂L

∂ (∂βvα)

)
∂µv

α +
∂L

∂ (∂βvα)
∂µ∂βv

α

)
εµ νx

ν

=

(
∂α

(
∂L

∂ (∂αvν)
∂βvν

))
εβρx

ρ

Next, let’s use the definition of the symmetric stress-energy tensor,

Θαβ = Tαβ + ∂µΣµαβ

=
∂L

∂ (∂αvν)
∂βvν − Lηαβ + ∂µΣµαβ

or

∂L
∂ (∂αvν)

∂βvν = Θαβ + Lηαβ − ∂µΣµαβ

to replace this term. Substituting, we find

0 =

(
∂α

(
∂L

∂ (∂αvν)
∂βvν

))
εβρx

ρ

=
(
∂α
(
Θαβ + Lηαβ − ∂µΣµαβ

))
εβρx

ρ

=
(
∂αΘαβ + ∂αLηαβ − ∂α∂µΣµαβ

)
εβρx

ρ

=
(
∂αΘαβ + ∂αLηαβ

)
εβρx

ρ

= ∂αΘαβεβρx
ρ + ∂α

(
Lεα ρx

ρ
)

But the second term vanishes:

∂α
(
Lεα ρx

ρ
)

= (∂αL) εα βx
β + Lεα β

∂xβ

∂xα

= Lεβ β = 0

so we are left with

0 =
(
∂αΘαβ

)
εβρx

ρ

= ∂α
(
Θαβεβρx

ρ
)
−
(
Θαβεβρ∂αx

ρ
)

= ∂α
(
Θαβεβρx

ρ
)
−Θαβεβα

Now, since Θαβ is symmetric by construction, the second term is zero, leaving

0 = ∂α
(
Θαβεβρx

ρ
)

= εβρ∂α
(
Θαβxρ

)
=

1

2
εβρ∂α

(
Θαβxρ −Θαρxβ

)
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and therefore arrive at our conservation law:

Mαβρ = Θαβxρ −Θαρxβ

∂αM
αβρ = 0

Finally, consider the possible conserved currents. If we integrate M0αβ as usual, we get

Jαβ =

ˆ
M0αβd3x

=

ˆ (
Θ0αxβ −Θ0βxα

)
d3x

There are six independent components here, since M0αβ , and therefore Jαβ , is antisymmetric under inter-
change of α and β. These correspond to the three rotations and three boosts of the Lorentz transformations.
The rotations are the spatial components, (i, j = 1, 2, 3),

J ij =

ˆ
M0ijd3x

=

ˆ (
Θ0ixj −Θ0jxi

)
d3x

Notice that these do not depend explicitly on the time coordinate and that the components Θ0i of the
stress-energy generate momentum. The expression is much like the usual r× p form of angular momentum.
The remaining independent charges are

J0i =

ˆ
M00id3x

=

ˆ (
Θ00xi −Θ0ix0

)
d3x

These depend on energy and time, and generate boosts.
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Chapter 2

Group theory

2.1 Groups
Nearly all of the central symmetries of modern physics are group symmetries, for simple a reason. If we
imagine a transformation of our fields or coordinates, we can look at linear versions of those transformations.
Such linear transformations may be represented by matrices, and therefore (as we shall see) even finite
transformations may be given a matrix representation. But matrix multiplication has an important property:
associativity. We get a group if we couple this property with three further simple observations: (1) we expect
two transformations to combine in such a way as to give another allowed transformation, (2) the identity
may always be regarded as a null transformation, and (3) any transformation that we can do we can also
undo. These four properties (associativity, closure, identity, and inverses) are the defining properties of a
group.

We begin with a very basic sketch of groups and Lie groups. The remainder of the chapter, of great
importance in field theory, is the development of spinors.

Define: A group is a pair G = {S, ?} where S is a set and ? is an operation mapping pairs of elements in S
to elements in S (i.e., ? : S ? S → S. This implies closure) and satisfying the following conditions:

1. Existence of an identity: ∃ e ∈ S such that e ? a = a ? e = a, ∀a ∈ S.

2. Existence of inverses: ∀ a ∈ S, ∃ a−1 ∈ S such that a ? a−1 = a−1 ? a = e.

3. Associativity: ∀ a, b, c ∈ S, a ? (b ? c) = (a ? b) ? c = a ? b ? c

We consider several examples of groups.

1. The simplest group is the familiar boolean one with two elements S = {0, 1} where the operation ? is
addition modulo two. Then the “multiplication” table is simply

[+2] 0 1
0 0 1
1 1 0

The element 0 is the identity, and each element is its own inverse. This is, in fact, the only two element
group, for suppose we pick any set with two elements, S = {a, b}. The multiplication table is of the
form

? a b
a
b
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One of these must be the identity; without loss of generality we choose a = e. Then

? a b
a a b
b b

Finally, since b must have an inverse, and its inverse cannot be a(for then ab = a implies a (ab) =
(aa) b = b so that a = b) we must fill in the final spot with the identity, thereby making b its own
inverse:

? a b
a a b
b b a

Comparing to the boolean table, we see that a simple renaming, a→ 0, b→ 1 reproduces the boolean
group. Such a one-to-one mapping between groups that preserves the group product is called an
isomorphism.

2. Let G = {Z,+}, the integers under addition. For all integers a, b, c we have a + b ∈ R (closure);
0 +a = a+ 0 = a (identity); a+ (−a) = 0 (inverse); a+ (b+ c) = (a+ b) + c (associativity). Therefore,
G is a group. The integers also form a group under addition mod p, where p is any integer (Recall that
a = bmod p if there exists an integer n such that a = b+ np).

3. Let G = {R,+}, the real numbers under addition. For all real numbers a, b, c we have a + b ∈ R
(closure); 0 + a = a+ 0 = a (identity); a+ (−a) = 0 (inverse); a+ (b+ c) = (a+ b) + c (associativity).
Therefore, G is a group. Notice that the rationals, Q, do not form a group under addition because
they do not close under addition:

π = 3 + .1 + .04 + .001 + .0005 + .00009 + . . .

Exercise: Find all groups (up to isomorphism) with three elements. Find all groups (up to isomorphism)
with four elements.

2.2 Lie groups
Of course, the real numbers form a much nicer object than a group. The form a complete Archimedean
field. But for our purposes, they form one of the easiest examples of yet another object: a Lie group. The
following definition is sufficient for our purposes.

Define: A Lie group is a group which is also a manifold. Essentially, this means that a Lie group is a group
in which the elements can be labeled by a finite set of continuous labels. Qualitatively, a manifold
is a space that is smooth enough that if we look at any sufficiently small region, it looks just like a
small region of Rn; the dimension n is fixed over the entire manifold. We will not go into the details
of manifolds here, but instead will look at enough examples to get across the general idea.

Define: A representation of a Lie group is a space on which the group acts. We are particularly interested
in linear representations, for which this space is a vector space. A linear representation, in order to
map vectors to vectors, may therefore be written as a matrix.

The real numbers form a Lie group because each element of R provides its own label! Since only one label
is required, R is a 1-dimensional Lie group. The way to think of R as a manifold is to picture the real line.
Some examples:

1. The vector space Rn under vector addition is an n-dim Lie group, since each element of the group may
be labeled by n real numbers.
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2. Let’s move to something more interesting. The set of non-degenerate linear transformations of a real,
n-dimensional vector space forms a Lie group. This one is important enough to have its own name:
GL(n;R), or more simply, GL(n) where the field (usually R or C) is unambiguous. The GL stands for
General Linear. The transformations may be represented by n×n matrices with nonzero determinant.
Since for any A ∈ GL(n;R) we have detA 6= 0, the matrix A is invertible. The identity is the identity
matrix, and it is not too hard to prove that matrix multiplication is always associative. Since each A
can be written in terms of n2 real numbers, GL(n) has dimension n2. GL(n) is an example of a Lie
group with more than one connected component. We can imagine starting with the identity element
and smoothly varying the parameters that define the group elements, thereby sweeping out curves in
the space of all group elements. If such continuous variation can take us to every group element, we
say the group is connected. If there remain elements that cannot be connected to the identity by such
a continuous variation (actually a curve in the group manifold), then the group has more than one
component. GL(n) is of this form because as we vary the parameters to move from element to element
of the group, the determinant of those elements also varies smoothly. But since the determinant of
the identity is 1 and no element can have determinant zero, we can never get to an element that has
negative determinant. Any elements of GL(n) with negative determinant are related to those of positive
determinant by a discrete transformation: if we pick any element of GL(n) with negative determinant,
and multiply it by each element of GL(n) with positive determinant, we get a new element of negative
determinant. This shows that the two components of GL(n) are in 1 to 1 correspondence. In odd
dimensions, a suitable 1 to 1 mapping is given by −1, which is called the parity transformation.

3. We will be concerned with Lie groups that have linear representations. This means that each group
element may be written as a matrix and the group multiplication is correctly given by the usual form of
matrix multiplication. Since GL(n) is the set of all linear, invertible transformations in n-dimensions,
all Lie groups with linear representations must be subgroups of GL(n). We now look at two principled
ways of constructing such subgroups. The simplest subgroup of GL(n) removes the second component
to give a connected Lie group. In fact, it is useful to factor out the determinant entirely, because the
operation of multiplying by a constant commutes with every other transformation of the group. In this
way, we arrive at a simple group, one in which each transformation has nontrivial effect on some other
transformations. For a general matrix A ∈ GL(n) with positive determinant, let

A = (detA)
1
n Â

Then det Â = 1. Since
det
(
ÂB̂
)

= det Â det B̂ = 1

the set of all Â closes under matrix multiplication. We also have det Â−1 = 1, and det 1 = 1, so the
set of all matrices with unit determinant,

{
Â
∣∣∣det Â = 1

}
forms a Lie group. This group is called the

Special Linear group, SL(n).

Frequently, the most useful way to characterize a group is by a set of objects that group transformations
leave invariant. In this way, we produce the orthogonal, unitary and symplectic groups:

Theorem: Consider the subset of GL(n;R) that leaves a fixed matrix, M , invariant under a similarity
transformation:

H =
{
A|A ∈ GL(n), AMAt = M

}
Then H is also a Lie group.

Proof: First, H is closed, since if both

AMAt = M

BMBt = M
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then the product AB is also in H because

(AB)M(AB)t = (AB)M(BtAt)

= A
(
BMBt

)
At

= AMAt

= M

The identity is present because IMIt = M and if any A leaves M invariant then so does A−1. To see
this, notice that (At)

−1
=
(
A−1

)t because the transpose of

(A)
−1
A = I

is
At
(

(A)
−1
)t

= I

Since it is easy to show (exercise!) that inverses are unique, this shows that
(

(A)
−1
)t

must be the
inverse of At. Using this, we start with

AMAt = M

and multiply on the left by A−1 and on the right by (At)
−1

:

A−1AMAt
(
At
)−1

= A−1M
(
At
)−1

M = A−1M
(
At
)−1

M = A−1M
(
A−1

)t
The last line is the statement that A−1 leaves M invariant, and is therefore in H. Finally, we still have
the associative matrix product, so H is a group, concluding our proof.

Now, fix a (nondegenerate) matrix M and consider the group that leaves M invariant. Suppose M is
asymmetrical, so it has both symmetric and antisymmetric parts:

M =
1

2

(
M +M t

)
+

1

2

(
M −M t

)
≡ Ms +Ma

Then, for any A in H,
AMAt = M

implies
A (Ms +Ma)At = (Ms +Ma) (2.1)

The transpose of this equation must also hold,

A (Ms −Ma)At = (Ms −Ma) (2.2)

so adding and subtracting eqs.(2.1) and (2.2) gives two independent constraints on A :

AMsA
t = Ms

AMaA
t = Ma

Imposing both of these together is a stronger constraint than each separately, so the largest subgroupsHs and
Ha of G that we can form in this way are found by demanding thatM be either symmetric or antisymmetric.

If M is symmetric, then we can always choose a basis for the vector space on which the transformations
act (the representation) such that M is diagonal; indeed we can go further, for rescaling the basis we can
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make every diagonal element into +1 or −1. Therefore, any non-degenerate, symmetric M may be put in
the form

ηij =



1
. . .

1
−1

. . .
−1


(2.3)

where there are p terms +1 and q terms −1. We can use η as a pseudo-metric; in components, for any vector
vi,

〈v, v〉 = ηijv
ivj =

p∑
i=1

(
vi
)2 − p+q∑

i=p+1

(
vi
)2

Notice that this includes the O(1, 3) Lorentz metric of the previous section, as well as the O(3) case of
Euclidean 3-space. In general, the subgroup of GL(n) leaving Mp,q invariant is termed O(p, q), the pseudo-
orthogonal group in n = p+ q dimensions. The signature of η is s = p− q or simply (p, q).

Now suppose M is antisymmetric. This case arises in classical Hamiltonian dynamics, where we have
canonically conjugate variables satisfying fundamental Poisson bracket relations.

{qi, qj}xπ = {pi, pj}xπ = 0

{pi, qj}xπ = − {qi, pj}xπ = δij

If we define a single set of coordinates including both pi and qi,

ξa = (qi, pj)

where if i, j = 1, 2, . . . , n then a = 1, 2, . . . , 2n, then the fundamental brackets may be written in terms of an
antisymmetric matrix Ωab as

{ξa, ξb} = Ωab

where
Ωab =

(
0 −δij
δij 0

)
= −Ωba (2.4)

Since canonical transformations are precisely the coordinate transformations that preserve the fundamental
brackets, we can define a group of symplectic transformations which preserve Ωab. Then canonical transfor-
mations are local symplectic transformations. In general, the subgroup of GL(n) preserving an antisymmetric
matrix is called the symplectic group. We have a similar result here as for the (pseudo-) orthogonal groups
– we can always choose a basis for the vector space that puts the invariant matrix Ωab in the form given
in eq.(2.4). From the form of eq.(2.4) we suspect, correctly, that the symplectic group is always even di-
mensional (the determinant of an antisymmetric matrix in odd dimensions is always zero, so we cannot
have a non-degenerate, odd-dimensioned, antisymmetric matrix). The notation for the symplectic groups is
therefore Sp(2n).

For either the orthogonal or symplectic groups, we can consider the unit determinant subgroups. Espe-
cially important are the resulting Special Orthogonal groups, SO(p, q).

We give one particular example that will be useful to illustrate Lie algebras in the next section. The very
simplest case of an orthogonal group is O(2), leaving

η =

(
1 0
0 1

)
invariant. Equivalently, O(2) leaves the Euclidean norm

〈x,x〉 = Mijx
ixj = x2 + y2
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invariant. The form of O(2) transformations is the familiar set of rotation matrices,

A(θ) =

(
cos θ − sin θ
sin θ cos θ

)
and we see that every group element is labeled by a continuous parameter θ lying in the range θ ∈ [0, 2π).
The group manifold is the set of all of the group elements regarded as a geometric object. From the range
of θ we see that there is one group element for every point on a circle – the group manifold of O(2) is the
circle. Note the inverse of A(θ) is just A(−θ) and the identity is A(0). All of the transformations of O(2)
already have unit determinant, so that SO(2) and O(2) are isomorphic.

2.3 Lie algebras
If we want to work with more complicated Lie groups, working directly with the transformation matrices
becomes prohibitively difficult. Instead, most of the information we need to know about the group is
already present in the infinitesimal transformations. Unlike the group multiplication, the combination of the
infinitesimal transformations is usually fairly simple. This is why, in the previous section, we worked with
infinitesimal Lorentz transformations. Here we start with the simpler case of O (2) to develop some of the
ideas further.

2.3.1 The simplest example: O(2)
Consider those transformations of O (2) that are close to the identity. Since the identity is A(0), these will
be the transformations A(ε) with ε << 1. Expanding in a Taylor series, we keep only terms to first order:

A(ε) =

(
cos ε − sin ε
sin ε cos ε

)
≈
(

1 −ε
ε 1

)
= 1 + ε

(
0 −1
1 0

)
The only information here besides the identity is the matrix

G =

(
0 −1
1 0

)
but remarkably, this is enough to recover the whole group! The matrix G is the single generator of O (2).
For general Lie groups, we get one generator for each continuous parameter labeling the group elements.
The set of all linear combinations of these generators is a vector space called the Lie algebra of the group, so
that the Lie algebra of O (2) is {θG| θ ∈ [0, 2π).}. We give the full defining set of properties of a Lie algebra
below.

Imagine iterating this infinitesimal group element many times. Applying A(ε) n times rotates the plane
by an angle nε :

A(nε) = (A(ε))
n

=

(
1 + ε

(
0 −1
1 0

))n
Expanding the power on the right using the binomial expansion,

A(nε) ≈
n∑
k=0

(
n

k

)(
0 −1
1 0

)k
εk1n−k

To make the equality rigorous, we must take the limit as ε → 0 and n → ∞, holding the product nε = θ
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finite. Then:

A(θ) = lim
ε→0,nε→θ

n∑
k=0

(
n

k

)(
0 −1
1 0

)k
εk

= lim
ε→0

n∑
k=0

n!

k! (n− k)!

(
0 −1
1 0

)k
εk

= lim
ε→0

n∑
k=0

n (n− 1) · · · (n− k + 1)

k!
εk
(

0 −1
1 0

)k
= lim

ε→0

n∑
k=0

1
(
1− 1

n

)
· · ·
(
1− k−1

n

)
k!

(nε)
k

(
0 −1
1 0

)k
=

∞∑
k=0

1

k!
θk
(

0 −1
1 0

)k
≡ exp

((
0 −1
1 0

)
θ

)
where in the last step we define the exponential of a matrix to be the power series in the second to last line.
Quite generally, since we know how to take powers of matrices, we can define the exponential of any matrix,
N, by its power series:

expN ≡
∞∑
k=0

1

k!
Nk

Thus, every element A (θ) ∈ O (2) is the exponential of an element of the Lie algebra,

A (θ) = eθG (2.5)

This turns out to be a general property of Lie groups and Lie algebras, though the relationship is not quite
one to one.

Next, we check that the exponential form of A(θ) actually is the original class of transformations. To do

this we first examine powers of
(

0 −1
1 0

)
:

(
0 −1
1 0

)2

=

(
−1 0
0 −1

)
= −1(

0 −1
1 0

)3

= −
(

0 −1
1 0

)
(

0 −1
1 0

)3

= 1

The even terms are plus or minus the identity, while the odd terms are always proportional to the generator,(
0 −1
1 0

)
. Therefore, we divide the power series into even and odd parts, and remove the matrices from
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the sums:

A(θ) =

∞∑
k=0

1

k!

(
0 −1
1 0

)k
θk

=

∞∑
m=0

1

(2m)!

(
0 −1
1 0

)2m

θ2m +

∞∑
m=0

1

(2m+ 1)!

(
0 −1
1 0

)2m+1

θ2m+1

= 1

( ∞∑
m=0

(−1)
m

(2m)!
θ2m

)
+

(
0 −1
1 0

) ∞∑
m=0

(−1)
m

(2m+ 1)!
θ2m+1

= 1 cos θ +

(
0 −1
1 0

)
sin θ

=

(
cos θ − sin θ
sin θ cos θ

)
The generator has given us the whole group back.

2.3.2 A non-abelian example: SO(3)
To begin to see the power of this technique, let’s look at SO(3), the subgroup of elements of O(3) with unit
determinant.

The generators of SO(3) may be found from the property of leaving the matrix (Euclidean metric),

gij =

 1
1

1


invariant:

gijA
i
mA

j
n = gmn

Just as in the Lorentz case in the previous chapter, this is equivalent to preserving the proper length of
vectors. Thus, the transformation

yi = Ai mx
m

is a rotation if it preserves the length-squared:

gijy
iyj = gijx

ixj

Substituting, we get

gmnx
mxn = gij

(
Ai mx

m
) (
Aj nx

n
)

=
(
gijA

i
mA

j
n

)
xmxn

Since xm is arbitrary, we can turn this into a relation between the transformations and the metric, gmn, but
we have to be careful with the symmetry since xmxn = xnxm. It isn’t a problem here because both sets of
coefficients are also symmetric:

gmn = gnm

gijA
i
mA

j
n = gjiA

j
mA

i
n

= gjiA
i
nA

j
m

= gijA
i
nA

j
m

Therefore, we can strip off the xs and write

gmn = gijA
i
mA

j
n
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This is the most convenient form of the definition of the group to use in finding the Lie algebra. For future
reference, we note that the inverse to gij is written as gij ; it is also the identity matrix.

If we write the defining relationship as normal matrix multiplication by setting Ai m = [At]
i

m ,

gmn =
[
At
] i

m
gijA

j
n

we may treat the objects as matrices, g = AtgA. Furthermore, since in this case gmn is the identity matrix,
we may simply write

AtA = 1

Now we have

1 = det (1)

= det
(
At
)

det (A)

= (det (A))
2

so either detA = 1 or detA = −1. Defining the parity transformation to be the single operator

P =

 −1
−1

−1


then every element O of O(3) is of the form O = (detO)

1
n A or (detO)

1
n PA, where A is in SO(3).

As in the 2-dimensional case, we look at transformations close to the identity. Let

Ai j = δij + εi j

where all components of εi m are small. Then

gmn = gij
(
δim + εi m

) (
δjn + εj n

)
=

(
gijδ

i
m + gijε

i
m

) (
δjn + εj n

)
=

(
gmj + gjiε

i
m

) (
δjn + εj n

)
= (gmj + εjm)

(
δjn + εj n

)
= gmjδ

j
n + εjmδ

j
n + gmjε

j
n + εjmε

j
n

where we use the metric to lower an index on εi m. Cancelling gmn each side and dropping the term
quadratic in ε, we are left with

0 = εnm + εmn (2.6)

This shows that the the generators εmn must be antisymmetric:

εnm = −εmn (2.7)

We are dealing with 3× 3 matrices here, but note the power of index notation! There is actually nothing in
the preceeding calculation that is specific to n = 3, and we could draw all the same conclusions up to this
point for SO(p, q)). For the 3× 3 case, every antisymmetric matrix is of the form Next, we write the most
general antisymmetric 3× 3 matrix as a linear combination of a convenient basis,

ε = wiJi

= w1

 0 0 0
0 0 1
0 −1 0

+ w2

 0 0 −1
0 0 0
1 0 0

+ w3

 0 1 0
−1 0 0
0 0 0


=

 0 w2 −w3

−w2 0 w1

w3 −w1 0
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and therefore is a linear combination of the three generators

J1 =

 0 0 0
0 0 1
0 −1 0


J2 =

 0 0 −1
0 0 0
1 0 0


J3 =

 0 1 0
−1 0 0
0 0 0

 (2.8)

Notice that any three independent, antisymmetric matrices could serve as the generators. This is why the
Lie algebra is defined as the entire vector space

v1J1 + v2J2 + v3J3 = v · J

As we found for O (2), every element of SO (3) is of the form exp (v · J).
The three generators, Ji have been chosen so that their components are given by the Levi-Civita tensor,

[Ji]jk = εijk

where εijk is the totally antisymmetric Levi-Civita tensor. For example, [J1]ij = ε1ij =

 0 0 0
0 0 1
0 −1 0

.

Again we may use the generators to recover an arbitrary rotation. Starting with

O = 1 + ε

we may apply O repeatedly, taking the limit

O (θ) = lim
n−→∞

On

= lim
n−→∞

(1 + ε)
n

= lim
n−→∞

(
1 + wiJi

)n
Let ε be the length of the infinitesmal vector w, so that w = εn̂, where n̂ is a unit vector. Then the limit is
taken in such a way that

lim
n−→∞

nε = ϕ

where ϕ is finite. Using the binomial expansion, (a+ b)
n

=
∑n
k=0

n!
k!(n−k)!a

n−kbk and following the combi-
natoric argument that led to Eq.(2.5) we have

lim
n−→∞

[O (ε)]
n

=

∞∑
k=0

1

k!
(ϕn · J)

k

≡ exp (ϕn · J)

We now show that this is the matrix for a rotation through an angle ϕ around an axis in the direction of n.
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To find the detailed form of a general rotation, we now need to find powers of n ·J. This turns out to be
straightforward when we use the Levi-Civiat tensor:

[n · J]
j
k = niε j

i k[
(n · J)

2
]m
n

=
(
niε m

i k

) (
njε k

j n

)
= ninjε m

i kε
k
j n

= −ninjε m
i kε

k
jn

= −ninj
(
δijδ

m
n − δinδmj

)
= −

(
δijn

inj
)
δmn + δinn

iδmj n
j

= −δmn + nmnn

= − (δmn − nmnn)[
(n · J)

3
]m
n

= − (δmk − nmnk)niε ki n

= −δmkniε ki n + nmnkn
iε ki n

= −niε mi n + nmnkniεikn

= − [(n · J)]
m
n

where nmnkniεikn = nm (n× n) = 0. Notice that (δmn − nmnn) is a projection operator, since it is idempo-
tent,

(δmn − nmnn) (δnk − nnnk) = (δmk − nmnk − nmnk + nmnk) = (δmk − nmnk)

Noting that (δmn − nmnn)nn = 0, we infer that it projects out vectors orthogonal to n.
The powers come back to n · J with only a sign change, so we can divide the series into even and odd

powers. For all k > 0, [
(n · J)

2k
]m
n

= (−1)
k

(δmn − nmnn)[
(n · J)

2k+1
]m
n

= (−1)
k

[n · J]
m
n

For k = 0 we have the identity,
[
(n · J)

0
]m
n

= δmn.
We can now compute the exponential explicitly:

[O (ϕ, n̂)]
m
n = [exp (ϕn · J)]

m
n

=

[ ∞∑
k=0

1

k!
ϕk (n · J)

k

]m
n

=

[ ∞∑
l=0

1

(2l)!
ϕ2l (n · J)

2l

]m
n

+

[ ∞∑
l=0

1

(2l + 1)!
ϕ2l+1 (n · J)

2l+1

]m
n

= δmn + (δmn − nmnn)

∞∑
l=1

(−1)
l

(2l)!
ϕ2l + [n · J]

m
n

∞∑
l=0

(−1)
l

(2l + 1)!
ϕ2l+1

= δmn + (δmn − nmnn) (cosϕ− 1) + niε m
i n sinϕ

where we get (cosϕ− 1) because the l = 0 term is missing from the sum.
To see what this means, let O act on an arbitrary vector v, and write the result in normal vector notation,

[O (ϕ, n̂)]
m
n v

n = δmnv
n + (cosϕ− 1) (δmn − nmnn) vn + niε mi nv

n sinϕ

= vm + (cosϕ− 1) (vm − nmnnvn)− nivnε m
in sinϕ

= vm + (cosϕ− 1) (vm − (n · v)nm)− [n× v]
m

sinϕ
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Going fully to vector notation,

O (θ, n̂)v = v + (cos θ − 1) (v − (n · v)n)− (n× v) sin θ

Finally, define the components of v parallel and perpendicular to the unit vector n:

v‖ = (v · n)n

v⊥ = v − (v · n)n

In terms of these, the rotated vector becomes,

O (θ, n̂)v = v − (v − (v · n)n) + (v − (v · n)n) cos θ − sin θ (n× v)

= v‖ + v⊥ cos θ − sin θ (n× v) (2.9)

This expresses the rotated vector in terms of three mutually perpendicular vectors, v‖,v⊥, (n× v). The
direction n is the axis of the rotation. The part of v parallel to n is therefore unchanged. The rotation takes
place in the plane perpendicular to n, and this plane is spanned by v⊥, (n× v). The rotation in this plane
takes v⊥ into the linear combination v⊥ cos θ− (n× v) sin θ, which is exactly what we expect for a rotation
of v⊥ through an angle θ. The rotation O (θ, n̂) is therefore a rotation by θ around the axis n̂.

2.3.3 Definition of a Lie algebra
A Lie algebra has three defining properties.

Define: A Lie algebra is a finite dimensional vector space V together with a bilinear, antisymmetric (com-
mutator) product satisfying

1. For all u, v ∈ V, the product [u, v] = −[v, u] = w is in V.

2. All u, v, w ∈ V satisfy the Jacobi identity

[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0 (2.10)

These properties may be expressed in terms of a basis. Let {Ja|a = 1, . . . , n} be a vector basis for V. Then
we may compute the commutators of the basis,

[Ja, Jb] = wab

where for each a and each b, wab is some vector in V. We may expand each wab in the basis as well,

wab = c c
ab Jc

for some constants c c
ab . The c c

ab = −c c
ba are called the Lie structure constants. The basis then satisfies,

[Ja, Jb] = c c
ab Jc (2.11)

which is sufficient, using linearity, to determine the commutators of all elements of the algebra:

[u, v] =
[
uaJa, v

bJb
]

= uavb [Ja, Jb]

= uavbc c
ab Jc

= wcJc

= w
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Exercise: Show that the commutation relations of the three SO(3) generators, Ji, given in Eq.(2.8) are
given by

[Ji, Jj ] = ε k
ij Jk (2.12)

where ε k
ij = gkmεijm, and εijm is the 3-dimensional version of the totally antisymmetric Levi-Civita

tensor,

ε123 = ε231 = ε312 = 1

ε132 = ε321 = ε213 = −1

with all other components vanishing. See our discussion of invariant tensors in the section on special
relativity for further properties of the Levi-Civita tensors. In particular, you will need

εijkεimn = δjmδ
k
n − δjnδkm

Notice that most of the calculations above for SO(3) actually apply to any of the pseudo-orthogonal
groups SO(p, q). In the general case, the form of the generators is still given by the antisymmetry constraint
of Eq.(2.7), with gmn replaced by ηmn of eq.(2.3).

ηmn = ηij
(
δim + εi m

) (
δjn + εj n

)
= ηmn + ηniε

i
m + ηmjε

j
n

and using the metric to lower the index, εnm = ηniε
i
m, leading to

εnm = −εmn

so that the doubly covariant generators are still antisymmetric. The only difference is that the indices are
lowered with Mmn instead of gmn. Another difference occurs when we compute the Lie algebra because in
n-dimensions we no longer have the convenient form, εijm, for the Levi-Civita tensor. The Levi-Civita tensor
in n-dimensions has n indices, and does not simplify the Lie algebra expressions. Instead, we choose the
following set of antisymmetric matrices as generators:[

ε(rs)
]
mn

= (δrmδ
s
n − δrnδsm) (2.13)

The (rs) indices tell us which generator we are talking about, while the m and n indices are the matrix
components. To compute the Lie algebra, we need the mixed form of the generators,[

ε(rs)
]m

n
= ηmk

[
ε(rs)

]
kn

= ηmkδrkδ
s
n − ηmkδrnδsk

= ηmrδsn − ηmsδrn

We can now calculate the Lie algebra for any SO (p, q):[[
ε(uv)

]
,
[
ε(rs)

]]m
n

=
[
ε(uv)

]m
k

[
ε(rs)

]k
n
−
[
ε(rs)

]m
k

[
ε(uv)

]k
n

= (ηmuδvk − ηmvδuk )
(
ηkrδsn − ηksδrn

)
− (ηmrδsk − ηmsδrk)

(
ηkuδvn − ηkvδun

)
= ηmuηvrδsn − ηmuηvsδrn − ηmvηurδsn + ηmvηusδrn

−ηmrηsuδvn + ηmsηruδvn + ηmrηsvδun − ηmsηrvδun
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Rearranging to collect the terms as generators, note that each generator must have the free m and n indices,
while the structure constants depend only on u, v, r, s. Separating with this in mind, we get[[

ε(uv)
]
,
[
ε(rs)

]]m
n

= ηvr (ηmuδsn − ηmsδun)− ηvs (ηmuδrn − ηmrδun)

−ηur (ηmvδsn − ηmsδvn) + ηus (ηmvδrn − ηmrδvn)

= ηvr
[
ε(us)

]m
n
− ηvs

[
ε(ur)

]m
n
− ηur

[
ε(vs)

]m
n

+ ηus
[
ε(vr)

]m
n

Finally, we can drop the matrix indices. It is important that we can do this, because it demonstrates that
the Lie algebra is a relationship among the different generators that and not dependent on whether the
operators are written as matrices or not. The result, valid for any SO(p, q), is[

ε(uv), ε(rs)
]

= ηvrε(us) − ηvsε(ur) − ηurε(vs) + ηusε(vr) (2.14)

We will need this result when we study the Dirac matrices.

Exercise: Show that the SO(p, q) Lie algebra in eq.(2.14) reduces to the SO(3) Lie algebra in eq.(2.12)
when (p, q) = (3, 0). (Hint: go back to Eq.(2.14) and multiply the whole equation by εuvwεrst. Notice
that ηmn is just the identity gmn and that Ji = 1

2εijkε
(jk)).

2.3.4 From Lie groups to Lie algebras (optional)
Every Lie group gives rise to a Lie algebra as its vector space of infinitesimal generators. Conversely, the
properties of a Lie algebra guarantee that exponentiating the algebra gives a Lie group. The relationship is
not quite one-to-one, since any quotient of the exponentiated Lie algebra by a discrete subgroup gives a Lie
group with the same Lie algebra.

To see the relationship betwen the properties of Lie groups and those of Lie algebras, let’s work from the
group side. We have group elements that depend on continuous parameters, so we can expand g(a, b, . . . , c)
near the identity in a Taylor series:

g(x1, . . . , xn) = 1 +
∂g

∂xa
xa +

1

2

∂2g

∂xaxb
xaxb + . . .

≡ 1 + Jax
a +

1

2
Kabx

axb + . . .

Now consider the consequences of the properties of the group on the infinitesimal generators, Ja. First, there
exists a group product, which must close:

g(xa1)g
(
xb2
)

= g(xa3)

(1 + Jax
a
1 + . . .) (1 + Jax

a
2 + . . .) = 1 + Jax

a
3 + . . .

1 + Jax
a
1 + Jax

a
2 + . . . = 1 + Jax

a
3 + . . .

so that at linear order,
Jax

a
1 + Jax

a
2 = Jax

a
3

This requires the generators to combine linearly under addition and scalar multiplication. Next, we require
an identity operator. This just means that the zero vector lies in the space of generators, since g(0, . . . , 0) =
1 = 1 + Ja0a. For inverses, we have

g(xa1)g−1
(
xb2
)

= 1

(1 + Jax
a
1 + . . .) (1 + Jax

a
2 + . . .) = 1

1 + Jax
a
1 + Jax

a
2 = 1
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so that xa2 = −xa1 , guarantees an additive inverse in the space of generators. These properties together make
the set {xaJa} a vector space.

Now we need the commutator product. For this, consider the (closed!) product of group elements

g1g2g
−1
1 g−1

2 = g3

We need to compute this in a Taylor series to second order, so we need the inverse to second order.

Exercise: Show to second order that the inverse of

g ≡ 1 + Jax
a +

1

2
Kabx

axb + . . .

is
g−1 ≡ 1− Jbxb +

1

2
(JaJb + JbJa −Kab)x

axb + . . .

Now, expanding to second order in the Taylor series,

g3 = 1 + Jaz
a(x, y) +

1

2
Kabz

a(x, y)zb(x, y)

=

(
1 + Jax

a +
1

2
Kabx

axb
)(

1 + Jb y
b +

1

2
Kbcy

byc
)

×
(

1− Jcxc +

(
JcJd −

1

2
Kcd

)
xcxd

)(
1− Jdyd +

(
JdJe −

1

2
Kde

)
ydye

)

=

(
1 + Jbx

b + Jby
b + JaJbx

ayb +
1

2
Kbcy

byc +
1

2
Kabx

axb
)

×
(

1− Jdxd − Jdyd + JdJey
dye + JcJdx

cyd + JcJdx
cxd − 1

2
Kdey

dye − 1

2
Kcdx

cxd
)

= 1− Jdxd − Jdyd + JdJey
dye + JcJdx

cyd + JcJdx
cxd

−1

2
Kdey

dye − 1

2
Kcdx

cxd +
(
Jbx

b + Jby
b
) (

1− Jdxd − Jdyd
)

+JaJbx
ayb +

1

2
Kbcy

byc +
1

2
Kabx

axb

Collecting terms,

g3 = 1 + Jaz
a(x, y) + · · ·

= 1− Jdxd − Jdyd + Jbx
b + Jby

b + JdJey
dye + JcJdx

cyd + JcJdx
cxd − JbJdxbxd − JbJdybxd

−JbJdxbyd − JbJdybyd + JaJbx
ayb +

1

2
Kbcy

byc +
1

2
Kabx

axb − 1

2
Kdey

dye − 1

2
Kcdx

cxd

= 1 + JcJdx
cyd − JbJdybxd

= 1 + JcJdx
cyd − JdJcxcyd

= 1 + [Jc, Jd]x
cyd

Equating the expansion of g3 to the collected terms we see that we must have za such that

[Jc, Jd]x
cyd = Jaz

a(x, y)

Since xc and yd are arbitrary, za must be bilinear in them:

za = xcydc a
cd
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and we have derived the need for a commutator product for the Lie algebra,

[Jc, Jd] = c a
cd Ja

Finally, the Lie group is associative: if we have three group elements, g1, g2 and g3, then

g1 (g2g3) = (g1g2) g3

This is not easy to expand, since the relationship we seek among the generators must be third order. We
would need to expand each group element to third order to find the necessary terms. However, since we
are principally interested in linear representations, the generators will be matrices and therefore associative.
This is already a stronger condition than the Jacobi identity.

Exercise: To show the sufficiency (but not the necessity!) of associative generators, assume the generators
are associative and confirm that the Jacobi identity,

0 = [Ja, [Jb, Jc]] + [Jb, [Jc, Ja]] + [Jc, [Ja, Jb]]

holds identically.

To carry out a proof that the Jacobi identity is the necessary and sufficient condition for the Lie algebra
to extend to a Lie group, it is easiest to rewrite the Lie commutator using differential forms dual to the
generators. This gives a differential equation, the Maurer-Cartan equation for the Lie group, and the Jacobi
identity is easily shown to be the integrability condition for the Maurer-Cartan equation.

With this, the definition of a Lie algebra is a necessary consequence of being built from the infinitesimal
generators of a Lie group. The conditions are also sufficient, though we won’t give the proof here.

The correspondence between Lie groups and Lie algebras is not one to one, because in general several
Lie groups may share the same Lie algebra. However, groups with the same Lie algebra are related in a
simple way. Our example above of the relationship between O(3) and SO(3) is typical – these two groups
are related by a discrete symmetry. Since discrete symmetries do not participate in the computation of
infinitesimal generators, they do not change the Lie algebra. The central result is this: for every Lie algebra
there is a unique maximal Lie group called the covering group such that every Lie group sharing the same
Lie algebra is the group quotient of the covering group by a discrete symmetry group. This result suggests
that when examining a group symmetry of nature, we should always look at the covering group in order to
extract the greatest possible symmetry. Following this suggestion for Euclidean 3-space and for Minkowski
space leads us directly to the use of spinors.

In the next section, we discuss spinors in three way spinors. The first two make use of convenient
tricks that work in low dimensions (2, 3 and 4), and provide easy ways to handle rotations and Lorentz
transformations. The third treatment is begins with Dirac’s development of the Dirac equation, which leads
us to the introduction of Clifford algebras.

2.4 Spinors for rotations
When we work with linear representations of Lie groups and Lie algebras, it is important to keep track of the
representation – the vector space on which the group acts. In the case of O(3), the vector space is Euclidean
3-space, while for Lorentz transformations the vector space is spacetime. As we shall see in this section, the
covering groups of these same symmetries act on other, more abstract, complex vector spaces. The elements
of these complex vector spaces are called spinors.

2.4.1 A complex representation for real 3-vectors
Let’s start with SO(3), the group which preserves the lengths, x2 = x2 + y2 + z2 = gijx

ixj of Euclidean
3-vectors. We can encode this length as the determinant of a matrix. Let the real 3-vector x = (x, y, z) be
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represented as the matrix

X ≡
(

z x− iy
x+ iy −z

)
(2.15)

Then the determinant of X is
detX = −

(
x2 + y2 + z2

)
This fact is useful because matrices of this type are easy to characterize. Let

M =

(
α β
γ δ

)
be any matrix with complex entries, and demand hermiticity, M = M† :

M = M†(
α β
γ δ

)
=

(
α∗ γ∗

β∗ δ∗

)
Then α→ a is real, δ → d is real, and β = γ∗. Only γ = b+ ic remains arbitrary, so that

M =

(
a b− ic

b+ ic d

)
(2.16)

If we further require M to be traceless, then M reduces to

M =

(
a b− ic

b+ ic −a

)
just the same as X. Therefore, X is a general traceless, Hermitian 2× 2 matrix.

2.4.2 SU(2)
Rotations may now be characterized as the set of transformations of X preserving the following properties
of X :

1. detX = − |x|2

2. X† = X

3. tr (X) = 0

To find the set of such transformations, recall that matrices transform by a similarity transformation

X → X ′ = AXA†

Here we use the adjoint instead of the inverse because we imagine X as doubly covariant, Xij . For the mixed
form, Xi

j we would write X → AXA−1. We use the adjoiont instead of the transpose because we allow X
to be complex.

From this form, we have:

detX ′ = det
(
AXA†

)
= (detA) (detX)

(
detA†

)
so in order to have detX ′ = detX we demand |detA|2 = 1 so that for some real ϕ,

detA = eiϕ
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We can constrain this further, because if we write

A = eiϕ/2U

where detU = 1 then

X ′ = AXA†

= eiϕ/2UXe−iϕ/2U†

= UXU†

That is, without loss of generality, we can take the determinant to be one because an overall phase has no
effect on X.

Next, notice that hermiticity is automatic. Whenever X is hermitian we have

(X ′)
†

=
(
AXA†

)†
= A††X†A†

= AXA†

= X ′

so X ′ is also hermitian.
Finally, we impose the trace condition. Suppose tr(X) = 0. Then

tr(X ′) = tr(AXA†) = tr(A†AX)

where we use the cyclic property of the trace. For the final expression to reduce to tr(X) for all X, we must
have A†A = 1. Therefore, A† = A−1 and the transformations must be unitary. Using the unit determinant
unitary matrices, U, we see that the group is SU(2). This shows that SU(2) can be used to write 3-dimensional
rotations. In fact, we will see that SU(2) includes two transformations corresponding to each element of
SO(3).

The exponential of any anti-hermitian matrix is unitary matrix because if U = exp (iH) with H† = H,
then

U† = exp
(
−iH†

)
= exp (−iH) = U−1

Conversely, any unitary matrix may be written this way. Moreover, since

detA = etr(lnA)

the transformation U = exp (iH) has unit determinant whenever H is traceless. Since every traceless,
hermitian matrix is a linear combination of the Pauli matrices,

σm =

((
1

1

)
,

(
−i

i

)
,

(
1
−1

))
(2.17)

we may write every element of SU(2) as the exponential

U(w) = eiw·σ

where the dot product in the exponent is the matrix w · σ = wmσm and the three parameters wm are real.
The Pauli matrices are mixed type tensors, σm = [σm]

a
b , because U is a transformation matrix. It is most

convenient to write the vector w as a magnitude ϕ
2 times a unit vector, w = ϕ

2 n̂, so that ϕ is then the angle
through which a real 3-vector is rotated. Then the elements of SU (2) are then written as

U(ϕ, n̂) = exp

(
iϕ

2
n̂ · σ

)
(2.18)

This transformation performs a rotation through an angle ϕ about the n̂ direction.
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Exercise: Show the the product of any two Pauli matrices may be written as

σmσn = δmn1 + iεmnkσk (2.19)

Exercise: Show that U(2π, n̂) = −1 and U(4π, n̂) = 1 for any unit vector, n̂. From this, show that U(2π, n̂)
nonetheless gives X ′ = X.

Exercise: By expanding the exponential in a power series and working out the powers of n̂ ·σ for a general
unit vector n̂, prove the identity

exp

(
iϕ

2
n̂ · σ

)
= 1 cos

ϕ

2
+ in̂ · σ sin

ϕ

2
(2.20)

A general 3-vector may be written using the Pauli matrices as X = x ·σ, so the correspondence is one-to-one.
This allows us to carry out rotations on 3-vectors using SU (2).

Exercise: Reproduce Eq.(2.9) by transformingX = x·σ using SU (2) to findX ′ =

(
z′ x′ − iy′

x′ + iy′ −z′
)

=

UXU†. Since we know that X ′ must also be traceless and Hermitian we may write

x′ · σ =

(
exp

(
iϕ

2
n̂ · σ

))
(x · σ)

(
exp

(
− iϕ

2
n̂ · σ

))
Use Eq.(2.20) to write the exponentials. This shows that exp

(
iϕ
2 n̂ · σ

)
describes a rotation by ϕ about

the axis through n̂.

2.4.3 The representation for SU (2)

Now consider what vector space SU(2) acts on. We have used a similarity transformation on matrices to
show how it acts on a 3-dimensional subspace of the 8-dimensional space of 2 × 2 complex matrices. But
more basically, SU(2) acts the vector space of complex, two component spinors:

χ =

(
α
β

)
χ′ = Uχ

Exercise: Using Eq.(2.20) from the previous exercise, find the most general action of SU(2) on χ. As special
cases, show that the periodicity of the mapping is 4π, that is, that

U(4πm, n̂)χ = χ

for all integers m, while
U(2πm, n̂)χ = −χ 6= χ

for odd m.

The vector space of spinors χ is the simplest set of objects that Euclidean rotations act nontrivially
on. These objects are familiar from quantum mechanics as the spin-up and spin-down states of spin-1/2
fermions. It is interesting to observe that spin is a perfectly classical property arising from symmetry. It
was not necessary to discover quantum mechanics in order to discover spin. Apparently, the reason that
“classical spin” was not discovered first is that its magnitude is microscopic. Indeed, with the advent of
supersymmetry, there has been some interest in classical supersymmetry – supersymmetric classical theories
whose quantization leads to now-familiar quantum field theories.
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2.5 Spinors for the Lorentz group: SL(2,C)
Next, we extend this same approach to the Lorentz group. Recall that we defined Lorentz transformations
as those preserving the Minkowski 4-vector length,

s2 = t2 − (x2 + y2 + z2) (2.21)

or equivalently, those transformations leaving the Minkowski metric ηµν invariant. Once again, we write a
matrix that contains the invariant information in its determinant. Let

[X]AB ≡
(

t+ z x− iy
x+ iy t− z

)
noting from Eq.(2.16) thatX is now the most general hermitian 2×2 matrix, X† = X, without any constraint
on the trace. The determinant is now

detX = t2 − x2 − y2 − z2 = s2

and we only need to preserve two properties: hermiticity and the determinant.
Let [X ′]AB = [X ′]CD A

C
AA

D
B , or in matrix notation,

X ′ = AXA†

Then hermiticity is again automatic and all we need is |detA|2 = 1 to preserve the determinant, detX ′ =
detX. As before, an overall phase does not affectX, so we can choose detA = 1. There is no further constraint
needed, so Lorentz transformations are given by the special linear group in two complex dimensions, SL (2,C).

It is easy to find a set of generators for the general linear group, because every non-degenerate matrix is
allowed. Expanding a general group element g infinitesimally about the identity gives

g =

(
µ ν
ρ σ

)
= 1 +

(
α β
γ δ

)
= 1 +

(
a b
c d

)
+ i

(
e f
g h

)
for complex numbers α, β, γ, δ and small real parameters a, . . . , h. Since the deviation from the identity is
small, the determinant will be close to one, hence nonzero. We recover the whole group by exponentiation,

G 3 g = exp

(
α β
γ δ

)
The unit determinant is achieved by making the generators traceless, setting δ = −α. A complete set of
generators for SL(2, C) is therefore (

1 0
0 −1

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
(

i 0
0 −i

)
,

(
0 i
0 0

)
,

(
0 0
i 0

)
Because any six independent linear combinations of these are an equivalently good basis, we choose instead
the set

Jm = iσm (2.22)
Km = σm (2.23)
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which have the advantage of being hermitian and anti-hermitian, respectively.
When we exponentiate Jm and Km (with real parameters) to recover the various types of Lorentz trans-

formation, the anti-hermitian generators Jm give SU(2) as before. We already know that these preserve
lengths of spatial 3-vectors, so we see again that the 3-dimensional rotations are part of the Lorentz group.
Since the generatorsKm are hermitian, the corresponding group elements are not unitary. The corresponding
transformations are hyperbolic rather than circular, corresponding to boosts.

Exercise: Recalling the Taylor series

sinhλ =

∞∑
k=0

λ2k+1

(2k + 1)!

coshλ =

∞∑
k=0

λ2k

(2k)!

show that K1 =

(
1

1

)
generates a boost in spacetime.

The Lie algebra of SL(2, C) is now easy to calculate using the products of the Pauli matrices given by
Eq.(2.19). Using Eq.(2.19) that the commutators are [σm, σn] = 2iεmnkσk, and from this that the Lie algebra
sl (2,C) of the Lorentz group SL (2,C) may be written as

[Jm, Jn] = [iσm, iσn] = −2iεmnkσk = −2εmnkJk (2.24)
[Jm,Kn] = [iσm, σn] = −2εmnkσk = −2εmnkKk (2.25)

[Km,Kn] = [σm, σn] = −2iεmnkσk = −2εmnkJk (2.26)

This is an important result. It shows that while the rotations form a subgroup of the Lorentz group (because
the Jm commutators close into themselves), the boosts do not. Instead, two boosts applied in succession
produce a rotation as well as a change of relative velocity. This is the source of a noted correction to Thomas
precession (see Jackson, pp. 556-560; indeed, see Jackson’s chapters 11 and 12 for a good discussion of
special relativity in a context with real examples)

There is another convenient basis for the Lorentz Lie algebra. Consider the six generators

Lm =
1

2
(Jm +Km) (2.27)

Mm =
1

2
(Jm −Km) (2.28)

These satisfy

[Lm, Ln] =
1

4
[Jm +Km, Jn +Kn]

=
1

4
(−2εmnkJk − 2εmnkKk − 2εmnkKk − 2εmnkJk)

= −2εmnkLk

[Lm,Mn] =
1

4
(−2εmnkJk + 2εmnkKk − 2εmnkKk + 2εmnkJk)

= 0

[Mm,Mn] =
1

4
(−2εmnkJk + 2εmnkKk + 2εmnkKk − 2εmnkJk)

= −2εmnkMk

showing that the Lorentz group actually decouples into two commuting copies of SU(2). Extensive use of
this fact is made in general relativity (see, eg., Penrose and Rindler, Wald). In particular, we can use this
decomposition of the Lie algebra sl(2, C) to introduce two sets of 2-component spinors, called Weyl spinors.

χA, χ̄Ȧ (2.29)
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with the first set transforming under the action of exp (umLm) and the second set under exp (vmMm) . For
our study of field theory, however, we will be more interested in a different set of spinors: the 4-component
Dirac spinors.

2.6 Dirac spinors and the Dirac equation
Before we develop spinor representations systematically for any pseudo-orthogonal group, SO (p, q), we
describe how Dirac arrived at the SO (1, 3) spacetime representation when he sought a relativistic form
for quantum theory. Without looking at the full details of Dirac’s original approach, we use a similar
construction. Dirac wanted to build a relativistic quantum theory, and recognizing that relativity requires
space and time variables to enter on the same footing, sought an equation linear in both space and time
derivatives:

i
∂ψ

∂t
=
(
−iαi∂i +mβ

)
ψ (2.30)

where the αi and β are constant. The Klein-Gordon equation,

�φ = −m2φ (2.31)

had already been tried and discarded by Schrödinger because the second order equation requires two initial
conditions and the uncertainty principle allows us only one. To determine the coefficients, Dirac demanded
that the linear equation should imply the Klein-Gordon equation. Acting on our version of Dirac’s equation
with the same operator again,

−∂
2ψ

∂t2
=

(
−iαi∂i +mβ

) (
−iαi∂i +mβ

)
ψ

=
(
−αiαj∂i∂j − imαiβ∂i − imβαi∂i +m2β2

)
ψ

we reproduce the Klein-Gordon equation provided

−αiαj∂i∂j = −∇2

m
(
αiβ + βαi

)
∂i = 0

m2β2 = m2

or equivalently,

αiαj + αiαi = 2δij

αiβ + βαi = 0

β2 = 1 (2.32)

We can put these conditions into a more systematic form by defining

γµ =
(
β, βαi

)
(2.33)

Then the constraints on γµ may be neatly expressed as

{γµ, γν} ≡ γµγν + γνγµ = 2ηµν (2.34)

where the curly brackets denote the anti-commutator. This relationship is impossible to achieve with vectors.
To see this, suppose γµ is a 4-vector and note that we can always perform a Lorentz transformation that
brings a 4-vector γµ to one of the forms

γµ = (α, 0, 0, 0)

γµ = (α, α, 0, 0)

γµ = (0, α, 0, 0)
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depending on whether γµ is timelike, null or spacelike. Then, since ηµν is Lorentz invariant, we have the
possibilities:

{γµ, γν} =


α2

0
0

0



{γµ, γν} =


α2 α2

α2 α2

0
0



{γµ, γν} =


0

α2

0
0


none of which equals ηµν . Therefore, γµ must be a more general kind of object. It is sufficient to let γµ be
a set of four, 4× 4 matrices, and it is not hard to show that this is the smallest size matrix that works.

Exercise: Show that there do not exist four, 2× 2 matrices satisfying {γµ, γν} = 2ηµν

Here is a convenient choice for the Dirac matrices, or gamma matrices:

γ0 =


1

1
−1

−1

 =

(
1
−1

)

γi =

(
0 σi

−σi 0

)
(2.35)

where the σi are the usual 2× 2 Pauli matrices.

Exercise: Show that these matrices satisfy {γµ, γν} = 2ηµν .

Substituting γµ into eq.(2.30), we have the Dirac equation,

(iγµ∂µ −m)ψ = 0 (2.36)

and the required Clifford algebra,

{γµ, γν} = 2ηµν

This equation gives us more than we bargained for. Since the γµ are 4 × 4 Dirac matrices, the object ψ
that they act on must also be a 4-component vector. We now show that ψ is a spinor by showing that they
transform as a 4-dimensional complex representation, Spin(p, q) of the Lorentz group.

We give the proof for the general case of Spin(p, q) rather than just Spin(1, 3), since the development is
essentially the same in all cases. In the process, we will not only see that the object ψ is a spinor, but also
find the form for Lorentz transformations.

2.7 The Lie algebra of Spin(p,q)
Let the O(p, q) metric be as in eq.(2.3), ηij = diag(1, . . . , 1,−1, . . . ,−1), with +1 occurring p times and −1
occurring q times, and the indices i, j run from 1 to n = p + q. Let its inverse be written as ηij . We first
define n distinct matrices by {

γi, γj
}

= 2ηij1 (2.37)
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This is the defining relationship of a Clifford algebra. Notice that there are two matrices on the right side.
The metric ηij is just a set of coefficients telling us whether the right side is zero or not for any given pair
of gamma matrices. The identity matrix occurs because the γi are matrices (with components

[
γi
]A

B
) and

therefore their anticommutator must also be a matrix. Often the identity matrix is suppressed for brevity.
It is always possible to choose the gamma matrices so that

(
γi
)†

= ηii
(
γi
)
, making some hermitian and the

rest anti-hermitian. Now, from these gamma matrices we construct the commutator,

σij =
1

4

[
γi, γj

]
(2.38)

Exercise: Show that for spacetime, with
(
γ0
)†

= γ0 and
(
γi
)†

= −γi, σµν has the following hermiticity
relations: (

σ0i
)†

= σ0i(
σij
)†

= −σij

Next, we show that these commutators satisfy the Lie algebra of SO(n). We first use the anticommutator
relation to rearrange the terms. Since the anticommutator relation gives γjγi = −γiγj + 2ηij we can rewrite
the commutator as

σij =
1

4

(
γiγj − γjγi

)
=

1

4

(
γiγj + γiγj − 2ηij1

)
=

1

2

(
γiγj − ηij1

)
Using this relation, the commutator of two sigmas is:[

σij , σkl
]

= −1

4

[
γiγj − ηij1, γkγl − ηkl1

]
= −1

4

[
γiγj , γkγl

]
= −1

4
γiγjγkγl +

1

4
γkγlγiγj

Now we just rearrange the order of gamma matrices in the second term until it matches the first term.
Interchanging gamma matrices one pair at a time,

γkγlγiγj = γk
(
−γiγl + 2ηil

)
γj

= −γkγiγlγj + 2ηilγkγj

= −γkγi
(
−γjγl + 2ηjl

)
+ 2ηilγkγj

= γkγiγjγl − 2ηjlγkγi + 2ηilγkγj

=
(
−γiγk + 2ηik

)
γjγl − 2ηjlγkγi + 2ηilγkγj

= −γiγkγjγl + 2ηikγjγl − 2ηjlγkγi + 2ηilγkγj

= −γi
(
−γjγk + 2ηjk

)
γl + 2ηikγjγl − 2ηjlγkγi + 2ηilγkγj

= γiγjγkγl − 2ηjkγiγl + 2ηikγjγl − 2ηjlγkγi + 2ηilγkγj

Finally, using

γiγj =
1

2

{
γi, γj

}
+

1

2

[
γi, γj

]
= ηij − 2σij
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we have [
σij , σkl

]
= −1

4
γiγjγkγl +

1

4
γiγjγkγl − 1

2

(
M jkγiγl −M ikγjγl +M jlγkγi −M ilγkγj

)
= −1

2

(
ηjk
(
ηil − 2σil

)
− ηik

(
ηjl − 2σjl

)
+ ηjl

(
ηki − 2σki

)
− ηil

(
ηkj − 2σkj

))
= −1

2

(
ηjkηil − ηikηjl + ηjlηki − ηilηkj

)
+ηjkσil − ηikσjl + ηjlσki − ηilσkj

The first four terms cancel, leaving the spin(p, q) Lie algebra:[
σij , σkl

]
= ηjkσil − ηikσjl + ηjlσki − ηilσkj (2.39)

This is the same algebra we found in Eq.(2.14) for so (p, q), but it acts on complex vectors (spinors) instead
of real vectors. This shows us why Dirac’s wave function ψ is a spinor. Using infinitesimal, real parameters,
εrs, can use linear combinations of the σrs matrices to generate an infinitesimal Lorentz transformation,

ΛA B = δA B +
1

2
εrs [σrs]

A
B

which act on spinors according to

[ψ′]
A

= ΛA B [ψ]
B (2.40)

We assume that εrs = −εsr, so the factor of 1
2 avoids double counting.

To see that ψ is really a spinor, we use them to construct vectors. Let the spinor space have an hermitian
metric, hAB , so that we can form inner products of spinors

〈χ, ψ〉 =
[
χ†
]A
hAB [ψ]

B (2.41)

We require hAB to be invariant under Lorentz transformations, in the sense that[
Λ†
] A

C
hABΛB D = hCD

For infinitesimal transformations, this means that

hCD =

(
δ A
C +

1

2
εrs

[
(σrs)

†
] A

C

)
hAB

(
δB D +

1

2
εuv [σuv]

B
D

)
= hCD +

1

2
εrshCB [σrs]

B
D +

1

2
εrs

[
(σrs)

†
] A

C
hAD

where we drop the negligible quadratic term. Cancelling the common hCD term we are left with

0 = hCB [σrs]
B
D +

[
(σrs)

†
] A

C
hAD (2.42)

Now we can build the real, n-dimensional vector

vi =
[
ψ†
]B
hBC

[
γi
]C

D
[ψ]

D (2.43)

Suppose we transform ψ according to Eq.(2.40 ). Then[
ψ′†
]A

=
[
ψ†
]B [

Λ†
] A

B
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so vi changes to

[v′]
i

=
[
ψ′†
]B
hBC

[
γi
]C

D
[ψ′]

D

=
[
ψ†
]A [

Λ†
] B

A
hBC

[
γi
]C

D
ΛD E [ψ]

E

For an infinitesimal transformation the matrix product is

Λ†hγiΛ =
[
Λ†
] B

A
hBC

[
γi
]C

D
ΛD E

=

(
δBA +

1

2
εrs

[
(σrs)

†
] B

A

)
hBC

[
γi
]C

D

(
δD E +

1

2
εuv [σuv]

D
E

)
= hAC

[
γi
]C

E
+

1

2
εuvhAC

[
γi
]C

D
[σuv]

D
E −

1

2
εrs

[
(σrs)

†
] B

A
hBC

[
γi
]C

E

Writing [v′]
i

= [v]
i

+ [δv]
i and using the Lorentz invariance of hAB , eq.(2.42 ), we see that the change in vi

is given by

[δv]
i

=
1

2

[
ψ†
]A
hABεrs

([
γi
]B

D
[σrs]

D
E − [σrs]

B
C

[
γi
]C

E

)
[ψ]

E

=
1

2

[
ψ†
]A
hABεrs

[
γi, σrs

]B
E

[ψ]
E

Computing the resulting commutator,

[
γi, σrs

]
=

[
γi,

1

2
(γrγs − ηrs)

]
=

1

2

[
γi, γrγs

]
=

1

2

(
γiγrγs − γrγsγi

)
=

1

2

(
γiγrγs + γrγiγs − 2ηisγr

)
= ηirγs − ηisγr

we substitute into δvi,

[δv]
i

=
1

2

[
ψ†
]A
hABεrs

[
γi, σrs

]B
E

[ψ]
E

=
1

2

[
ψ†
]A
hABεrs

(
ηir [γs]

B
E − η

is [γr]
B
E

)
[ψ]

E

=
1

2
ηirεrs

[
ψ†
]A
hAB [γs]

B
E [ψ]

E − 1

2
ηisεrs

[
ψ†
]A
hAB [γr]

B
E [ψ]

E

=
1

2

(
ηirεrsv

s − ηisεrsvr
)

= εi sv
s

But εi s is just an arbitrary antisymmetric matrix, εis, with one index raised using the O(p, q) metric, ηis,
and is therefore an infinitesimal Lorentz transformation. This means that the real n-vector vi defined from
a spinor according to Eq.(2.43) transforms correctly under an infinitesimal SO (p, q) transformation. Since
we may exponentiate the infinitesimal transformation to get any finite one, vi is an SO (p, q) vector.

Now we see why ψ is a spinor. If we think of vi as a bi-spinor,

[v]
i →

[
viγi

]A
B
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then we can write the infinitesimal transformation laws as

[δψ]
A

=
1

2
εuv [σuv]

A
B [δψ]

B

[
δviγ

i
]A

B
=

1

2
εrs
[
viγ

i
]B

D
[σrs]

D
E −

1

2
εrs [σrs]

B
C

[
viγ

i
]C

E

The real vector transforms as a
(

1
1

)
tensor under Spin(p, q), while a spinor transforms as a

(
1
0

)
tensor

– a vector – under Spin(p, q). If we rotate ψ by an angle ϕ
2 , the same transformation will rotate vi by ϕ.

This is the characteristic property of a spinor.
To find the number of components ψA has in general, we find the minimum size for the gamma matrices.

We can do this by finding out how many independent matrices we can build from the gamma matrices. We
can always remove symmetric parts of products of gamma matrices, but the antisymmetric parts remain
independent. Let

Γij...k = γ[iγj . . . γk] (2.44)
where the bracket on the indices means to take the antisymmetric part. If there are n distinct γi, there
will be

(
n
m

)
different matrices Γi1...im having m indices. Each of these can be shown to be independent, for

all m, so we have
∑n
m=0

(
n
m

)
= 2n independent matrices constructible from the γi. The linear combinations

of these 2n matrices form the Clifford algebra associated with O(p, q). The minimum dimension having 2n

independent matrices is 2n/2 (or 2(n+1)/2 if n is odd) since a 2n/2×2n/2 matrix has 2n components. It is not
too difficult to show that a satisfactory set of matrices of this dimension always exists. Therefore, spinors in
n dimensions will have 2n/2 components (n even), and this agrees with the the 4-component spinors found
by Dirac.

We still need to know what the metric hAB is for the Dirac case. It must satisfy the invariance condition
of eq.(2.42), which in 4 dimensions reduces to

0 = hσ0i +
(
σ0i
)†
h = hσ0i + σ0ih

0 = hσij +
(
σij
)†
h = hσij − σijh

These relations are satisfied if we define the metric to be

hAB ≡


1

1
−1

−1

 (2.45)

The choice of hAB as the metric is fixed by its rotational invariance under the σµν which we easily check as
follows. If we momentarily ignore index positions, we see that hAB has the same form as γ0, and we can use
the properties of γ0 to compute its effects. Thus for the 0i components,

hσ0i + σ0ih ∼ γ0σ0i + σ0iγ0

=
1

4

(
γ0γ0γi − γ0γiγ0 + γ0γiγ0 − γiγ0γ0

)
=

1

4

(
γi + γiγ0γ0 − γiγ0γ0 − γi

)
= 0

while for the ij components,

hσij − σijh ∼ γ0σij − σijγ0

=
1

4

(
γ0γiγj − γ0γjγi − γiγjγ0 + γjγiγ0

)
=

1

2

(
γ0γiγj − γ0γjγi − γ0γiγj + γ0γjγi

)
= 0
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as required. Therefore, Dirac spinors have the Lorentz-invariant inner product

〈ψ,ψ〉 =
[
ψ†
]A
hABψ

B

It is convenient to define ψ̄ ≡ ψ†h, with components

ψ̄B ≡
[
ψ†
]A
hAB (2.46)

Then we may write the inner product simply as

〈ψ,ψ〉 = ψ̄ψ

The simplicity of using γ0 to compute inner products has led many authors of field theory texts to ac-
tually write γ0 for h, as in ψ̄ψ = ψ†γ0ψ, but the difference between a metric and a transformation
is important. Indeed, the index structure is clearly wrong in the latter expression – we would have.
ψ†γ0ψ =

[
ψ†
]A [

γ0
]A

B
[ψ]

B .

2.8 Working with the gamma matrices and the Dirac equation
Returning to our original goal, we now have the Dirac equation, Eq.(2.36) and the Clifford algebra, Eq.(2.37).
Because spinors rotate by ϕ

2 when a vector is rotated by ϕ, we say spinors have spin 1
2 . Eq.(2.36) is therefore

the field equation for a spin-1
2 field. Since we have an invariant inner product, we can write a Lorentz

invariant action as
S =

ˆ
d4x ψ̄ (iγµ∂µ −m)ψ (2.47)

The action is to be varied with respect to ψ and ψ̄ independently

0 = δS =

ˆ
d4x

(
δψ̄ (iγµ∂µ −m)ψ + ψ̄ (iγµ∂µ −m) δψ

)
The ψ̄ variation immediately yields the Dirac equation, (iγµ∂µ −m)ψ = 0 while the δψ required integration
by parts:

0 =

ˆ
d4x ψ̄ (iγµ∂µδψ −mδψ)

=

ˆ
d4x

(
−i∂µψ̄γµδψ − ψ̄m

)
δψ

Thus
i∂µψ̄γ

µ +mψ̄ = 0 (2.48)

which is sometimes written as
ψ̄
(
iγµ
←−
∂ µ +m

)
= 0 (2.49)

2.8.1 Some further properties of the gamma matrices
In four dimensions, there are 16 independent matrices that we can construct from the Dirac matrices. We
have already encountered eleven of them:

1, γµ, σµν

The remaining five are most readily expressed in terms of

γ5 ≡ iγ0γ1γ2γ3 (2.50)

Exercise: Prove that γ5 is hermitian.
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Exercise: Prove that {γ5, γ
µ} = 0.

Exercise: Prove that γ5γ5 = 1.

Then the remaining five matrices may be taken as

γ5, γ5γ
µ

Any complex 4×4 matrix can be expressed as linear combination of these 16 matrices, Γa = {1, γµ, σµν , γ5, γ5γ
µ}.

We will need several other properties of these matrices. First, if we contract the product of pair of gammas,
we get 4:

γµγµ = ηµνγ
µγν =

1

2
ηµν {γµ, γν} = ηµνη

µν = 4

We will need various traces. For any product of an odd number of gamma matrices we have

tr (γµ1γµ2γµ2k+1) = tr
(

(γ5)
2
γµ1γµ2γµ2k+1

)
= (−1)2k+1 tr (γ5γ

µ1γµ2γµ2k+1γ5)

using the fact that γ5 squares to 1 and commutes with any of the γµ. Now, using the cyclic property of the
trace

tr (A . . . BC) = tr (CA . . . B)

we cycle γ5 back to the front:

tr (γµ1γµ2γµ2k+1) = (−1)2k+1 tr (γ5γ
µ1γµ2γµ2k+1γ5)

= (−1)2k+1 tr (γ5γ5γ
µ1γµ2γµ2k+1)

= − tr (γµ1γµ2γµ2k+1)

= 0

Thus, the trace of the product of any odd number of gamma matrices vanishes.
Traces of even numbers are trickier. For two:

tr (γµγν) = tr (−γνγµ + 2ηµν1)

= −tr (γνγµ) + 2ηµνtr 1

or, since tr1 = 4,
tr (γµγν) = 4ηµν (2.51)

Exercise: Prove that
tr
(
γαγβγµγν

)
= 4

(
ηαβηµν − ηαµηβν + ηανηβµ

)
Exercise: Prove that

γµγαγµ = −2γα

and
γµγαγβγµ = 4ηαβ

2.8.2 Casimir Operators
For any Lie algebra, G, with generators Ga and commutators

[Ga, Gb] = c c
ab Gc

we can consider composite operators found by multiplying together two or more generators,

G1G2, G3G9G17, . . .
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and taking linear combinations,
A = αG1G2 + βG3G9G17 + . . .

The set of all such linear combinations of products is called the free algebra of G. Among the elements of
the free algebra are a very few special cases called Casmir operators, which have the special property of
commuting with all of the generators. For example; the generators Ji of SO(3) may be combined into the
combination

R = δijJiJj =
∑

(Ji)
2 (2.52)

We can compute

[Ji, R] =
[
Ji,
∑

(Jj)
2
]

= Jj [Ji, Jj ] + [Ji, Jj ] Jj

= JjεijkJk + εijkJkJj

= εijk (JjJk + JkJj)

= 0

where, in the last step, we used the fact that εijk is antisymmetric on jk, while the expression JjJk + JkJk
is explicitly symmetric. Since R commutes with the three Ji, it also commutes with all products of them.
R is therefore a Casimir operator for O(3). For this reason, Casimir operators become extremely important
in quantum physics. Because the symmetries of our system are group symmetries, the set of all Casimir
operators gives us a list of the conserved quantities. Generically, elements of a Lie group take us from one
set of fields to a physically equivalent set covariantly. Since the Casimir operators are left invariant, we can
use eigenvalues of the Casimir operators to classify the possible distinct physical states of the system.

Let’s look at the Casimir operators that are most imporant for particle physics – those of the Poincaré
group. The Poincaré group is the set of transformations leaving the infinitesimal line element

ds2 = c2dt2 − dx2 − dy2 − dz2 (2.53)

invariant. It clearly includes Lorentz transformations, [dx′]
α

= Λα βdx
β but now also includes translations:

[x′]
α

= xα + aα

⇒ [dx′]
α

= dxβ

Since there are 4 translations and 6 Lorentz transformations, there are a total of 10 Poincaré symmetries.
There are several ways to write a set of generators for these transformations. One common one is to let

Mα
β = xα∂β − xβ∂α

Pα = ∂α (2.54)

Then it is easy to show that[
Mα

β ,M
µ
ν

]
= [xα∂β − xβ∂α, xµ∂ν − xν∂µ]

= xα∂β (xµ∂ν − xν∂µ)− xβ∂α (xµ∂ν − xν∂µ)

−xµ∂ν (xα∂β − xβ∂α) + xν∂
µ (xα∂β − xβ∂α)

= xαδµβ∂ν − x
αηβν∂

µ − xβηαµ∂ν + xβδ
α
ν ∂

µ

−xµδαν ∂β + xµηνβ∂
α + xνη

µα∂β − xνδµβ∂
α

= δµβM
α
ν − ηβνMαµ − ηαµMβν + δανM

µ
β (2.55)

To compute these, we imagine the derivatives acting on a function to the right of the commutator,
[
Mα

β ,M
µ
ν

]
f(x).

Then all of the derivatives of f cancel when we antisymmetrize. With suitable adjustments of the index
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positions, we see the result above is equivalent to the Lorentz (o(3, 1)) case of eq.(2.14). Two similar but
shorter calculations show that [

Mα
β , Pν

]
= ηνβP

α − δαν Pβ (2.56)
[Pα, Pβ ] = 0 (2.57)

Eqs.(2.55-2.57) comprise the Lie algebra of the Poincaré group.

Exercise: Prove eq.(2.56) and eq.(2.57) using eqs.(2.54).

Now we can write the Casimir operators of the Poincaré group. There are two:

P 2 = ηαβPαPβ (2.58)
W 2 = ηαβW

αW β (2.59)

where
Wµ ≡ 1

2
εµναβPνMαβ (2.60)

and εµναβ is the spacetime Levi-Civita tensor. To see what these correspond to, recall from our discussion
of Noether currents that the conservation of 4-momentum is associated with translation invariance, and Pα
is the generator of translations. In fact, Pα = i∂α, the Hermitian form of the translation generator, is the
usual energy-momentum operator of quantum mechanics. We directly interpret eigenvectors of Pα as energy
and momentum. Thus, we expect that eigenvalues of P 2 will be the mass, pαpα = m2.

Similarly, W 2 is built from the rotation generators. To see this, notice that we expect the momentum,
pα, to be a timelike vector. This means that there exists a frame of reference in which pα = (mc, 0, 0, 0). In
this frame, Wα becomes

Wµ =
1

2
εµναβPνMαβ

=
1

2
mcεµ0αβMαβ

Therefore, W 0 = 0, and using εk0ij = −εk0ij = εijk, for the spatial components,

W k =
1

2
mcεijkMij

= mcJk

Sincem is separately conserved, this shows that the magnitude of the angular momentum J2 is also conserved.

Exercise: Using the Lie algebra of the Poincaré group, eqs.(2.55-2.57), prove that P 2 and W 2 commute
with Mαβ and Pα. (Warning! The proof for W 2 is a bit tricky!) Notice that the proof requires only
the Lie algebra relations for the Poincaré group, and not the specific representation of the operators
given in eqs.(2.54).

Since the Casimir operators of the Poincaré group correspond to mass and spin, we will be able to classify
states of quantum fields by mass and spin. We will extend this list when we introduce additional symmetry
groups.
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Chapter 3

The classification of particles

Using the Casimir operators we can give a complete classification of fundamental particles, that is, repre-
sentations of the Poincaré group. We may specify particle states by their eigenvalues under the Casimir
operators. Notice that since Casimir operators are left invariant Since these correspond to mass and spin,
we write

P 2 |M, j〉 = M2 |M, j〉
J2 |M, j〉 = j (j + 1) }2 |M, j〉

Depending on the model, there may be a continuous or discrete spectrum of particle masses.
We now may find a basis for states of angular momentum, that is, all finite-dimensional representations

for the three operators Ĵi. All results follow from the fundamental commutation relation for hermitian
rotational generators, [

Ĵi, Ĵj

]
= i~εijkĴk

where i, j, k each take values 1, 2, 3 and we sum on k. These results are often developed for classification of
spin states in quantum mechanics, but we will be interested in their use in classifying fundamental particles,
not multi-electron atoms.

As we show in the remainder of this Chapter, the eigenvalues, j, for spin include every non-negative
integer and half-integer value, 0, 1

2 , 1,
3
2 , 2, . . ., with spin 0 fields called scalars, spin- 1

2 fields spinors, and
spin-1 fields vectors. Within the Standard Model, the Higgs particle is the only scalar. Each of the quarks
and leptons is a spinor particle, while the gauge bosons, that is, the photon, W±, Z0, and the gluons, are
spin-1. Higher spin fundamental particles have not been observed, but quantization of gravity is expected
to include a spin-2 quantum called the graviton, and supersymmetry predicts a fermionic, spin-3

2 partner to
the graviton called a gravitino.

3.1 A maximal set of commuting observables

To begin, we ask how many mutually commuting operators we can build from Ĵi. We can diagonalize any
one of Ĵ1, Ĵ2, Ĵ3, but since none commute with either or the others, we cannot diagonalize more than one.
We choose Ĵ3 diagonal. There is one further commuting combination – since rotations preserve lengths, the
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length of Ĵi itself is preserved by rotations,[
Ĵi, Ĵ

2
]

=
[
Ĵi, ĴkĴk

]
= Ĵk

[
Ĵi, Ĵk

]
+
[
Ĵi, Ĵk

]
Ĵk

= Ĵki~εikmĴm + i~εikmĴmĴk
= i~εikm

(
ĴkĴm + ĴmĴk

)
= 0

where the last step follows because ĴkĴm + ĴmĴk is symmetric in mk while εikm is antisymmetric. In
particular, we have [

Ĵ3, Ĵ
2
]

= 0

so these may be simultaneously diagonalized. Since we already know that the Pauli matrices give a 2-
dimensional example for the generators, there cannot be more than two indepedent diagonal combinations.

Having found a maximal set of commuting observables, we may use their eigenvalues to label their
simultaneous eigenkets. Let

Ĵ2 |α, β〉 = α2~2 |α, β〉
Ĵ3 |α, β〉 = β~ |α, β〉

We take these kets to be orthonormal and seek all allowed values of the real eigenvalues, α, β.

3.2 Raising and lowering operators
We combine the remaing two generators in the useful combinations,

Ĵ± ≡ Ĵ1 ± iĴ2

where we note that Ĵ†+ = Ĵ−. These satisfy:[
Ĵ+, Ĵ−

]
=

[
Ĵ1 + iĴ2, Ĵ1 − iĴ2

]
= −i

[
Ĵ1, Ĵ2

]
+ i
[
Ĵ2, Ĵ1

]
= 2~Ĵ3

and [
Ĵ3, Ĵ±

]
=

[
Ĵ3, Ĵ1 ± iĴ2

]
=

[
Ĵ3, Ĵ1

]
± i
[
Ĵ3, Ĵ2

]
= i~Ĵ2 ± i

(
−i~Ĵ1

)
= ±~Ĵ±

as well as commuting with the length, [
Ĵ±, Ĵ

2
]

= 0

Consider the actions of Ĵ2 and Ĵ3 on the state Ĵ+ |α, β〉,

Ĵ2Ĵ+ |α, β〉 = Ĵ+Ĵ
2 |α, β〉

= α2~2Ĵ+ |α, β〉
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so this state is also an eigenstate of Ĵ2 with the eigenvalue α, while

Ĵ3Ĵ+ |α, β〉 =
([
Ĵ3, Ĵ+

]
+ Ĵ+Ĵ3

)
|α, β〉

= ~Ĵ+ |α, β〉+ Ĵ+Ĵ3 |α, β〉
= (β + 1) ~Ĵ+ |α, β〉

We once again have an eigenstate, but the eigenvalue β has increased by ~. Up to an overall constant λ we
have

Ĵ+ |α, β〉 = λ |α, β + 1〉

Exercise: Show that Ĵ+ |α, β〉 = λ |α, β − 1〉 for some constant λ.

3.3 Limits on eigenvalues

3.3.1 Inequalities on the eigenvalues
Products of Ĵ+ and Ĵ− may be expressed in term of our diagonal operators. For the product Ĵ+Ĵ−:

Ĵ+Ĵ− =
(
Ĵ1 + iĴ2

)(
Ĵ1 − iĴ2

)
= Ĵ2

1 + Ĵ2
2 − iĴ1Ĵ2 + iĴ2Ĵ1

= Ĵ2 − Ĵ2
3 − i

[
Ĵ1, Ĵ2

]
= Ĵ2 − Ĵ2

3 + ~Ĵ3

Exercise: Show that Ĵ−Ĵ+ = Ĵ2 − Ĵ2
3 − ~Ĵ3

Since Ĵ†+ = Ĵ− and Ĵ†− = Ĵ+ we have inequalities from the norms of Ĵ+ |α, β〉 and Ĵ− |α, β〉:[
〈α, β| Ĵ†+

] [
Ĵ+ |α, β〉

]
= 〈α, β| Ĵ−Ĵ+ |α, β〉 ≥ 0[

〈α, β| Ĵ†−
] [
Ĵ− |α, β〉

]
= 〈α, β| Ĵ=Ĵ− |α, β〉 ≥ 0

These give, respectively,

0 ≤ 〈α, β| Ĵ−Ĵ+ |α, β〉

= 〈α, β|
(
Ĵ2 − Ĵ2

3 − ~Ĵ3

)
|α, β〉

=
(
α2 − β2 − β

)
~2 〈α, β |α, β〉

=
(
α2 − β2 − β

)
~2

and

0 ≤ 〈α, β| Ĵ+Ĵ− |α, β〉

= 〈α, β|
(
Ĵ2 − Ĵ2

3 + ~Ĵ3

)
|α, β〉

=
(
α2 − β2 + β

)
~2

so two distinct inequalities must hold:

β2 + β ≤ α2 (3.1)
β2 − β ≤ α2 (3.2)
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3.3.2 The eigenvalues
Now, just as we did for the simple harmonic oscillator, we start with any eigenstate and lower the eigenvalue
k times,

Ĵ3

(
Ĵ−

)k
|α, β〉 = λβ−k (β − k) ~ |α, β − k〉

for some normalization constant, λβ−k. However, this series must terminate, since eq.(3.1) for the state
|α, β − k〉 leads to

(β − k)
2

+ (β − k) ≤ α2

k2 − 2βk − k + β2 + β ≤ α2

Regardless of the value of α and β, there is some value of k which is sufficiently large to violate this inequality.
Therefore, there must exist some βmin such that

Ĵ− |α, βmin〉 = 0

Since β = 0 satisfies both inequalities we must have βmin < 0, and therefore

β2
min − βmin ≤ α2

gives the strongest constraint on βmin.
Now we apply Ĵ+ to |α, βmin〉 to produce eigenkets of larger and larger β,

Ĵk+ |α, βmin〉 = λβmin+k |α, βmin + k〉

Once again we eventually reach a value of k which violates one of the inequalities, so there exists some
positive, maximum βmax, satisfying both inequalities. The strongest constraint is

β2
max + βmax ≤ α2

Notice that if βmin = −βmax = −m then both inequalities give

m (m+ 1) ≤ α2

Now acting on the highest state, |α, βmax〉 with Ĵ+, or acting on the lowest state, |α, βmin〉, with Ĵ−
must give zero

Ĵ+ |α, βmax〉 = 0

Ĵ− |α, βmin〉 = 0

and therefore, acting on the first with Ĵ− and the second with Ĵ+

0 = Ĵ−Ĵ+ |α, βmax〉

=
(
Ĵ2 − Ĵ2

3 − ~Ĵ3

)
|α, βmax〉

=
(
α2 − β2

max − βmax
)
~2 |α, βmax〉

and

0 = Ĵ+Ĵ− |α, βmin〉

=
(
Ĵ2 − Ĵ2

3 + ~Ĵ3

)
|α, βmin〉

=
(
α2 − β2

min + βmin
)
~2 |α, βmin〉
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giving us two equalities for the maximum and minimum values:

α2 = β2
max + βmax

α2 = β2
min − βmin

We also know that βmax−βmin = k for some non-negative integer, k. Setting βmax = βmin+k and equating
the two expressions,

β2
min − βmin = β2

max + βmax

= (βmin + k)
2

+ (βmin + k)

β2
min − βmin = β2

min + 2βmink + k2 + βmin + k

0 = (k + 1) 2βmin + k (k + 1)

0 = 2βmin + k

βmin = −k
2

so that βmin is some negative integer or half-integer we will call −j:

βmin = −j ∈
{

0,−1

2
,−1,−3

2
,−2, . . .

}
The maximum value βmax = βmin + k = +k

2 = +j, and the remaining eigenvalue is

α2 =
k

2

(
k

2
+ 1

)
= j (j + 1)

The labeling of our states is complete. Letting β = m, the complete set of possible states for any fixed
half-integer j is given by the 2j + 1 states,

|α, β〉 = {|j,m〉 | m = −j,−j + 1, . . . , j + 1, j}

and we have one such set for every choice of j = 0, 1
2 , 1,

3
2 , 2,

5
2 , . . .. The eigenvalues of these states are given

by

Ĵ2 |j,m〉 = j (j + 1) ~2 |j,m〉 (3.3)
Ĵ3 |j,m〉 = m~ |j,m〉 (3.4)

These states will be referred to as “spin-j” representations.

3.3.3 Normalization of raising and lowering
We define these eigenstates to be normalized, and since they are nondegenerate, they are orthonormal,

〈j1,m1 |j2,m2〉 = δj1j2δm1m2

However, we need to know the effect of the raising and lowering operators. We already know that

Ĵ± |j,m〉 = λm±1 |j,m± 1〉

for some constants λm±1. To find λm±1, look again at the norm

〈j,m| Ĵ−Ĵ+ |j,m〉 = 〈j,m|
(
Ĵ2 − Ĵ2

3 − ~Ĵ3

)
|j,m〉

|λm+1|2 = (j (j + 1)−m (m+ 1)) ~2

λm+1 =
√
j (j + 1)−m (m+ 1)~
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where we choose the phase so that λm+1 is real. For Ĵ− we have

〈j,m| Ĵ+Ĵ− |j,m〉 = 〈j,m|
(
Ĵ2 − Ĵ2

3 + ~Ĵ3

)
|j,m〉

|λm−1|2 = (j (j + 1)−m (m− 1)) ~2

λm−1 =
√
j (j + 1)−m (m− 1)~

Therefore, the action of the raising and lowering operators is

Ĵ± |j,m〉 =
√
j (j + 1)−m (m± 1)~ |j,m± 1〉 (3.5)

3.4 Examples of representations

3.4.1 Spin 0
For j = 0, we only have the single allowed value m = 0 and there is only one state,

|j,m〉 = |0, 0〉

These are scalars. We may find the expectation value of any component of angular momentum using

J1 =
1

2

(
Ĵ+ + Ĵ−

)
J2 =

1

2i

(
Ĵ+ − Ĵ−

)
Since m = 0 = βmin = βmax, both Ĵ+ and Ĵ− must give zero:

Ĵ± |0, 0〉 = 0

and we have

Ĵ1 |0, 0〉 = 0

Ĵ2 |0, 0〉 = 0

Ĵ3 |0, 0〉 = 0

so the action of all generators is zero. Furthermore,

〈0, 0| Ĵx |0, 0〉 = 0

〈0, 0| Ĵy |0, 0〉 = 0

〈0, 0| Ĵz |0, 0〉 = 0

so every component of angular momentum has zero expectation value.
The effect of a general infinitesimal rotation on a scalar state is given by

D (n, ϕ) |0, 0〉 =

(
1̂− iϕ

~
n · Ĵ

)
|0, 0〉

= |0, 0〉

so scalars are unaffected by any rotation.
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3.4.2 Spin 1/2 particles
The simplest spin half particles are the wave functions of quantum mechanics, extended by including the
spin up and spin down states. These are j = 1

2 representations. For j = 1
2 we have our familiar algebra of

Pauli matrices, but we now have a more systematic labelling for the states. When we wish to be explicit
about the value of j, we will write ∣∣∣∣12 ,±1

2

〉
instead of |±〉. Notice that in all cases here we are taking Ĵ3 diagonal. We already know the expectation
values of Ĵi in these states. For Ĵ2 and Ĵ± we have

Ĵ2

∣∣∣∣12 ,±1

2

〉
=

1

2

(
1

2
+ 1

)
~2

∣∣∣∣12 ,±1

2

〉
=

3

4
~2

∣∣∣∣12 ,±1

2

〉
and

Ĵ+

∣∣∣∣12 , 1

2

〉
= 0

Ĵ−

∣∣∣∣12 , 1

2

〉
=

√
j (j + 1)−m (m− 1)~

∣∣∣∣12 , 1

2
− 1

〉
=

√
1

2

(
3

2

)
− 1

2

(
−1

2

)
~
∣∣∣∣12 ,−1

2

〉
= ~

∣∣∣∣12 ,−1

2

〉
Ĵ−

∣∣∣∣12 ,−1

2

〉
=

√
1

2

(
3

2

)
−
(
−1

2

)(
−3

2

) ∣∣∣∣12 ,−1

2
− 1

〉
= 0

Ĵ+

∣∣∣∣12 ,−1

2

〉
=

√
j (j + 1)−m (m+ 1)~

∣∣∣∣12 , 1

2

〉
=

√
3

4
−
(
−1

2

)(
1

2

)
~
∣∣∣∣12 , 1

2

〉
= ~

∣∣∣∣12 , 1

2

〉
The spin- 1

2 states forem a 2-dimensional representation, so the generators are the Pauli matrices. Writing
the raising and lowering operators in matrix notation,

Ĵ+ = Ĵx + iĴy

=
~
2

(σx + iσy)

= ~
(

0 1
0 0

)
Ĵ− = ~

(
0 0
1 0

)
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so that

Ĵ+

(
1
0

)
= 0

Ĵ+

(
0
1

)
= ~

(
1
0

)
Ĵ−

(
0
1

)
= 0

Ĵ+

(
1
0

)
= ~

(
0
1

)
Quite generally, the components of the raising and lowering operators are unit off-diagonal matrices.

In field theory, the Dirac spinors represent a pair spin- 1
2 states, where the pair are the positive and

negative energy solutions to the Dirac equation.

3.4.3 Spin 1
We have a total of three j = 1 states,

|j,m〉 = |1, 1〉 , |1, 0〉 , |1,−1〉

related by

Ĵ− |1, 1〉 =
√

1 (1 + 1)− 1 (1− 1)~ |1, 1− 1〉
=
√

2~ |1, 0〉

and

Ĵ− |1, 0〉 =
√

1 (1 + 1)− 0 (0− 1)~ |1, 0− 1〉
=
√

2~ |1,−1〉

with similar relations for the raising operator. The eigenvalue of Ĵ2 is j (j + 1) ~2 = 2~2.
The photon is the most familiar spin-1 particle, but there are also the weak intermediate vector bosons(

W+,W−, Z0
)
and eight differnt gluons.

3.4.4 Spin 3/2
We have 2j + 1 = 4 states,

|j,m〉 =

∣∣∣∣32 , 3

2

〉
,

∣∣∣∣32 , 1

2

〉
,

∣∣∣∣32 ,−1

2

〉
,

∣∣∣∣32 ,−3

2

〉
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related by

Ĵ−

∣∣∣∣32 , 3

2

〉
=

√
3

2

(
3

2
+ 1

)
− 3

2

(
3

2
− 1

)
~
∣∣∣∣32 , 1

2

〉
=
√

3~
∣∣∣∣32 , 1

2

〉
Ĵ−

∣∣∣∣32 , 1

2

〉
=

√
3

2

(
3

2
+ 1

)
− 1

2

(
1

2
− 1

)
~
∣∣∣∣32 ,−1

2

〉
= 2~

∣∣∣∣32 ,−1

2

〉
Ĵ−

∣∣∣∣32 ,−1

2

〉
=

√
3

2

(
3

2
+ 1

)
−
(
−1

2

)(
−1

2
− 1

)
~
∣∣∣∣32 ,−3

2

〉
=
√

3~
∣∣∣∣32 ,−3

2

〉
Ĵ−

∣∣∣∣32 ,−3

2

〉
= 0

with similar relations for the raising operator. The eigenvalue of Ĵ2 is j (j + 1) ~2 = 15
4 ~2.

We have not observed fundamental spin- 3
2 particles, but supergravity and superstring theories include

them as the fermionic superpartners to the graviton. They are called Rarita-Schwinger particles. The
conjectured graviton, the quantum state of the gravitational field, should have spin-2.

3.4.5 Spin j
We summarize here the general results we have shown above.

For spin-j, where j = n
2 is any integer or half-integer there are 2j+ 1 = n+ 1 orthonormal states labeled

|j,m〉, where m ranges over all 2j + 1 values from −j to +j. The actions of Ĵ2, Ĵ3, Ĵ± on these are given by

Ĵ2 |j,m〉 = j (j + 1) ~2 |j,m〉
Ĵ3 |j,m〉 = m~ |j,m〉
Ĵ+ |j,m〉 =

√
j (j + 1)−m (m+ 1)~ |j,m+ 1〉

Ĵ− |j,m〉 =
√
j (j + 1)−m (m− 1)~ |j,m− 1〉

while the actions of Ĵ1, Ĵ2 may be found using

Ĵ1 =
1

2

(
Ĵ+ + Ĵ−

)
Ĵ2 =

1

2i

(
Ĵ+ − Ĵ−

)
There is a vector space of every positive integer dimension spanned by |j,m〉 for some j. Taken together,
these give all of the irreducible representations of the 3-dimensional rotation group. This means that any
tensor, i.e., any object that the 3-dim rotation group acts on multi-linearly and homogeneously, may be
decomposed into some combination of the |j,m〉 vector space.

Exercise: Find all spin-2 states by acting repeatedly with Ĵ− on the highest state |2, 2〉, including
showing that Ĵ− |2,−2〉 = 0.
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Exercise: Study the effect of infinitesimal rotations on spin-1 states. Consider rotations of
each of the three states about the z-axis by arbitrary amounts, and about the x-axis until you
can describe what is happening clearly.

3.5 Decomposition of tensors
We have observed previously that a matrix can be decomposed into its trace, its antisymmetric part, and
its traceless symmetric part:

Mij =
1

2
δijtrM +

1

2
(Mij −Mji) +

1

2

(
Mij +Mji −

2

3
trM

)
= Tij +Aij + Sij

When we rotate Mij with an orthogonal transformation,

M̃ij = O m
i O n

j Mmn

= O m
i Mmn

[
Ot
]m
i

M̃ = OMO−1

each of these parts is preserved. For example, the antisymmetric part of the new matrix is a linear combi-
nation of the components of only the antisymmetric part of the original matrix,

O
1

2

(
M −M t

)
O−1 =

1

2

(
OMO−1 −OM tO−1

)
=

1

2

(
M̃ − M̃ t

)
We say that the usual matrix representation Mij is reducible, and from the fact that these three invariant
subspace have one degree of freedom for the trace, three for the antisymmetric part, and five degrees of
freedom for the traceless symmetric part, we might guess that we can write M as a combination of the three
vector spaces,

|0, 0〉 , |1,m〉 , |2,m〉
which are of dimensions 1, 3 and 5, respectively. What we have accomplished is to find the irreducible
representations of the rotation group.

There is notation for this equivalence. Letting the boldface number 3 stand for each index of M , we
think of the nine components of M as the outer product of 3-dimensional things,

M → 3⊗ 3

and we write this as the sum, in the new notation, of three irreducible vector spaces:

3⊗ 3 = 1⊕ 3⊕ 5

There are more general objects that rotations can act on. By taking outer products of vectors, we
construct “tensors” with arbitrarily many indices,

Tij...k = uivj . . . wk

Since we can rotate each vector, we know how Tij...k changes under rotations. We may take abritrary linear
combinations of objects of this form to construct n-index objects with 3n degrees of freedom. For example,
a general tensor with three indices, Tijk, has 33 = 27 independent components.

A systematic analysis along these same lines shows that a rank three tensor, that is, an object with three
indices like the Levi-Civita tensor, Tijk, may be decomposed into four irreducible parts,

3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10
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The 1-dimensional subspace 1 is the totally antisymmetric part of Tijk. The two 8s are of definite mixed
symmetry and the 10 is the totally symmetric part. Notice that the degrees of freedom always match,
33 = 27 = 1 + 8 + 8 + 10, so we have accounted for all 27 independent components of Tijk. There are general
techniques for finding this decomposition for any tensor.

One familiar example of this sort of decomposition is given by the spherical harmonics. If we have any
bounded, piecewise continuous function on a sphere, f (θ, ϕ), it may be expanded in spherical harmonics,

f (θ, ϕ) =

∞∑
l=0

l∑
m=−l

AlmY
l
m (θ, ϕ)

But such functions form an infinite dimensional vector space, since sums of such functions give other functions
on the sphere. The collection of spherical harmonics for any fixed l,

{
Y lm (θ, ϕ) |m = −l,−l + 1, . . . , l

}
also

form a vector space, since we may take linear combinations of any two linear combinations of these, to form
another linear combinations of the same set. Moreover, these sets are rotationally invariant: any rotation
of the sphere (θ, ϕ) → (θ + α,ϕ+ β) mixes m but leaves l fixed. Since the dimension of these invariant
subspaces is 2l + 1, while the dimension of the function space is infinite, the sum above gives us an infinite
decomposition,

∞ = 1⊕ 3⊕ 5⊕ · · · ⊕ (2l + 1)⊕ · · ·

We show in the next set of notes that these odd-dimensional vector spaces are, in fact, spanned by the
spherical harmonics.

The importance of such decompositions becomes evident when we look at atoms, nuclei, mesons or
baryons, all of which are composite. Atoms are described by electrons orbiting nuclei, while the others are
comprised of quarks and gluons. In each of these multi-particle systems, the constituents may have both
orbital angular momentum and spin, and we need to know how these various contributions to the total
angular momentum combine to give a total number of states for the system. Therefore, we will develop rules
for the addition of angular momentum states.

3.6 Measuring spin
We have found the Lie algebra for Spin (p, q) in Eq.(2.14), which reduces in 4-dimensions to[

σαβ , σµν
]

= ηβµσαν − ηαµσβν − ηβνσαµ + ηανσβµ

where
σαβ ≡ 1

4

[
γα, γβ

]
Define,

Pµ ≡ 1

2
(1− γ5) γµ

Then, since

[Pµ, P ν ] =
1

2
(1− γ5) γµ

1

2
(1− γ5) γν =

1

4
(1− γ5) (1 + γ5) γµγν = 0

we have

[Pµ, P ν ] = 0
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Then, consider the commutator of Pµ with the Spin (1, 3) generators.[
σαβ , Pµ

]
=

1

4

[[
γα, γβ

]
,

1

2
(1− γ5) γµ

]
=

1

4

[
γαγβ − γβγα, 1

2
(1− γ5) γµ

]
=

1

8

(
(1− γ5)

(
γαγβγµ − γµγαγβ

)
− (1− γ5)

(
γβγαγµ − γµγβγα

))
=

1

4
(1− γ5)

(
γαγβγµ − γµγαγβ − γβγαγµ + γµγβγα

)
=

1

8
(1− γ5)

(
γαγβγµ − γµγαγβ −

(
−γαγβ + 2ηαβ

)
γµ + γµ

(
−γαγβ + 2ηαβ

))
=

1

8
(1− γ5)

(
2γαγβγµ − 2γµγαγβ

)
and since

γµγαγβ = (−γαγµ + 2ηµα) γβ

= −γα
(
−γβγµ + 2ηµβ

)
+ 2ηµαγβ

= γαγβγµ − 2ηµβγα + 2ηµαγβ

this becomes [
σαβ , Pµ

]
=

1

8
(1− γ5)

(
2γαγβγµ − 2γµγαγβ

)
=

1

8
(1− γ5)

(
2γαγβγµ − 2

(
γαγβγµ − 2ηµβγα + 2ηµαγβ

))
=

1

8
(1− γ5)

(
4ηµβγα − 4ηµαγβ

)
= ηµβPα − ηµαP β

Comparing the commutators,[
σαβ , σµν

]
= ηβµσαν − ηαµσβν − ηβνσαµ + ηανσβµ[

σαβ , Pµ
]

= ηµβPα − ηµαP β

[Pµ, P ν ] = 0

to the Lie algebra of the Poincaré group, Eqs.(2.55), (2.56) and (2.57), we see that we have the complete Lie
algebra of the Poincaré group in the spin representation.

Now, recall that the square of the spin operator, WµWµ is a Casimir operator of the Poincaré group,
where, modifying Eq.(2.60) to use the Spin (1, 3) representation,

Wµ ≡ 1

2
εµ ναβP

νσαβ

is a Casimir operator of the Poincaré group. We now fix the normalization of Wµ to reproduce our usual
spin operators, Jk.

Choosing the rest frame of the momentum, Pµ = mc (1,0), Wµ takes the form,

Wµ ≡ mc

2
εµ 0αβσ

αβ

In this frame, W 0 = 0 so we may write

W i = −mc
2
εi mnσ

mn
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where the Latin indices run over 1, 2, 3. We also need

Wiε
ijk = −mc

2
εijkεimnσ

mn

= −mc
2

(
δjmδ

k
n − δkmδjn

)
σmn

= −mcσjk

so that σjk = − 1
mcWiε

ijk. The commutator
[
W i,W j

]
is[

W i,W j
]

=
[mc

2
εi mnσ

mn,
mc

2
εj klσ

kl
]

=
m2c2

4
εi mnε

j
kl

[
σmn, σkl

]
so restricting the indices to spacelike in Eq.(2.55), ηαβ → δmn and[

σmn, σkl
]

= δnkσml − δmkσnl − δnlσmk + δmlσnk

the commutator becomes[
W i,W j

]
=

m2c2

4
εi mnε

j
kl

(
δnkσml − δmkσnl − δnlσmk + δmlσnk

)
=

m2c2

4

(
εi mnε

jn
lσ
ml − εi mnε

jm
l σ
nl − εi mnε

j n
k σmk + εi mnε

j m
k σnk

)
=

m2c2

4

(
−
(
δijδml − δilδjm

)
σml −

(
δijδnl − δilδjn

)
σnl −

(
δijδmk − δikδjm

)
σmk −

(
δijδnk − δikδjn

)
σnk

)
=

m2c2

4

(
σji + σji + σji + σji

)
= −m

2c2

4
σij

and therefore [
W i,W j

]
=

mc

4
Wkε

kij

Lowering indices and setting

Ji ≡
4i~
mc

Wi

we have the Spin (3) Lie algebra,[
4i~
mc

Wi,
4i~
mc

Wj

]
=

4i~
mc

mc

4
εijk

4i~
mc

W k

[Ji, Jj ] = i~εijkJk

Normalized in this way, the spin operators of the Poincaré group become

Wµ ≡ 2i~
mc

εµ ναβP
νσαβ
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Chapter 4

Quantization of scalar fields

We have introduced several distinct types of fields, with actions that give their field equations. These include
scalar fields,

S =
1

2

ˆ (
∂αϕ∂αϕ−m2ϕ2

)
d4x (4.1)

and complex scalar fields,

S =

ˆ (
∂αϕ∗∂αϕ−m2ϕ∗ϕ

)
d4x (4.2)

These are often called charged scalar fields because they have a nontrivial global U(1) symmetry that allows
them to couple to electromagnetic fields. Scalar fields have spin 0 and mass m.

The next possible value of W 2 ∼ J2 is spin- 1
2 , which is possessed by spinors. Dirac spinors satisfy the

Dirac equation, which follows from the action of Eq.(2.47),

SD =

ˆ
d4x ψ̄ (iγµ∂µ −m)ψ

Once again, the mass is m. For higher spin, we have the zero mass, spin-1 electromagnetic field, with action

SEM =

ˆ
d4x

(
1

4
FαβFαβ + JαAα

)
(4.3)

Electromagnetic theory has an important generalization in the Yang-Mills field, FA αβ where the additional
index corresponds to an SU(n) symmetry, where A is an SU (n) index. These fields have a similar action,

SYM =

ˆ
d4x

(
1

4
FAαβFAαβ + JαAα

)
and are also massless in order to preserve the gauge symmetry.

We could continue with the spin- 3
2 Rarita-Schwinger field and the spin-2 metric field, gαβ of general

relativity. The latter obeys the Einstein-Hilbert action,

S =

ˆ
d4x

√
−det (gαβ)gαβRµ αµβ (4.4)

where Rµ αµβ is the Riemann curvature tensor computed from gαβ and its first and second derivatives.
In this, and the next two chapters, we will quantizing the scalar, Dirac, and electromagnetic field in turn.
We need the Hamiltonian formulation of field theory to do this properly, and that will require a bit of

functional differentiation. It’s actually kind of fun.
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4.1 Functional differentiation
What distinguishes a functional such as the action S[x(t)] from a function f(x(t)), is that f(x(t) is a number
for each value of t, whereas the value of S[x(t)] cannot be computed without knowing the entire function
x(t). Thus, functionals are nonlocal. If we think of functions and functionals as maps, then a function maps
the reals to the reals (or more generally, Rn to Rm)

f : R→ R

and f (x) is a number for each real number x. A functional, by contrast, maps an entire function space into
R,

S : F → R

F = {f |f : R→ R}

In this section we develop the functional derivative, that is, the generalization of differentiation to functionals.
We would like the functional derivative to formalize finding the extremum of an action integral, so it

makes sense to review the variation of an action. The usual argument is that we replace x(t) by x(t) + h(t)
in the functional S[x(t)], then demand that to first order in h(t),

δS ≡ S[x+ h]− S[x] = 0

We want to replace this statement by the demand that at the extremum, the first functional derivative of
S[x] vanishes,

δS[x(t)]

δx(t)
= 0

Now, suppose S is given by

S[x(t)] =

ˆ
L(x(t), ẋ(t))dt

Then replacing x by x+ h and subtracting S gives

δS ≡
ˆ
L(x+ h, ẋ+ ḣ)dt−

ˆ
L(x, ẋ)dt

=

ˆ (
L(x, ẋ) +

∂L(x, ẋ)

∂x
h+

∂L(x, ẋ)

∂ẋ
ḣ

)
dt−

ˆ
L(x, ẋ)dt

=

ˆ (
∂L(x, ẋ)

∂x
− d

dt

∂L(x, ẋ)

∂ẋ

)
h(t) dt

Setting δx = h(t) we may write this as

δS =

ˆ (
∂L(x, ẋ)

∂x
− d

dt′
∂L(x, ẋ)

∂ẋ

)
δx(t′) dt′

Now write
δS =

δS

δx(t)
δx(t) =

(ˆ (
∂L(x, ẋ)

∂x
− d

dt′
∂L(x, ẋ)

∂ẋ

)
δx(t′)

δx(t)
dt′
)
δx(t)

or simply
δS

δx(t)
=

ˆ (
∂L(x, ẋ)

∂x
− d

dt′
∂L(x, ẋ)

∂ẋ

)
δx(t′)

δx(t)
dt′ (4.5)

We might write this much by just using the chain rule. What we need is to evaluate the basic functional
derivative,

δx(t′)

δx(t)
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To see what this might be, consider the analogous derivative for a countable number of degrees of freedom.
Beginning with

∂qj

∂qi
= δji

we notice that when we sum over the i index holding j fixed, we have∑
i

∂qj

∂qi
=
∑
j

δji = 1

since j = i for only one value of j. We demand the continuous version of this relationship. The sum over
independent coordinates becomes an integral,

∑
i →
´
dt′, so we demand

ˆ
δx(t′)

δx(t)
dt′ = 1

This will be true provided we use a Dirac delta function for the derivative:

δx(t′)

δx(t)
= δ(t′ − t) (4.6)

Substituting this expression into Eq.(4.5) gives the desired result for δS
δx(t) :

δS

δx(t)
=

ˆ (
∂L(x, ẋ)

∂x
− d

dt′
∂L(x, ẋ)

∂ẋ

)
δ(t′ − t) dt′

=
∂L(x, ẋ)

∂x
− d

dt

∂L(x, ẋ)

∂ẋ

The Dirac delta function extracts the equation of motion.

4.1.1 The details
Using a delta function works ideally to extract the Euler-Lagrange equation works, but it makes no obvious
sense as a perturbation of the path. To connect these ideas we resort to the definition of the delta function
as a limit of test functions,

δ (t0 − t′) = lim
n→∞

hn (t0, t
′) (4.7)

where for any smooth function f (t′) of compact support,

lim
n→∞

∞̂

−∞

f (t′)hn (t0, t
′) dt′ = f (t0)

We can choose the sequence of functions hn (t0, t
′) to charactrize deformations of the path, so that the change

in the path is
xn (ε, t′) = x (t′) + εhn (t0, t

′) (4.8)

For this xn, the change the action is

S [xn (ε, t′)] =

ˆ
L
(
x (t′) + εhn (t0, t

′) , ẋ (t′) + εḣn (t0, t
′)
)
dt′

Our previous procedure was to subtract the original action and keep terms to first order, but this may now
be accomplished by differentiating with respect to ε:

d

dε
S [xn (ε, t′)] =

ˆ
d

dε
L
(
x (t′) + εhn (t0, t

′) , ẋ (t′) + εḣn (t0, t
′)
)

=

ˆ
∂L

∂x
hn (t0, t

′) +
∂L

∂ẋ
ḣn (t0, t

′)
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where the partial ∂L∂x is with respect to the first variable in L (x, ẋ) and the second partial with respect to
the second. The chain rule then leaves hn and ḣn, respectively. Integrating the second term by parts and
discarding the surface term,

d

dε
S [xn (ε, t′)] =

ˆ (
∂L

∂x
− d

dt′

(
∂L

∂ẋ

))
hn (t0, t

′)

The form of the Lagrangian here is still

L
(
x (t′) + εhn (t0, t

′) , ẋ (t′) + εḣn (t0, t
′)
)

but after differentiating we may set ε = 0. This is equivalent to keeping only the first order term, and reduces
the Lagrangian to L (x (t′) , ẋ (t′)).

Since this is valid for every hn (t0, t
′), we may take the limit and define

δS

δx
≡ lim

n→∞

[
d

dε
S [xn (ε, t′)]

]
ε=0

= lim
n→∞

ˆ (
∂L (x (t′) , ẋ (t′))

∂x
− d

dt′

(
∂L (x (t′) , ẋ (t′))

∂ẋ

))
hn (t0, t

′) dt′

=

ˆ (
∂L

∂x
− d

dt′

(
∂L

∂ẋ

))
δ (t′ − t0) dt′

=

[
∂

∂x
L (x (t′) , ẋ (t′))− d

dt′

(
∂

∂ẋ
L (x (t′) , ẋ (t′))

)]
t′=t0

Since t0 is arbitrary, the final expression holds for any t.
We therefore define the functional derivative of a functional S [x] to be

δS

δx
≡ lim
n→∞

[
d

dε
S [xn (ε, t′)]

]
ε=0

where the smooth functions hn (t, t′) satisfy Eq.(4.7) and xn (ε, t′) is given by Eq.(4.8).
The derivative with respect to ε accomplishes the usual variation of the action, and then setting ε = 0

selects the linear part of the variation. Then we take the limit of a carefully chosen sequence of variations
hn to extract the variational coefficient from the integral.

There are various advantages to this more formal approach. One is that we can equally well apply the
technique to classical field theory, and another is that we may iterate the definition to take higher functional
derivatives.

4.1.2 Example: Field equations as functional derivatives
We can vary field actions in the same way, and the results make sense directly. Consider varying the
functional derivative of the Klein-Gordon scalar field action:

S =
1

2

ˆ (
∂αϕ∂αϕ−m2ϕ2

)
d4x

with respect to the field ϕ. The Lagrangian is now a functional,

L =
1

2

ˆ (
∂αϕ∂αϕ−m2ϕ2

)
d3x (4.9)

S =

ˆ
Ldt
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The functional derivative of S is

δS[ϕ]

δϕ(y)
=

1

2

δ

δϕ(y)

ˆ (
∂αϕ (x) ∂αϕ (x)−m2ϕ2 (x)

)
d4x

=

ˆ (
∂αϕ

∂

∂xα

(
δϕ (x)

δϕ (y)

)
−m2ϕ

δϕ (x)

δϕ (y)

)
d4x

=

ˆ (
−∂α∂αϕ−m2ϕ

) δϕ (x)

δϕ (y)
d4x

=

ˆ (
−∂α∂αϕ−m2ϕ

)
δ4(x− y)d4x

= −�ϕ (y)−m2ϕ (y)

and the vanishing of the first functional derivative is the field equation,
(
�+m2

)
ϕ (y) = 0.

Exercise: Find the field equation for the complex scalar field by taking the functional derivative of its
action, eq.(4.2).

Exercise: Find the field equation for the Dirac field by taking the functional derivative of its action,
eq.(2.47).

Exercise: Find the Maxwell equations by taking the functional derivative of its action, eq.(4.3).

With this new tool at our disposal, we turn to quantization.

4.2 Quantization of the Klein-Gordon (scalar) field
We develop the Hamiltonian formulation, then canonically quantize.

4.2.1 The conjugate momentum
To begin quantization, we require the Hamiltonian formulation of scalar field theory. Beginning with the
Lagrangian,

L =
1

2

ˆ (
∂αϕ∂αϕ−m2ϕ2

)
d3x

the only modification to the definition of the conjugate momentum as

p =
∂L

∂ẋ

is the recognition that (a) the independent variable is dependent on four parameters ϕ = ϕ (xα) instead of
just one, and (b) the Lagrangian is now a functional, Eq.(4.9). Just as the time derivative must be changed
from a total to a partial derivative,

ẋ =
dx

dt
=⇒ ϕ̇ =

∂ϕ

∂t

the derivative of the Lagrangian must go to a functional derivative of the Lagrangian

∂L

∂ẋ
=⇒ δL

δϕ̇
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Writing π (yµ) = π (y), the conjugate momentum is therefore,

π (y) ≡ δL [x]

δ (∂0ϕ (y))

=
δ

δ (∂0ϕ (y))

1

2

ˆ (
∂αϕ (x) ∂αϕ (x)−m2ϕ2 (x)

)
d3x

=

ˆ
∂0ϕ (x) δ3 (y − x) d3x′

= ∂0ϕ (t,y)

Notice that we treat ϕ (x) and its derivatives ∂αϕ (x) as independent. In terms of the momentum density,
the action and Lagrangian density are

S =
1

2

ˆ (
π2 −∇ϕ ·∇ϕ−m2ϕ2

)
d4x (4.10)

L =
1

2

(
π2 −∇ϕ ·∇ϕ−m2ϕ2

)
(4.11)

4.2.2 The Hamiltonian and Poisson brackets
We must also generalize the expression for the Hamiltonian. For the infinite number of field degrees of
freedom (labeled by the spatial coordinates x), the sum in the expression for the Hamiltonian becomes an
integral, so that H =

∑
piq̇

i − L generalizes to

H =

ˆ
π (x, t) ϕ̇ (x, t) d3x− L (4.12)

Therefore,

H =

ˆ
π(x)ϕ̇(x)d3x− 1

2

ˆ (
∂αϕ∂αϕ−m2ϕ2

)
d3x

=
1

2

ˆ (
π2 + ∇ϕ ·∇ϕ+m2ϕ2

)
d3x (4.13)

We can define the Hamiltonian density,

H =
1

2

(
π2 + ∇ϕ ·∇ϕ+m2ϕ2

)
(4.14)

Hamilton’s equations can also be expressed in terms of densities. Starting from Hamilton’s equations in
the familiar form,

q̇i =
∂H

∂pi

ṗi = −∂H
∂qi

we replace
(
qi, pj

)
with (ϕ, π) and since the Hamiltonian is a functional, replace the partial derivative with

functional derivatives,

ϕ̇ (x) =
δH

δπ (x)
(4.15)

π̇ (x) = − δH

δϕ (x)
(4.16)
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and check that our procedure reproduces the correct field equation by taking the indicated derivatives.
Carrying out the functional derivative for ϕ̇,

ϕ̇(x) =
δH

δπi (x)

=
1

2

δ

δπi (x)

ˆ (
π2 +∇ϕ · ∇ϕ+m2ϕ2

)
d3y

=
1

2

ˆ (
2π (y)

δπ (y)

δπ (x)

)
d3y

=

ˆ
π (y) δ3 (x− y) d3y

= π (x)

This agrees with our definition of π (x). For π we find

π̇ (x) = − δH

δϕ (x)

= −1

2

δ

δϕ(x)

ˆ (
π2 +∇ϕ · ∇ϕ+m2ϕ2

)
d3y

= −
ˆ (
∇ϕ · ∇δϕ (y)

δϕ (x)
+m2ϕ

δϕ (y)

δϕ (x)

)
d3y

=

ˆ (
∇2ϕ · δϕ (y)

δϕ (x)
−m2ϕ

δϕ (y)

δϕ (x)

)
d3y

=

ˆ (
∇2ϕδ3 (y − x)−m2ϕδ3 (y − x)

)
d3y

= ∇2ϕ (x)−m2ϕ (x)

But π̇ = ∂0π = ∂0∂
0ϕ so

�ϕ = −m2ϕ

and we recover the Klein-Gordon field equation.
We move toward quantization by writing the field equations in terms of functional Poisson brackets. Let

{f (ϕ, π) , g (ϕ, π)} ≡
ˆ (

δf

δπ (x)

δg

δϕ (x)
− δf

δϕ (x)

δg

δπ (x)

)
d3x (4.17)

where we replace the sum over all pi and qi by an integral over x, and where f (ϕ, π) = f (ϕ (y, t) , π (y, t))
and g (ϕ, π) = g (ϕ (z, t) , π (z, t)). The bracket is evaluated at a constant time. Then we have

{π (y, t) , ϕ (z, t)} =

ˆ (
δπ (y, t)

δπ(x)

δϕ (z, t)

δϕ(x)
− δπ (y, t)

δϕ(x)

δϕ (z, t)

δπ(x)

)
d3x

=

ˆ
δ3 (y − x) δ3 (z− x) d3x

= δ3 (z− y)

while
{π (y, t) , π (z, t)} = {ϕ (y, t) , ϕ (z, t)} = 0
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Hamilton’s equations work out correctly:

ϕ̇(x) = {H(ϕ, π), ϕ(x′)}

=

ˆ (
δH(ϕ, π)

δπ(x)

δϕ(x′)

δϕ(x)
− δH

δϕ(x)

δϕ(x′)

δπ(x)

)
d3x

=

ˆ
δH(ϕ, π)

δπ(x)
δ3(x− x′)d3x

=
δH(ϕ(x), π(x))

δπ(x)

and

π̇(x) = {H(ϕ, π), π(x′)}

=

ˆ (
δH(ϕ, π)

δπ(x)

δπ(x′)

δϕ(x)
− δH

δϕ(x)

δπ(x′)

δπ(x)

)
d3x

= −
ˆ
δH(ϕ, π)

δϕ(x)
δ3(x− x′)d3x

= −δH(ϕ(x), π(x))

δϕ(x)

Now we quantize, canonically. The field and its conjugate momentum become operators and the funda-
mental Poisson brackets become commutators:

{π(x′), ϕ(x′′)} = δ3(x′′ − x′)⇒ [π̂(x′), ϕ̂(x′′)] = iδ3(x′′ − x′)

(where h = 1) while
[ϕ̂(x′), ϕ̂(x′′)] = [π̂(x′), π̂( x′′)] = 0

These are the fundamental commutation relations of the quantum field theory. Because the commutator of
the field operators π̂(x) and ϕ̂(x) are evaluated at the same value of t, these are called equal time commutation
relations. More explicitly,

[π̂(x′, t), ϕ̂(x′′, t)] = iδ3(x′′ − x′)

[ϕ̂(x′, t), ϕ̂(x′′, t)] = [π̂(x′, t), π̂(x′′, t)] = 0 (4.18)

This completes the canonical quantization. The trick, of course, is to characterize the states these operators
act on.

4.2.3 Solution for the free classical Klein-Gordon field
Having written commutation relations for the field, we still have the problem of finding solutions and inter-
preting them. To begin, we look at solutions the classical theory. The field equation

�ϕ = −m
2

~2
ϕ

(where we keep h, but set c = 1) is not hard to solve. Consider plane waves,

ϕ(x, t) = Ae
i
~ (pαx

α) +A∗e−
i
~ (pαx

α)

= Ae
i
~ (Et−p·x) +A∗e−

i
~ (Et−p·x)

where we add the complex conjugate because ϕ is real. Substituting into the field equation we have

A

(
i

~

)2

pαp
α exp

i

~
(pαx

α) = −m
2

~2
A exp

i

~
(pαx

α)
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so we need the usual mass-energy-momentum relation:

pαp
α = m2

We can solve this for the energy,

E+ =
√
p2 +m2

E− = −
√
p2 +m2

then construct the general solution by Fourier superposition. To keep the result manifestly relativistic, we
use a Dirac delta function to impose the energy condition, pαpα = m2. We also insert a unit step function,
Θ(E), to insure positivity of the energy. This insertion may seem a bit ad hoc, and it is – we will save
discussion of the negative energy solutions and antiparticles for the last section of this chapter. Then,

ϕ(x, t) =
1

(2π)
3/2

ˆ √
2E
(
a(E,p)e

i
~ (pαx

α) + a∗(E,p)e−
i
~ (pαx

α)
)

×δ
(
pαp

α −m2
)

Θ(E)~−4d4p (4.19)

where A =
√

2Ea(E,p) is the arbitrary complex amplitude of each wave mode and 1
(2π)3/2

is the conventional
normalization for Fourier integrals.

Recall that for a function f (x) with zeros at xi, i = 1, 2, . . . , n, δ (f) gives a contribution at each zero:

δ (f) =

n∑
i=1

1

|f ′ (xi) |
δ (x− xi) (4.20)

so the quadratic delta function can be written as

δ
(
pαp

α −m2
)

= δ
(
E2 − p2 −m2

)
=

1

2 |E|
δ
(
E −

√
p2 +m2

)
+

1

2 |E|
δ
(
E +

√
p2 +m2

)
(4.21)

Exercise: Prove eq.(4.20).

Exercise: Argue that Θ(E) is Lorentz invariant.

The integral for the solution ϕ(x, t) becomes

ϕ(x, t) =
1

(2π)
3/2

ˆ √
2~E

{(
ae

i
~ (pαx

α) + a∗e−
i
~ (pαx

α)
) 1

2|E|
δ
(
E −

√
p2 +m2

)
+
(
ae

i
~ (pαx

α) + a†e−
i
~ (pαx

α)
) 1

2|E|
δ
(
E +

√
p2 +m2

)}
Θ(E)~−3d4p

=
1

(2π)
3/2

ˆ (
ae

i
~ (pαx

α) + a∗e−
i
~ (pαx

α)
) 1√

2
~ |E|

δ
(
E −

√
p2 +m2

)
~−3d4p

=
1

(2π)
3/2

ˆ (
ae

i
~ (pαx

α) + a∗e−
i
~ (pαx

α)
) 1√

2ω
d3k

=
1

(2π)
3/2

ˆ (
ae

i
~ (pαx

α) + a∗e−
i
~ (pαx

α)
) 1√

2ω
d3k

Define the wave vector kµ,

kµ = (ω,k)

k =
p

~

ω = +
1

~
√

p2 +m2 = +

√
k2 +

(m
~

)2
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Then integrating over the energy delta function,

ϕ (x, t) =
1

(2π)
3/2

ˆ
d3k√

2ω

(
a (k) ei(ωt−k·x) + a∗ (k) e−i(ωt−k·x)

)
(4.22)

This is the general classical solution for the Klein-Gordon field. Notice that since ω = ω(k), the amplitudes
a and a∗ depend only on k. We also need the conjugate momentum,

π (x, t) = ∂0ϕ (x, t)

=
i

(2π)
3/2

ˆ
d3k

√
ω

2

(
a (k) ei(ωt−k·x) − a∗ (k) e−i(ωt−k·x)

)
(4.23)

To check that our solution satisfies the Klein-Gordon equation, we need only apply the wave operator
to the right side. This pulls down an overall factor of (ikµ)(ikµ) = − 1

~2

(
E2 − p2

)
= −m

2

~2 . Since this is
constant, it comes out of the integral, giving −m

2

~2 ϕ as required.

4.2.4 Quantization of the mode amplitudes
Now we need to quantize the classical solution. We know the fundamental commutation relations that ϕ̂
and π̂ satisfy, Eqs.(4.18) as operators, but we need to see the effect this has on the right hand side of the
solution, Eq.(4.22). To do this, we first invert the classical Fourier integrals to solve for the coefficients in
terms of the fields. To this end, multiply ϕ(x, t) by 1

(2π)3/2
d3xeik

′·x and integrate. It proves sufficient to
evaluate the expression at t = 0.

1

(2π)
3/2

ˆ
ϕ (x, 0) eik

′·xd3x =
1

(2π)
3

ˆ ˆ
d3xd3k√

2ω

(
a (k) ei(k

′−k)·x + a∗ (k) ei(k
′+k)·x

)
=

1

(2π)
3

ˆ
d3k√

2ω

(
a (k) (2π)

3
δ3 (k′ − k) + a∗ (k) (2π)

3
δ3 (k′ + k)

)
=

1√
2ω′

(a (k′) + a∗ (−k′)) (4.24)

where we have used the Fourier representation of the Dirac delta function

δ3 (k) =
1

(2π)
3

ˆ
d3x eik·x

Once again taking the Fourier transform, 1
(2π)3/2

´
π (x, 0) eik

′·xd3x, of the momentum density, we find it
equal to

1

(2π)
3/2

ˆ
π (x, 0) eik

′·xd3x =
i

(2π)
3

ˆ
d3x

ˆ
d3k

√
ω

2

(
a (k) ei(k

′−k)·x − a† (k) ei(k
′+k)·x

)
= i

ˆ
d3k

√
ω

2

(
a (k) δ3 (k′ − k)− a† (k) δ3 (k′ + k)

)
= i

√
ω′

2

(
a(k′)− a† (−k′)

)
(4.25)

These results combine to solve for the amplitudes. Adding
√

2ω′ times Eq.(4.24) to −i
√

2
ω′ times (4.23)

gives a (k′) :

(
a (k′) + a† (−k′)

)
+
(
a(k′)− a† (−k′)

)
=

√
2ω′

(2π)
3/2

ˆ
ϕ (x, 0) eik

′·xd3x− i

(2π)
3/2

√
2

ω′

ˆ
π (x, 0) eik

′·xd3x
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Simplifying, we have solved for the mode amplitudes,

a (k′) =

√
2ω′

2 (2π)
3/2

ˆ (
ϕ (x, 0)− i

ω′
π (x, 0)

)
eik

′·xd3x (4.26)

Subtracting instead of adding, and replacing k′ → −k′ gives the conjugate mode amplitudes,

a∗ (k′) =

√
2ω′

2 (2π)
3/2

ˆ (
ϕ (x, 0) +

i

ω′
π (x, 0)

)
e−ik

′·xd3x (4.27)

This gives the amplitudes in terms of the field and its conjugate momentum. So far, this result is classical.
Now we quantize the amplitudes by replacing ϕ and π by the operators, ϕ̂ and π̂. Clearly, once ϕ and π

become operators, the amplitudes must too; there is no other field present that could become an operator
instead. Dropping the primes and noting that the complex conjugate becomes the adjoint operator,

â (k) =

√
2ω

2 (2π)
3/2

ˆ (
ϕ̂ (x, 0)− i

ω′
π̂ (x, 0)

)
eik·xd3x (4.28)

â† (k) =

√
2ω

2 (2π)
3/2

ˆ (
ϕ̂ (x, 0) +

i

ω′
π̂ (x, 0)

)
e−ik·xd3x (4.29)

From the commutation relations for ϕ and π we can compute those for a and a†.

[
â (k) , â† (k′)

]
=

√
ωω′

2 (2π)
3

ˆ ˆ
eik·xe−ik

′·x′
d3x d3x′

[
ϕ̂ (x, 0)− i

ω
π̂ (x, 0) , ϕ̂ (x′, 0) +

i

ω′
π̂ (x′, 0)

]
=

√
ωω′

2 (2π)
3

ˆ ˆ
eik·xe−ik

′·x′
d3x d3x′

(
i

ω′
[ϕ̂ (x, 0) , π̂ (x′, 0)]− i

ω
[π̂ (x, 0) , ϕ̂ (x′, 0)]

)
=

√
ωω′

2 (2π)
3

ˆ ˆ
eik·xe−ik

′·x′
d3x d3x′

(
2

ω′
δ3 (x− x′)

)
The Dirac delta function allows us to evaluate the integrals,[

â (k) , â† (k′)
]

=

√
ω

ω′
1

(2π)
3

ˆ ˆ
eik·xe−ik

′·x′
d3x d3x′δ3 (x− x′)

=

√
ω

ω′
1

(2π)
3

ˆ
ei(k−k

′)·xd3x

= δ3 (k− k′)

Notice that the delta function makes ω = ω′.

Exercise: Show that [â(k), â(k′)] = 0.

Exercise: Show that
[
â†(k), â†(k′)

]
= 0.

Finally, we summarize by the field and momentum density operators in terms of the mode amplitude oper-
ators:

ϕ̂ (x, t) =
1

(2π)
3/2

ˆ
d3k√

2ω

(
â (k) ei(ωt−k·x) + â† (k) e−i(ωt−k·x)

)
(4.30)

π̂ (x, t) =
i

(2π)
3/2

ˆ
d3k

√
ω

2

(
â (k) ei(ωt−k·x) − â† (k) e−i(ωt−k·x)

)
(4.31)

Next, we turn to a study of states. To begin, we require the Hamiltonian operator, which requires a bit
of calculation.
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4.2.5 Calculation of the Hamiltonian operator
This is our first typical quantum field theory calculation. They’re a bit tricky to keep track of, but not really
that hard. Our goal is to compute the expression for the Hamiltonian operator

Ĥ ≡ ~
2

ˆ (
π̂2 + ∇ϕ̂ ·∇ϕ̂+m2ϕ̂2

)
d3x (4.32)

in terms of the mode operators. Because the techniques involved are used frequently in field theory calcula-
tions, we include all the gory details.

Let’s consider one term at a time. For the first,

Iπ =
~
2

ˆ
π̂2d3x

=
~
2

ˆ
d3x

[
i

(2π)
3/2

ˆ
d3k

√
ω

2

(
â (k) ei(ωt−k·x) − â† (k) e−i(ωt−k·x)

)
× i

(2π)
3/2

ˆ
d3k′

√
ω′

2

(
â (k′) ei(ω

′t−k′·x) − â† (k′) e−i(ω
′t−k′·x)

)]

= −1

4

~
(2π)

3

ˆ
d3x

ˆ
d3k

ˆ
d3k′
√
ωω′

(
â (k) ei(ωt−k·x) − â† (k) e−i(ωt−k·x)

)(
â (k′) ei(ω

′t−k′·x) − â† (k′) e−i(ω
′t−k′·x)

)
= −1

4

~
(2π)

3

ˆ
d3x

ˆ
d3k

ˆ
d3k′
√
ωω′

[
â (k) â (k′) ei((ω+ω′)t−(k+k′)·x) − â (k) â† (k′) ei((ω−ω

′)t−(k−k′)·x)

−â† (k) â (k′) e−i((ω−ω
′)t−(k−k′)·x) + â† (k) â† (k′) e−i((ω+ω′)t−(k+k′)·x)

]
The integral over d3x, produces Dirac delta functions, which we integrate immediately:

Iπ = −~
4

ˆ
d3k

ˆ
d3k′
√
ωω′

[
â (k) â (k′) δ3 (k + k′) ei(ω+ω′)t − â (k) â† (k′) δ3 (k− k′) ei(ω−ω

′)t

−â† (k) â (k′) δ3 (k− k′) e−i(ω−ω
′)t + â† (k) â† (k′) δ3 (k + k′) e−i(ω+ω′)t

]
= −~

4

ˆ
d3k ω

[
â (k) â (−k) e2iωt − â (k) â† (k)− â† (k) â (k) + â† (k) â† (−k) e−2iωt

]
We follow the same steps for the remaining two terms in the Hamiltonian. Inserting the gradient of

Eq.(4.30), the second term becomes

I∇ϕ =
~
2

ˆ
∇ϕ̂ ·∇ϕ̂d3x

=
~
2

1

(2π)
3

ˆ
d3x

ˆ
d3k√

2ω

ˆ
d3k′√

2ω′
(−ik) · (−ik′)

(
â (k) ei(ωt−k·x) − â† (k) e−i(ωt−k·x)

)(
â (k′) ei(ω

′t−k′·x) − â† (k′) e−i(ω
′t−k′·x)

)
= −~

2

1

(2π)
3

ˆ
d3x

ˆ
d3k√

2ω

ˆ
d3k′√

2ω′
k · k′

[(
â (k) â (k′) ei((ω+ω′)t−(k+k′)·x) − â (k) â† (k′) ei((ω−ω

′)t−(k−k′)·x)
)

−â† (k) â (k′) e−i((ω−ω
′)t−(k−k′)·x) + â† (k) â† (k′) e−i((ω+ω′)t−(k+k′)·x)

]
= −~

2

ˆ
d3k√

2ω

ˆ
d3k′√

2ω′
k · k′

[(
â (k) â (k′) δ3 (k + k′) ei(ω+ω′)t − â (k) â† (k′) δ3 (k− k′) ei(ω−ω

′)t
)

−â† (k) â (k′) δ3 (k− k′) e−i(ω−ω
′)t + â† (k) â† (k′) δ3 (k + k′) e−i(ω+ω′)t

]
= −~

4

ˆ
d3k

k2

ω

[
−â (k) â (−k) e2iωt − â (k) â† (k)− â† (k) â (k)− â† (k) â† (−k) e−2iωt

]
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As before, the d3x integrals of the four terms give four Dirac delta functions and the d3k′ integrals become
trivial. It is not hard to see the pattern that is emerging. The k·k

ω term will combine nicely with the ω from
the π̂2 integral and a corresponding m2 term from the final integral to give a cancellation. The crucial thing
is to keep track of the signs.

The third and final term is

Im =
~
2

ˆ
m2ϕ̂2d3x

=
~
2

1

(2π)
3

ˆ
d3x

ˆ
d3k√

2ω

ˆ
d3k′√

2ω′
m2
(
â (k) ei(ωt−k·x) + â† (k) e−i(ωt−k·x)

)(
â (k′) ei(ω

′t−k′·x) + â† (k′) e−i(ω
′t−k′·x)

)
=

~
2

1

(2π)
3

ˆ
d3x

ˆ
d3k√

2ω

ˆ
d3k′√

2ω′
m2
[(
â (k) â (k′) ei((ω+ω′)t−(k+k′)·x) + â (k) â† (k′) ei((ω−ω

′)t−(k−k′)·x)
)

+â† (k) â (k′) e−i((ω−ω
′)t−(k−k′)·x) + â† (k) â† (k′) e−i((ω+ω′)t−(k+k′)·x)

]
=

~
2

ˆ
d3k√

2ω

ˆ
d3k′√

2ω′
m2
[(
â (k) â (k′) δ3 (k + k′) ei(ω+ω′)t + â (k) â† (k′) δ3 (k− k′) ei(ω−ω

′)t
)

+â† (k) â (k′) δ3 (k− k′) e−i(ω−ω
′)t + â† (k) â† (k′) δ3 (k + k′) e−i(ω+ω′)t

]
=

~
4

ˆ
d3k

m2

ω

[
â (k) â (−k) e2iωt + â (k) â† (k) + â† (k) â (k) + â† (k) â† (−k) e−2iωt

]
Now we can combine all three terms:

Ĥ ≡ ~
2

ˆ (
π̂2 + ∇ϕ̂ ·∇ϕ̂+m2ϕ̂2

)
d3x

= Iπ + IOϕ + Im

= −~
4

ˆ
d3k ω

[
â (k) â (−k) e2iωt − â (k) â† (k)− â† (k) â (k) + â† (k) â† (−k) e−2iωt

]
−~

4

ˆ
d3k

k2

ω

[
−â (k) â (−k) e2iωt − â (k) â† (k)− â† (k) â (k)− â† (k) â† (−k) e−2iωt

]
+
~
4

ˆ
d3k

m2

ω

[
â (k) â (−k) e2iωt + â (k) â† (k) + â† (k) â (k) + â† (k) â† (−k) e−2iωt

]
= −~

4

ˆ
d3k

(
ω − k2

ω
− m2

ω

)
â (k) â (−k) e2iωt − ~

4

ˆ
d3k

(
−ω − k2

ω
− m2

ω

)
â (k) â† (k)

−~
4

ˆ
d3k

(
−ω − k2

ω
− m2

ω

)
â† (k) â (k)− ~

4

ˆ
d3k

(
ω − k2

ω
− m2

ω

)
â† (k) â† (−k) e−2iωt

Since
ω2 − k2 = m2

the Hamiltonian becomes

Ĥ = −~
4

ˆ
d3k (−2ω) â (k) â† (k)− ~

4

ˆ
d3k (−2ω) â† (k) â (k)

=
1

2

ˆ
d3k ~ω

(
â (k) â† (k) + â† (k) â (k)

)
If we commute â (k) and â† (k) in the first term on the right, we encounter a problem:

Ĥ =
1

2

ˆ
d3k ~ω

(
â† (k) â (k) + â† (k) â (k) + δ3 (k− k)

)
=

ˆ
d3k ~ω

(
â† (k) â (k) +

1

2
δ3 (k− k)

)
This is very close to a sensible result, but the constant term is problematic.
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4.2.6 Our first infinity
The form of the Hamiltonian found above displays an obvious problem – the final term,

1

2

ˆ
d3k ~ωδ3 (0)

diverges in several ways. Most obviously, the triple Dirac delta function is evaluated at 0 and therefore
diverges. Even if it were not present, the remaining integral,

´
d3k ω, itself diverges.

While the constant “ground state energy” of the harmonic oscillator, 1
2hω, causes no probem in quantum

mechanics, the presence of such an energy term for each mode of quantum field theory leads to an infinite
energy for the vacuum state. Fortunately, a simple trick allows us to eliminate this divergence throughout
our calculations. To see how it works, notice that anytime we have a product of two or more fields at the
same point, we develop some terms of the general form

ϕ̂ (x) ϕ̂ (x) ∼ â (ω,k) â† (ω,k) + . . .

which have â† (ω,k) to the right of â (ω,k). When such products act on the vacuum state, the â†(ω,k) gives
a nonvanishing contribution, and if we sum over all wave vectors we get a divergence. The solution is simply
to impose a rule that changes the order of the creation and annihilation operators. This is called normal
ordering, and is denoted by enclosing the product in colons. Thus, we define

: â (ω,k) â† (ω,k) : ≡ â† (ω,k) â (ω,k)

and more generally, normal ordering requires us to place all creation operators to the left of anihilation
operators. There is always an ordering ambituity when building functions of ϕ̂ and π̂, since these do not
commute. We resolve the ordering ambiguity by writing the function in terms of â (ω,k) and â† (ω,k) and
normal ordering,

f (ϕ, π) ⇒ : f (ϕ̂, π̂) :

Applied to the Hamiltonian, we define

Ĥ =
~
2

ˆ
:
(
π̂2 + ∇ϕ̂ ·∇ϕ̂+m2ϕ̂2

)
: d3x

=
1

2

ˆ
d3k ~ω :

(
â (k) â† (k) + â† (k) â (k)

)
:

and this results in

Ĥ =

ˆ
d3k ~ωâ† (k) â (k) (4.33)

This expression gives zero for the vacuum state, and is finite for all states with a finite number of particles.
While this procedure may seem a bit ad hoc, recall that the ordering of operators in any quantum expression
is one thing that cannot be determined from the classical framework using canonical quantization. It is
therefore reasonable to use whatever ordering convention gives the most sensible results.

4.2.7 States of the Klein-Gordon field
The similarity between the field Hamiltonian and the harmonic oscillator makes it easy to interpret this
result. We begin the observation that the expectation values of Ĥ are bounded below. This follows because
for any normalized state |α〉 we have

〈α| Ĥ |α〉 = 〈α|
ˆ
d3k ~ωâ† (k) â (k) |α〉

=

ˆ
d3k ~ω

(
〈α| â† (k)

)
(â(k) |α〉)
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This is positive definite, since if we let |β〉 = â(k) |α〉 , then 〈β| = 〈α| â†(k), so

〈α| Ĥ |α〉 =

ˆ
d3k ~ω 〈α| â†(k)â(k) |α〉

=

ˆ
d3k ~ω 〈β|β〉

> 0

since the integrand is positive definite. However, we can show that the action of â (k) lowers the eigenvalues
of Ĥ. Consider the commutator of â (k) with the Hamiltonian,[

Ĥ, â (k)
]

=

[ˆ
d3k′~ω′â† (k′) â (k′) , â (k)

]
=

ˆ
d3k′~ω′

[
â† (k′) , â (k)

]
â (k′)

= −
ˆ
d3k′~ω′δ3 (k− k′) â (k′)

= −~ω â (k)

Therefore, if |α〉 is an eigenstate of Ĥ with Ĥ |α〉 = α |α〉 then so is â(k) |α〉 because

Ĥ (â (k) |α〉) =
[
Ĥ, â (k)

]
|α〉+ â (k) Ĥ |α〉

= −~ωâ (k) |α〉+ â (k)α |α〉
= (α− ~ω) (â (k) |α〉)

Moreover, the eigenvalue of the new eigenstate is lower than α. Since the eigenvalues are bounded below,
there must exist a state such that

â (k) |0〉 = 0 (4.34)

for all values of k. The state |0〉 is called the vacuum state and the operators â (k) are called annihilation
operators. From the vacuum state, we can construct the entire spectrum of eigenstates of the Hamiltonian.
First, notice that the vacuum state is a minimal eigenstate of Ĥ:

Ĥ |0〉 =

ˆ
d3k′~ω′â† (k′) â (k′) |0〉

= 0

Now, we act on the vacuum state with â†(k) to produce new eigenstates.

Exercise: Prove that |k〉 = â†(k) |0〉 is an eigenstate of Ĥ with energy eigenvalue ~ω.

We can build infinitely many states in two ways. First, just like the harmonic oscillator states, we can apply
the creation operator â†(k) as many times as we like. Such a state contains multiple particles with energy
~ω. Second, we can apply creation operators of different k:

|k′,k〉 = â†(k′)â†(k) |0〉 = â†(k)â†(k′) |0〉

This state contains two particles, one with energy ~ω and the other with energy ~ω′.
As with the harmonic oscillator, we can introduce a number operator to measure the number of quanta

in a given state. The number operator is just the sum over all modes of the number operator for a given
mode:

N̂ =

ˆ
:
(
â†(k)â(k)

)
: d3k

=

ˆ
â†(k)â(k)d3k
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Exercise: By applying N̂ , compute the number of particles in the state

|k′,k〉 = â†(k′)â†(k) |0〉

Notice that creation and annihilation operators for different modes all commute with one another, e.g.,[
â†(k′), â(k)

]
= 0

when k′ 6= k.

4.2.8 Poincaré transformations of Klein-Gordon fields
Now let’s examine the Lorentz transformation and translation properties of scalar fields. For this we need
to construct quantum operators which generate the required transformations. Since the translations are the
simplest, we begin with them.

We have observed that the spacetime translation generators forming a basis for the Lie algebra of trans-
lations (and part of the basis of the Poincaré Lie algebra) resemble the energy and momentum operators of
quantum mechanics. Moreover, Noether’s theorem tells us that energy and momentum are conserved as a
result of translation symmetry of the action. We now need to bring these insights into the realm of quantum
fields.

From our discussion in Chapter 1, using the Klein-Gordon Lagrangian density from eq.(4.11), we have
the conserved stress-energy tensor,

Tµν =
∂L

∂ (∂µφ)
∂νφ− Lηµν

= ∂µϕ∂νϕ− 1

2
ηµν

(
π2 −∇ϕ · ∇ϕ−m2ϕ2

)
which leads to the conserved charges,

Pµ =

ˆ
Tµ0d3x

and the natural extension of this observation is to simply replace the products of fields in Tµ0 with normal-
ordered field operators. We therefore write

P̂µ ≡
ˆ

: T̂µ0 : d3x

First, for the time component,

P̂ 0 =

ˆ
: T̂ 00 : d3x

=

ˆ
: ∂0ϕ̂∂0ϕ̂− 1

2
η00
(
π̂2 −∇ϕ̂ · ϕ̂−m2ϕ̂2

)
: d3x

=
1

2

ˆ
: π̂2 +∇ϕ̂ · ∇ϕ̂+m2ϕ̂2 : d3x

= Ĥ

This is promising!
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Now consider the momentum operators:

P̂ i ≡
ˆ

: T̂ i0 : d3x

=

ˆ
: ∂iϕ̂∂0ϕ̂− 1

2
ηi0
(
π̂2 −∇ϕ̂ · ϕ̂−m2ϕ̂2

)
: d3x

=

ˆ
: ∂iϕ̂ π̂ : d3x

P̂ =

ˆ
: ∇ϕ̂ π̂ : d3x

Exercise: By substituting the field operators, eq.(4.30) and eq.(4.31), into the integral for P̂ i, show that

P̂ =
1

2

ˆ
~k :

[
−â(k)â(−k)e2iωt + â(k)â†(k) + â†(k)â(k)− â†(k)â†(−k)e−2iωt

]
: d3k

The calculation is similar to the computation of the Hamiltonian operator above, except there is only
one term to consider.

We can simplify this result for P̂ using a parity argument. Consider the effect of parity on the first integral.
Since the volume form together with the limits is invariant under k→ −k,

∞̊

−∞

d3k →
−∞̊

∞

(−1)
3
d3k =

∞̊

−∞

d3k

and ω (−k) = ω (k) , the first integral satisfies

Î1 =
1

2

ˆ
d3k ~k â(k)â(−k)e2iωt

=
1

2

ˆ
d3k (−~k) â(−k)â(k)e2iωt

= −1

2

ˆ
d3k ~k â(k)â(−k)e2iωt

= −Î1

and therefore Î1 = 0. The final term vanishes in the same way, so the momentum operator reduces to

P̂ =

ˆ
: ∂iϕ̂ π̂ : d3x

=
1

2

ˆ
~k :

(
â(k)â†(k) + â†(k)â(k)

)
: d3k

=

ˆ
~k â†(k)â(k)d3k

Once again, this makes sense; moreover, they are suitable for translation generators since they all commute.
In a similar way, we can compute the operators M̂αβ , and show that the commutation relations of the

full set reproduce the Poincaré Lie algebra,[
M̂αβ , M̂µν

]
= ηβµM̂αν − ηβνM̂αµ − ηαµM̂βν − ηανM̂βµ[

M̂αβ , P̂µ
]

= ηµαP̂ β − ηµβP̂α[
P̂α, P̂ β

]
= 0
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The notable accomplishment here is that we have shown that even after quantization, the symmetry algebra
not only survives, but can be built from the quantum field operators. This is far from obvious, because the
commutation relations for the field operators are simply imposed by the rules of canonical quantization and
have nothing to do, a priori, with the commutators of the symmetry algebra. One consequence, as noted
above, is that the Casimir operators of the Poincaré algebra may be used to label quantum states.

4.3 Quantization of the complex scalar field

4.3.1 Classical Hamiltonian formulation
The complex scalar field provides a slight generalization of the real scalar field. As before we begin with the
Lagrangian, Eq.(4.2)

L =

ˆ (
∂αϕ∗∂αϕ−m2ϕ∗ϕ

)
d3x (4.35)

This has twice the degrees of freedom as the real Klein-Gordon field, and introduces an extra symmetry.
While we could realize the two degrees of freedom by expanding ϕ = ϕR + iϕI , treating ϕ and ϕ∗ as the
independent variables yields the same results.

We define the conjugate momentum densities to each of ϕ and ϕ∗ as the functional derivatives L with
respect to ϕ and ϕ∗ :

π ≡ δL

δ (∂0ϕ)
= ∂0ϕ∗ (x) (4.36)

and similarly

π∗ ≡ δL

δ (∂0ϕ∗)
= ∂0ϕ (x) (4.37)

The action and Lagrangian density, written in terms of these momenta, are therefore

S =

ˆ (
ππ∗ −∇ϕ∗ ·∇ϕ−m2ϕ∗ϕ

)
d4x

L = ππ∗ −∇ϕ∗ ·∇ϕ−m2ϕ∗ϕ

The Hamiltonian is defined as

H ≡
ˆ

(π∂0ϕ+ π∗∂0ϕ
∗) d3x− L

=

ˆ
(ππ∗ + π∗π)−

(
ππ∗ −∇ϕ∗ ·∇ϕ−m2ϕ∗ϕ

)
d3x

and therefore

H =

ˆ (
π∗π + ∇ϕ∗ ·∇ϕ+m2ϕ∗ϕ

)
d3x (4.38)

Hamilton’s equations are:

ϕ̇ (x) =
δH

δπ (x)

π̇ (x) = − δH

δϕ (x)

ϕ̇∗ (x) =
δH

δπ∗ (x)

π̇∗ (x) = − δH

δϕ∗ (x)
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Exercise: Prove that Hamilton’s equations reproduce the field equations for ϕ and ϕ∗.

Now write the field equations in terms of functional Poisson brackets which – remembering to sum the
derivatives over all independent fields – are given for functionals f = f [ϕ, π, ϕ∗, π∗] and g = g [ϕ, π, ϕ∗, π∗]
by

{f, g} ≡
ˆ
d3x

(
δf

δπ(x)

δg

δϕ(x)
+

δf

δπ∗(x)

δg

δϕ∗(x)
− δf

δϕ(x)

δg

δπ(x)
− δf

δϕ∗(x)

δg

δπ∗(x)

)
(4.39)

The result is the just what we would guess from the real case,

{π (x) , ϕ (y)} =

ˆ (
δπ (x)

δπ (x′)

δϕ (y)

δϕ (x′)
+ 0− δπ (x))

δϕ (x′)

δϕ (y)

δπ (x′)
− 0

)
d3x

=

ˆ
δ3 (x− x′) δ3 (y − x) d3x

= δ3 (x− y)

{π∗ (x) , ϕ∗ (y)} = δ3(x− y)

with all other brackets vanishing.

Exercise: Check that Hamilton’s equations

ϕ̇(x) = {H (ϕ, π, ϕ∗, π∗) , ϕ(x′)}
ϕ̇∗(x) = {H (ϕ, π, ϕ∗, π∗) , ϕ∗(x′)}
π̇(x) = {H (ϕ, π, ϕ∗, π∗) , π(x′)}
π̇∗(x) = {H (ϕ, π, ϕ∗, π∗) , π∗(x′)}

reproduce Hamilton’s equations.

Now we quantize, replacing fields by operators and Poisson brackets by equal-time commutators:

[π̂ (x, t) , ϕ̂ (y, t)] = i~δ3 (x− y) (4.40)[
π̂† (x, t) , ϕ̂† (y, t)

]
= i~δ3 (x− y) (4.41)

with all other pairs commuting. Now we seek free field solutions satisfying these quantization relations.

4.3.2 Mode amplitudes of the complex scalar field
The solution proceeds as before, by starting with solutions for the classical theory. The field equations

�ϕ = −m
2

~2
ϕ

�ϕ∗ = −m
2

~2
ϕ∗

are complex conjugates of each other. The only difference from the real case is that we no longer restrict to
real plane waves. This leaves the amplitudes independent:

ϕ (x, t) = ae
i
~ (Et−p·x) + b∗e−

i
~ (Et−p·x) (4.42)

Substituting into the field equation we have

�ϕ =

(
i

~

)2

pαp
αae

i
~ (Et−p·x) +

(
− i
~

)2

pαp
αb∗e−

i
~ (Et−p·x)

= − 1

~2
pαp

αϕ(x, t)
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so again we require the energy condition
pαp

α = m2

We can solve this for the energy,

E+ =
√

p2 +m2

E− = −
√
p2 +m2

The general Fourier superposition is

ϕ (x, t) =
1

(2π)
3/2

ˆ √
2E
(
a (E,p) e

i
~ (pαx

α) + b∗ (E,p) e−
i
~ (pαx

α)
)
δ
(
pαp

α −m2
)

Θ(E)~−4d4p

=
1

(2π)
3/2

ˆ
d3k√

2ω

(
a (k) ei(ωt−k·x) + b∗ (k) e−i(ωt−k·x)

)
Collecting this together with the the conjugate field and the momenta,

ϕ (x, t) =
1

(2π)
3/2

ˆ
d3k√

2ω

(
a (k) ei(ωt−k·x) + b† (k) e−i(ωt−k·x)

)
(4.43)

ϕ∗ (x, t) =
1

(2π)
3/2

ˆ
d3k√

2ω

(
b (k) ei(ωt−k·x) + a† (k) e−i(ωt−k·x)

)
(4.44)

π (x, t) =
i

(2π)
3/2

ˆ √
ω

2
d3k

(
b (k) ei(ωt−k·x) − a† (k) e−i(ωt−k·x)

)
(4.45)

π∗ (x, t) =
i

(2π)
3/2

ˆ √
ω

2
d3k

(
a (k) ei(ωt−k·x) − b† (k) e−i(ωt−k·x)

)
(4.46)

Notice that we may obtain the conjugate expressions, Eqs.(4.44) and (4.46) simply by interchanging awith
b, and interchanging a† with b†.

We need to invert these Fourier integrals to solve for a (k) , b (k) , a† (k) and b† (k) .

Exercise: By taking inverse Fourier integrals, show that

a (k) =
1

(2π)
3/2

√
ω

2

ˆ
d3x

(
ϕ (x, 0)− i

ω
π∗ (x, 0)

)
eik·x (4.47)

b (k) =
1

(2π)
3/2

√
ω

2

ˆ
d3x

(
ϕ∗ (x, 0)− i

ω
π (x, 0)

)
eik·x (4.48)

It follows immediately from this exercise that the conjugate mode amplitudes are given by

a∗ (k) =
1

(2π)
3/2

√
ω

2

ˆ
d3x

(
ϕ∗ (x, 0) +

i

ω
π (x, 0)

)
e−ik·x (4.49)

b∗ (k) =
1

(2π)
3/2

√
ω

2

ˆ
d3x

(
ϕ (x, 0) +

i

ω
π∗ (x, 0)

)
e−ik·x (4.50)

4.3.3 Quantization
We can now move to study the quantum operators. When the fields become operators the complex conjugates
above become adjoints (for example, a∗ (k) → a† (k)). We next find the commutation relations that hold
among the four operators â (k) , b̂ (k) , â† (k) and b̂† (k).
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Exercise: From the commutation relations for the fields and conjugate momenta, Eqs.(4.40) and (4.41),
show that [

â (k) , â† (k′)
]

= δ3 (k− k′)[
b̂ (k) , b̂† (k′)

]
= δ3 (k− k′)

Exercise: From the commutation relations for the fields and conjugate momenta, eqs.(4.40) and (4.41),
show that [

â (k) , b̂ (k′)
]

= 0[
â (k) , b̂† (k′)

]
= 0

As we did for for the Klein-Gordon field, we could go on to construct the Poincaré currents, writing the
energy, momentum and angular momentum in terms of the creation and anihilation operators. These emerge
much as before. However, for the charged scalar field, there is an additional symmetry.

Exercise: Find the Hamiltonian operator

Ĥ =

ˆ
:
(
π∗π + ∇ϕ∗ ·∇ϕ̂+m2ϕ̂∗ϕ̂

)
: d3x

in terms of the creation and annihilation operators.

4.3.4 Noether current and current operator
The transformation

ϕ (x, t) → eiαϕ (x, t)

ϕ∗ (x, t) → e−iαϕ∗ (x, t) (4.51)

leaves the action, Eq.(4.2), invariant, so the complex scalar field has a global U (1) symmetry. Therefore,
there is an additional Noether current. In this case, the variation of the Lagrangian, Eq.(4.35), under the
U (1) symmetry is also zero, so from eq.(1.35) the Noether current is simply

Jµ ≡ ∂L
∂ (∂µφA)

∆A

where
φA → φA + ∆A

(
φB , x

)
defines the infinitesimal transformation ∆A. For an infinitesimal phase change, eiα ≈ 1 + iα so the fields
change by

ϕ → ϕ+ iαϕ

ϕ∗ → ϕ∗ − iαϕ∗

so the current is

Jα ≡ ∂L
∂ (∂αφ)

∆ϕ+
∂L

∂ (∂αφ∗)
∆ϕ∗

= (∂αϕ∗) iαϕ− (∂αϕ) iαϕ∗

= iα ((∂αϕ∗)ϕ− (∂αϕ)ϕ∗) (4.52)
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We are guaranteed that the divergence of Jα must vanish and can easily check using the field equations:

∂αJ
α = iα∂α ((∂αϕ∗)ϕ− (∂αϕ)ϕ∗)

= iα ((∂α∂
αϕ∗)ϕ− (∂αϕ) (∂αϕ

∗) + (∂αϕ∗) (∂αϕ)− (∂α∂
αϕ)ϕ∗)

= −iα
(
m2

~2
ϕ∗ϕ− m2

~2
ϕϕ∗

)
= 0

In general, when new fields are introduced to make a global symmetry into a local symmetry, the new
fields produce interactions between the original, symmetric fields. The strength of this interaction is governed
by the Noether currents of the symmetry. In the present case, when this U(1) (phase) invariance is gauged
to produce an interaction, the new field that is introduced is the photon field, and it is this current Jα that
carries the electric charge. Therefore, writing e for α, and writing the 4-current as Jα = (ρ,J), we see that

ρ = ie (∂0ϕ
∗ϕ− ∂0ϕϕ

∗) (4.53)
J = ie (ϕ∇ϕ∗ − ϕ∗∇ϕ) (4.54)

4.3.5 Conserved charge operator
Classically, the spatial integral of the charge density ρ gives us conserved charge,

Q =

ˆ
J0d3x

=

ˆ
ρd3x

While all of the current may be expressed in terms of operators on quantum states, we will be particuarly
interested in the total charge. Substituting the operator expressions for the fields, we find that the conserved
charge is given by

Q̂ =

ˆ
: ρ̂ : d3x

= ie

ˆ
: (∂0ϕ̂

∗ϕ̂− ∂0ϕ̂ϕ̂
∗) : d3x

= ie

ˆ
(π̂ϕ̂− π̂∗ϕ̂∗) d3x

Substituting the fields from Eqs.(4.43) - (4.46), this becomes

Q̂ = − e

(2π)
3

ˆ
d3x :

(ˆ √
ω

2
d3k

(
b̂ (k) ei(ωt−k·x) − â† (k) e−i(ωt−k·x)

))(ˆ d3k′√
2ω′

(
â (k′) ei(ω

′t−k′·x) + b̂† (k′) e−i(ω
′t−k′·x)

))
:

−
(
â↔ b̂ and â† ↔ b̂†

)
= − e

2 (2π)
3

ˆ
d3x

ˆ
d3k

ˆ
d3k′

√
ω

ω′
:
(
b̂ (k) ei(ωt−k·x) − â† (k) e−i(ωt−k·x)

)(
â (k′) ei(ω

′t−k′·x) + b̂† (k′) e−i(ω
′t−k′·x)

)
:

−
(
â↔ b̂ and â† ↔ b̂†

)
= − e

2 (2π)
3

ˆ
d3x

ˆ
d3k

ˆ
d3k′

√
ω

ω′
:
[(
b̂ (k) â (k′) ei((ω+ω′)t−(k+k′)·x) − â† (k) â (k′) e−i((ω−ω

′)t−(k−k′)·x)
)

+ b̂ (k) b̂† (k′) ei((ω−ω
′)t−(k−k′)·x) − â† (k) b̂† (k′) e−i((ω+ω′)t−(k+k′)·x)

]
:

−
(
â↔ b̂ and â† ↔ b̂†

)
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Integrate over d3x, giving Dirac delta functions, δ (k + k′) or δ (k− k′), then integrate over d3k′:

Q̂ = −e
2

ˆ
d3k

ˆ
d3k′

√
ω

ω′
:
[(
b̂ (k) â (k′) δ (k + k′) ei(ω+ω′)t − â† (k) â (k′) δ (k− k′) e−i(ω−ω

′)t
)

+ b̂ (k) b̂† (k′) δ (k− k′) ei(ω−ω
′)t − â† (k) b̂† (k′) δ (k + k′) e−i(ω+ω′)t

]
:

−
(
â↔ b̂ and â† ↔ b̂†

)
= −e

2

ˆ
d3k :

[
b̂ (k) â (−k) e2iωt − â† (k) â (k) + b̂ (k) b̂† (k)− â† (k) b̂† (−k) e−2iωt

]
:

+
e

2

ˆ
d3k :

[
â (k) b̂ (−k) e2iωt − b̂† (k) b̂ (k) + â (k) â† (k)− b̂† (k) â† (−k) e−2iωt

]
:

Noticing that changing variable k→ −k produces

∞̊

−∞

d3k b̂ (k) â (−k) e2iωt =

∞̊

−∞

d3k b̂ (−k) â (k) e2iωt

shows that the two e2iωt terms cancel, as do the final two e−2iωt terms. This leaves

Q̂ = −e
2

ˆ
d3k :

[
−â† (k) â (k) + b̂ (k) b̂† (k) + b̂† (k) b̂ (k)− â (k) â† (k)

]
:

Normal ordering, we have

Q̂ = e

ˆ
d3k

[
â† (k) â (k)− b̂† (k) b̂ (k)

]
Writing this in terms of number operators gives a new insight. Define

N̂a (k) ≡ â† (k) â (k)

N̂b (k) ≡ b̂† (k) b̂ (k)

and acting on various states we find that these count the number of a-type and b-type particles at any given
k, respectively. If we integrate over k we find the total number of a-type and b-type particles in a state.

In terms of number operators, the charge operator is

Q̂ =

ˆ
d3k

[
eN̂a (k)− eN̂b (k)

]
(4.55)

so the a and b-type particles have opposite charge.
It proves to be of some importance that the charge e appears as the phase of the U(1) symmetry

transformation. This means that complex conjugation has the effect of changing the signs of all charges.
This charge conjugation symmetry is one of the central discrete symmetries associated with the Lorentz
group, and it plays a role when we consider the meaning of antiparticles later in this chapter. Notice, in
particular, in the solution for the complex scalar field, eq.(4.43), that the phase of the antiparticle is just
reversed from the phase for the particle.

4.4 Scalar multiplets
Suppose we have n scalar fields, ϕi, i = 1, . . . , n governed by the action

S =
1

2

ˆ ∑(
∂αϕi∂αϕ

i −m2ϕiϕi
)
d4x
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The quantization is similar to the previous cases. We find the conjugate momenta, πi = δL
δϕ̇i = ϕ̇i and the

Hamiltonian is

H =
1

2

ˆ (
πiπi + Oϕi · Oϕi +m2ϕiϕi

)
d3x

The fundamental commutation relations are[
π̂i(x, t), ϕ̂j(x′, t)

]
= iδijδ3 (x− x′)

with all others vanishing. These lead to creation and annihilation operators as before,[
âi(k), âj†(k′)

]
= δijδ3 (k− k′)

and a number operator for each field,

N̂(k) = âi†(k)âi(k)

The interesting feature of this case is the presence of a more general symmetry. The action S is left
invariant by orthogonal rotations of the fields into one another. Thus, if Oi j is an orthogonal transformation,
we can define new fields

ϕi′ = Oi jϕ
i

It is easy to see that the action is unchanged by such a transformation. For each infinitesimal generator
of a rotation,

[
ε(rs)

]ij
= 1

2

(
δirδ

j
s − δisδjr

)
, there is a conserved Noether current found from the infinitesimal

transformation,

ϕi → ϕi +
[
ε(rs)

]ij
ϕj

Since the Lagrangian is invariant, the current is

Jα(rs) ≡ ∂L
∂ (∂αφi)

∆(rs)ϕ
i

= ∂αϕi
[
ε(rs)

]ij
ϕj

= ϕr∂αϕs − ϕs∂αϕr

We are guaranteed that the divergence of Jµ vanishes when the field equations are satisfied.
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Chapter 5

Antiparticles

Until this section we have dodged the issue of the negative energy solutions to scalar field theories by inserting
a step function, Θ(E), in the Fourier series for the solution. Now let’s consider these in more detail. We
will see that the negative energy states may be interpreted as antiparticles. While the discussion applies to
all fields we consider, it is simplest to look at the real scalar field. The same considerations apply to the
complex and multiplet fields.

5.1 Green functions for scalar fields
To begin, let’s look at sources for an interacting scalar field. For example, consider a term in the particle
action that couples a scalar field to a spinor field. One possible action is

S =
1

2

ˆ
d4x

(
∂αφ∂αφ−m2φ2 − 2φψ̄ψ

)
(5.1)

In this simple case, the spinor field provides a source for the scalar field. We neeed not consider the dynamics
of the spinor fields. The field equation for φ is then

�φ+m2φ = −J (5.2)

where J = ψ̄ψ. For our purposes it is sufficient to consider solutions to equations of the general form given
in eq.(5.2).

To solve eq.(5.2), we use Green’s theorem. For a complete treatment of the method, see e.g., Jackson or
Arfken. Simply put, if we can first solve(

�+m2
)
G (x, x′) = −δ4 (x− x′) (5.3)

for a function G (x, x′) satisfying the relevant boundary conditions, then linearity of Eq.(5.2) shows that the
complete solution is

φ (x) =

ˆ
d4x′G (x, x′) J (x′)

for the same boundary conditions when the source is J(x). To check, apply the Klein-Gordon operator to
φ(x) (

�+m2
)
φ (x) =

(
�+m2

)ˆ
d4x′G (x, x′) J (x′)
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Since
(
�+m2

)
depends on x and the integral is over x′, we may bring the operator inside the integral:

(
�+m2

)
φ(x) =

ˆ
d4x′

(
�+m2

)
G (x, x′) J (x′)

= −
ˆ
d4x′δ4 (x− x′) J (x′)

= −J (x)

The technique is successful because a solution to eq.(5.3) may be built from solutions to the homogeneous
equation.

To find the Green function G (x, x′) explicitly when the boundary conditions are at infinity, we again use
a Fourier series. Write

G (x, x′) =
1

(2π)
4

ˆ
d4k G̃ (k) eikα(xα−x′α)

=
1

(2π)
4

ˆ
d4k G̃ (k) ei(k0(t−t

′)−k·(x−x′))

δ4 (x− x′) =
1

(2π)
4

ˆ
d4keikα(xα−x′α)

Then, substituting into Eq.(5.3) and cancelling the overall factor of (2π)
4
,

(
�+m2

)ˆ
d4k G̃ (k) eikα(xα−x′α) = −

ˆ
d4keikα(xα−x′α)

ˆ
d4k G̃ (k) (k)

(
�+m2

)
eikα(xα−x′α) = −

ˆ
d4keikα(xα−x′α)

ˆ
d4k

(
G̃ (k)

(
−kαkα +m2

)
+ 1
)
eikα(xα−x′α) = 0 (5.4)

Eq.(5.4) is the Fourier transform of the factor in parentheses. Since the Fourier integral is invertible, we
must have

G̃ (k) =
1

kαkα −m2

Now invert the Fourier transform to find the Green function:

G (x, x′) =
1

(2π)
4

ˆ
d4k

eikα(xα−x′α)

(k0)
2 − k2 −m2

(5.5)

The interesting feature here is the divergence when the denominator vanishes. To compute it we resort to a
contour integral and the residue theorem.

The poles are given by factoring the divergent factor as

1

(k0)
2 − k2 −m2

=
1

2k0

(
1

k0 −
√
k2 +m2

+
1

k0 +
√
k2 +m2

)
(5.6)

The poles lie on the real axis in the complex k0 plane, but we can displace the poles slightly by replacing
k0 → k0 + iε or k0 → k0 − iε. The direction we push the pole depends on the boundary conditions we want
to impose.

109



5.1.1 First pole
Consider the various alternatives. For each of the two simple poles we have two choices, so there are four
possible contributions to the Green function. We compute them in turn. The first pole occurs when

k0 = +
√

k2 +m2

Displacing this point leads to two cases:

k0 = +
√

k2 +m2 + iε

k0 = +
√

k2 +m2 − iε

The first choice gives the Green function

G+E,+t (x, x′) ≡ 1

(2π)
4

ˆ
d4k

2k0

ei(k0(t−t
′)−k·(x−x′))

k0 −
√
k2 +m2 − iε

=
1

(2π)
4

ˆ
d3k e−ik·(x−x

′)
ˆ
dk0

2k0

eik
0(t−t′)

k0 −
√
k2 +m2 − iε

To close the k0 contour, we add a half-circle and let its radius tend to infinity. When t > t′, we must add
this half circle in the upper half plane, k0 = k0

x + ik0
y, so that on the circle

eik
0(t−t′) = ei(k

0
x+ik0y)(t−t

′) = eik
0
x(t−t

′)e−k
0
y(t−t

′)

converges to zero as k0
y → ∞. For t < t′, we must close the contour in the lower half plane. Since the pole

is in the upper half plane, the integral for t < t′ gives zero, while for t > t′ the residue at the pole is

lim
ε→0

Res

(
1

2k0

eik
0(t−t′)

k0 −
√
k2 +m2 − iε

)
=

dk0

2
√
k2 +m2

ei
√
k2+m2(t−t′)

so including unit a step function,

Θ (t− t′) ≡
{

1 t > t′

0 t < t′

the Green function becomes

G+E,+t (x, x′) =
i

(2π)
3 Θ (t− t′)

ˆ
d3k

2
√
k2 +m2

e−ik·(x−x
′)+i
√
k2+m2(t−t′)

We will not need the explicit form of the remaining integral, so define

HI (x, x′) ≡ i

(2π)
3

ˆ
d3k

2
√
k2 +m2

e−ik·(x−x
′)+i
√
k2+m2(t−t′)

and write the Green function as G+E,+t (x, x′) = HI (x, x′) Θ (t− t′).
For the second displacement, the upper contour (for t > t′) gives zero contribution while for t < t′ we

compute

G+E,−t (x, x′) =
1

(2π)
4 Θ (t′ − t)

ˆ
d4k

2k0

1

k0 −
√
k2 +m2

ei(k0(t−t
′)−k·(x−x′))

= Θ (t′ − t) lim
ε→0

1

(2π)
4

ˆ
d3ke−ik·(x−x

′)
˛
upper 1

2−plane

dk0

2k0

e−ik
0(t′−t)

k0 −
√
k2 +m2 + iε

= Θ (t′ − t) 2πi

(2π)
4

ˆ
d3k

2
√
k2 +m2

e−ik·(x−x
′)ei
√
k2+m2(t−t′)

= HI (x, x′)
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5.1.2 Second pole
For the second pole, at k0 = −

√
k2 +m2, we again have two possible displacements,

k0 = −
√

k2 +m2 + iε

k0 = −
√

k2 +m2 − iε

Choosing the first,

G−E,+t (x, x′) = lim
ε→0

1

(2π)
4

ˆ
d4k

2k0

ei(k
0(t−t′)−k·(x−x′))

k0 +
√
k2 +m2 − iε

has the pole in the upper half plane. When t > t′, we must close the contour in the upper half plane and we
get a residue,

G−E,+t (x, x′) = Θ (t− t′) −2πi

(2π)
4

ˆ
d3k

2
√
k2 +m2

e−ik·(x−x
′)e−i

√
k2+m2(t−t′)

≡ Θ (t− t′)HII (x, x′)

Finally, pushing the pole to the lower half plane gives

G−E,−t (x, x′) = Θ (t′ − t)HII (x, x′)

Collecting all four possible Green functions,

G+E,+t(x, x
′) = Θ (t− t′)HI (x, x′) (5.7)

G+E,−t(x, x
′) = Θ (t′ − t)HI (x, x′) (5.8)

G−E,+t (x, x′) = Θ (t− t′)HII (x, x′) (5.9)
G−E,−t (x, x′) = Θ (t′ − t)HII (x, x′) (5.10)

The +E and −E subscripts indicate whether the solution describes a positive or negative energy solution.
Restoring ~ and c,

E = ~k0 = +
√
~2k2 +m2c4

E = ~k0 = −
√
~2k2 +m2c4

We now show that the +t and −t subscripts indicate whether solutions progress causally toward the future
or toward the past.

From Eqs.(5.5) and (5.6), we see that the full Green function is a sum of one of the HI terms with
one of the HII terms, that is, one positive energy Green function and one negative energy Green function.
Classically, we would choose the Green function to be

G(x, x′) = G+E,+t(x, x
′) +G−E,+t (x, x′) (5.11)

because then the solution is for φ is given by

φ(t,x) =

ˆ
d4x′G (x, x′) J (x′)

=

ˆ ∞
−∞

dt′Θ (t− t′)
ˆ
d3x′ (HI (x, x′) +HII (x, x′)) J (t′,x′)

=

ˆ t

−∞
dt′
ˆ
d3x′ (HI (x, x′) +HII (x, x′)) J (t′,x′)

The limits on the final time integral show that the field at time t is determined only by sources J(t′,x′)
evaluated for times t′ earlier than t. This is our usual minimal expectation for causality. However, Feyn-
man has shown that using any of the Green functions is consistent with causality, and proposes pairing
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G+e+t(x, x
′) with G−E−t(x, x

′). Indeed, the Feynman choice is actually more consistent with causality as
we now understand it. Causality, in essence, is the preservation of the spacetime light cone. No physical
propagation that begins in the future-pointing light cone may exceed the speed of light – it must remain in
the future-pointing light cone. We call such motion futurelike. Correspondingly, we are justified in asserting
that any propagation beginning in a direction inside the past-pointing light cone must remain within this
past-pointing light cone. Motion into the past light cone is called pastlike. A similar prohibition applies for
causal tachyons – particles whose motion remains in spacelike directions. The symmetry of the situation
suggests that it is reasonable to consider both directions of time propagation equally. Doing so leads us to
a clearer understanding of antiparticles.

Choosing the Green function in the form which associates positive energy solutions with futurelike motion
in time and negative energy solutions to pastlike motion,

G(x, x′) = G+E,+t(x, x
′) +G−E,−t (x, x′)

leads to fields of the past-future symmetric Green function

φ(t,x) =

ˆ t

−∞
dt′
ˆ
d3x′HI (x, x′) J (t′,x′) +

ˆ ∞
t

dt′
ˆ
d3x′HII (x, x′) J (t′,x′) (5.12)

As a result of this choice, φ(t,x) can depend on events in both its forward and backward light cones. The
benefit of this choice is that it gives a clear physical meaning to the negative energy solutions, for the
following reason. Suppose a particle travels backward in time, from point A(t2, x2) to point B(t1,x1) with
t1 < t2. Then an observer moving forward in time will experience the particle first at t1 and later at t2 and
the particle will appear to move in the opposite direction, from x1 to x2. Moreover, if the particle carries
negative energy from A to B, the observer sees the negative energy arrive at B, then depart later from A.
This means that the energy at B decreases and the energy at A increases, so to the futurelike observer a
positive amount of energy has moved from B to A, forward in time. The same argument applies to electric
or other charges. If a negative charge moves backward in time from A to B, the forward moving observer
sees a positive charge leave B then arrive at A.

The pastlike propagation is also consistent with the energy-momentum 4-vectors,

pα+ =
(

+
√
~2k2 +m2c4,k

)
pα− =

(
−
√

~2k2 +m2c4,k
)

These show the direction of the motion of the particle in spacetime, pointing into the future and past light
cones, respectively.

To summarize: fix a set of Cartesian coordinates on spacetime, (t,x) where the sign of t distinguishes
the two halves of the light cone, “future” and “past”. Now consider a futurelike observer, that is, moving in
such a way that the time coordinate t associated with their position increases. To this observer, particles
moving into the future light cone will have positive energy E, momentum p, and may have a charge q.When
this same futurelike observer observes a negative energy state of the same type of particle travelling into the
past light cone, (with decreasing time t, energy −E, momentum p, and charge q), the particle appears to
the futurelike observer to move in the direction of increasing t, have energy +E, momentum −p, and charge
−q.

5.1.3 Charged scalars
We can also see how the creation and anihilation operators depend on currents,

a (k) =
1

(2π)
3/2

√
ω

2

ˆ
d3x

(
ϕ (x, 0)− i

ω
π∗ (x, 0)

)
eik·x

b (k) =
1

(2π)
3/2

√
ω

2

ˆ
d3x

(
ϕ∗ (x, 0)− i

ω
π (x, 0)

)
eik·x
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and the past-future symmetric Green function,

φ(t,x) =

ˆ t

−∞
dt′
ˆ
d3x′HI (x, x′) J(t′,x′) +

ˆ ∞
t

ˆ
d3x′dt′HII (x, x′) J (t′,x′)

=
i

2 (2π)
3

ˆ t

−∞
dt′
ˆ
d3x′
ˆ

d3k√
k2 +m2

e−ik·(x−x
′)+i
√
k2+m2(t−t′)J (t′,x′)

− i

2 (2π)
3

ˆ ∞
t

dt′
ˆ
d3x′
ˆ

d3k√
k2 +m2

e−ik·(x−x
′)e−i

√
k2+m2(t−t′)J (t′,x′)

so the momentum is

π∗ (x, t) = ∂0ϕ (x, t)

=
i

2 (2π)
3

ˆ
d3x′
ˆ

d3k√
k2 +m2

e−ik·(x−x
′)J(t′,x′)− 1

2 (2π)
3

ˆ t

−∞
dt′
ˆ
d3x′
ˆ
d3ke−ik·(x−x

′)+i
√
k2+m2(t−t′)J (t′,x′)

+
i

2 (2π)
3

ˆ
d3x′
ˆ

d3k√
k2 +m2

e−ik·(x−x
′)J(t′,x′)− 1

2 (2π)
3

ˆ ∞
t

dt′
ˆ
d3x′
ˆ
d3ke−ik·(x−x

′)e−i
√
k2+m2(t−t′)J (t′,x′)

=
i

(2π)
3

ˆ
d3x′
ˆ

d3k√
k2 +m2

e−ik·(x−x
′)J(t′,x′)− 1

2 (2π)
3

ˆ t

−∞
dt′
ˆ
d3x′
ˆ
d3ke−ik·(x−x

′)+i
√
k2+m2(t−t′)J (t′,x′)

− 1

2 (2π)
3

ˆ ∞
t

dt′
ˆ
d3x′
ˆ
d3ke−ik·(x−x

′)e−i
√
k2+m2(t−t′)J (t′,x′)

Therefore,

a (k) =
1

(2π)
3/2

√
ω

2

ˆ
d3x

(
ϕ (x, 0)− i

ω
π∗ (x, 0)

)
eik·x

=
1

(2π)
3/2

√
ω

2

ˆ
d3x

(
i

2 (2π)
3

ˆ 0

−∞
dt′
ˆ
d3x′
ˆ

d3k√
k2 +m2

e−ik·(x−x
′)−i
√
k2+m2t′J (t′,x′)

)
eik·x

+
1

(2π)
3/2

√
ω

2

ˆ
d3x

(
− i

2 (2π)
3

ˆ ∞
0

dt′
ˆ
d3x′
ˆ

d3k√
k2 +m2

e−ik·(x−x
′)ei
√
k2+m2t′J (t′,x′)

)
eik·x

− i

(2π)
3/2

1√
2ω

ˆ
d3x

(
i

(2π)
3

ˆ
d3x′
ˆ

d3k√
k2 +m2

e−ik·(x−x
′)J (t′,x′)

)
eik·x

− i

(2π)
3/2

1√
2ω

ˆ
d3x

(
− 1

2 (2π)
3

ˆ 0

−∞
dt′
ˆ
d3x′
ˆ
d3ke−ik·(x−x

′)−i
√
k2+m2t′J (t′,x′)

)
eik·x

− i

(2π)
3/2

1√
2ω

ˆ
d3x

(
− 1

2 (2π)
3

ˆ ∞
0

dt′
ˆ
d3x′
ˆ
d3ke−ik·(x−x

′)ei
√
k2+m2t′J (t′,x′)

)
eik·x
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so

a (k) =
i

2 (2π)
9/2

√
ω

2

ˆ
d3x

ˆ 0

−∞
dt′
ˆ
d3x′
ˆ

d3k√
k2 +m2

eik·x
′
e−i
√
k2+m2t′J (t′,x′)

− i

2 (2π)
9/2

√
ω

2

ˆ
d3x

ˆ ∞
0

dt′
ˆ
d3x′
ˆ

d3k√
k2 +m2

eik·x
′
ei
√
k2+m2t′J (t′,x′)

+
1

(2π)
3

1

(2π)
3/2

1√
2ω

ˆ
d3x

ˆ
d3x′
ˆ

d3k√
k2 +m2

eik·x
′
J (t′,x′)

+
i

2 (2π)
9/2

1√
2ω

ˆ
d3x

ˆ 0

−∞
dt′
ˆ
d3x′
ˆ
d3keik·x

′
e−i
√
k2+m2t′J (t′,x′)

+
i

2 (2π)
9/2

1√
2ω

ˆ
d3x

ˆ ∞
0

dt′
ˆ
d3x′
ˆ
d3keik·x

′
ei
√
k2+m2t′J (t′,x′)

Collecting terms

a (k) =
1

(2π)
9/2

1√
2ω

ˆ
d3x

ˆ
d3x′
ˆ

d3k√
k2 +m2

eik·x
′
J (t′,x′)

+
i

2 (2π)
9/2

√
ω

2

ˆ
d3x

ˆ
d3x′
ˆ

d3k√
k2 +m2

eik·x
′
(ˆ 0

−∞
dt′e−i

√
k2+m2t′J (t,x′)−

ˆ ∞
0

dt′ei
√
k2+m2t′J (t′,x′)

)
+

i

2 (2π)
9/2

1√
2ω

ˆ
d3x

ˆ
d3x′
ˆ
d3keik·x

′
(ˆ 0

−∞
dt′e−i

√
k2+m2t′J (t,x′) +

ˆ ∞
0

dt′ei
√
k2+m2t′J (t′,x′)

)
Let the Fourier transformation of J be written as

J̃ (t′,k) =
1

(2π)
3/2

ˆ
d3x′eik·x

′
J (tt,x′)

and look at the anihilation per unit volume,

a (k)´
d3x

=
1

(2π)
3

1√
2ω

ˆ
d3k√

k2 +m2
J̃ (t′,k)

+
i

2 (2π)
3

√
ω

2

ˆ
d3k√

k2 +m2

(ˆ 0

−∞
dt′e−i

√
k2+m2t′ J̃ (t′,k)−

ˆ ∞
0

dt′ei
√
k2+m2t′ J̃ (t′,k)

)
+

i

2 (2π)
3

1√
2ω

ˆ
d3k

(ˆ 0

−∞
dt′e−i

√
k2+m2t′ J̃ (t′,k) +

ˆ ∞
0

dt′ei
√
k2+m2t′ J̃ (t′,k)

)
Like the fields, the creation and anihilation operators may depend on either past or future sources.

5.1.4 Chronicity (skip)
Let’s make this precise using the discrete Lorentz transformations.

5.1.4.1 Past-future interchange

Choose a foliation of spacetime by timelike curves. (While choosing any inertial frame of reference will to in
flat spacetim, this is possible even in curved spacetimes as long as they are globally hyperbolic, that is, they
admit a Cauchy surface. This makes the manifold diffeomorphic to a product of the Cauchy surface with
R. See Bernal and Sánchez [1]). At each point x = (t,x) along each such curve, let the 4-velocity (the unit
tangent to the curve) be given by

uα (x) =
dxα

dτ
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From these we construct the projection operator,

Pαβ ≡
1

c2
uαuβ

This is a projection since it is idempotent,

PαµP
µ
β ≡ 1

c2
uα
(

1

c2
uµu

µ

)
uβ

=
1

c2
uαuβ

This projects any 4-vector, wα =
(
w0,w

)
into the timelike direction of this reference frame. View the action

of Pαβ in an arbitrary inertial frame, where uα = γ (c,v). The action on wα is

Pαβw
β =

1

c2
uα
(
uβw

β
)

=
1

c2
γ
(
cw0 − v ·w

)
uα

Now consider the effect of the operator
Tαβ ≡ δαβ − 2Pαβ

In the rest frame of uα, we find

Tαβw
β = wα − 2

c2
uα
(
uβw

β
)

= wα − 2

c2
(
cw0

)
uα

= wα − 2w0 (1,0)

=
(
−w0,w

)
and this result is Lorentz covariant, so though the components change in a different frame, they describe
the same 4-vector. Thus, the effect of this transformation is to interchange the future and past light cones.
However, the path of particles changes. Suppose a particle is traveling, in the frame of uα at constant velocity
to the right along the curve xα (t) = (ct, vt, 0, 0). Then the 4-velocity is

vα =
dxα

dτ
= γv (c, v, 0.0)

Applying Tαβ this becomes
Tαβv

β = γv (−c, v, 0.0)

and a spacetime curve with this tangent vector passes through the origin and moves down and to the right.
The future and past light cones have been interchanged, and curves are mirror reflected across a spatial
surface. The transformation Tαβ accomplishes past-future interchange. This is a symmetry of the second
order scalar field equation, but it will not be a symmetry of the Dirac equation. Instead,

iγ0∂0ψ + iγ ·∇ψ −mψ = 0

becomes
−iγ0∂0ψ + iγ ·∇ψ −mψ = 0

If we look at the condition the Dirac equation places on a plane wave, ψ = A exp i (Et− p · x),

−γ0Eψ + γ · pψ −mψ = 0

115



while the transformed equation becomes

γ0Eψ + γ · pψ −mψ = 0

This is just the negative energy solution. When we study solutions of the Dirac equation in detail, we will
see that it has both positive and negative energy solutions, so the transformed equation remains a solution.

In general, it is clear that Tαβ is a discrete Lorentz transformation because the length of any 4-vector,

τ =
√
c2t2 − x2

is unchanged if t is replaced by −t.

5.1.4.2 Reversal of motion

We contrast T with reversal of motion, R. Along every timelike curve in spacetime, replace the proper time
parameter τ with −τ . Then the positions are unchanged, but tangent vectors to curves point in the opposite
direction. This is reverses the direction of motion:

Rτ = −τ
Rxα = xα

so that

uα =
dxα

dτ

R (uα) =
dxα

d (−τ)

= −uα

Each particle follows the same timelike curve before and after the transformation, but the direction of motion
is now from future to past. Reversal of motion is also a discrete Lorentz transformation, since τ2 = ηµνx

µxν

is preserved.
In our discussion of discrete Lorentz transformations, we defined chronicity, Θ, as follows:

Θ : t→ −t
Θ : x→ x

Θ : E → −E
Θ : p→ p

Θ : q → q

We also need the actions of charge conjugation,

C : t→ t

C : x→ x

C : E → E

C : p→ p

C : q → −q

which we implement by complex conjugation, and parity

P : t→ t

P : x→ −x
P : E → E

P : p→ −p
P : q → q
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The effect of combining all three operations at once is then

CPΘ : t→ −t
CPΘ : x→ −x
CPΘ : E → −E
CPΘ : p→ −p
CPΘ : q → −q

The action on the phase of a field is

CPΘ :
i

~
(Et− p · x)→ − i

~
((−E) (−t)− (−p) · (−x)) = − i

~
(Et− p · x) (5.13)

Therefore, if we always choose our field expansions to include ϕ† symmetrically with ϕ, the field theory will
be CPΘ-invariant. This combined action of discrete transformations gives us the picture we want. By simply
changing the sign , we turn the phase a particle of 4-momentum pµ = (E,p) and charge q into the phase of
a particle 4-momentum pµ = (−E,−p) and charge −q travelling backward in time in a parity flipped space.

Now our interpretation of the negative energy states is clear. By choosing the Green function to be

G(x, x′) = G+E,+t(x, x
′) +G−E,−t (x, x′) (5.14)

and the field expansion to be

ϕ(x, t) =
1

(2π)
3/2

ˆ
d3k√

2ω

(
a(k)ei(ωt−k·x) + a†(k)e−i(ωt−k·x)

)
(5.15)

we always associate the negative energy solutions with pastlike motion. The appearance of such a pastlike
particle (with energy −E, momentum p and charge q) to a futurelike observer is the CPΘ transform of the
field, i.e., a futurelike particle of energy +E, momentum −p and charge −q.

Define: Suppose a given variety of particle exists in futurelike states described by physical field φ+ (E,p, q . . .) ,
and also in pastlike states described by φ− (−E,p, q . . .) having negative energy. Then φ+ (E,p, q . . .)
has an antiparticle state defined as CPΘφ− (−E,p, q . . .) .

Since
CPΘφ− (−E,p, q . . .) = CPΘφ− (E,−p,−q . . .)

antiparticle states are positive energy and futurelike. It is easy to see that all other quantum numbers are
reversed, because a pastlike particle carrying any quantum charge g into the past will be experienced by a
futurelike observer as carrying a charge −g into the future.

We require field theories to be symmetric with respect to particles and antiparticles, so that for field
operators

CPΘϕ̂ (t,x) (CPΘ)
−1

= ϕ̂ (t,x)

Since the conjugate momentum

π̂(x, t) =
∂

∂t
ϕ̂(x, t)

satisfies

CPΘπ̂(x, t) (CPΘ)
−1

= CPΘ

(
∂

∂t
ϕ̂ (t,x)

)
(CPΘ)

−1

= − ∂

∂t
ϕ̂ (t,x)

= −π̂(x, t)
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we find that the effect of CPΘ on a (k) = ϕ̂(x)− i
ω π̂(x) is

CPΘa (k) (CPΘ)
−1

= CPΘ

(
ϕ̂(x)− i

ω
π̂(x)

)
(CPΘ)

−1

= ϕ̂(x)− (−i)
(−ω)

(−π̂(x))

= ϕ̂(x) +
i

ω
π̂(x)

= a† (k)

Moreover, we have

CPΘi (ωt− k · x) (CPΘ)
−1

= −i ((−ω) (−t)− (−k) · (−x))

= −i (ωt− k · x)

so that the action of CPΘ on a plane wave is

CPΘ
(
a(E,p)e

i
~ (pαx

α)
)

(CPΘ)
−1

= a†(E,p)e−
i
~ (pαx

α)

Therefore, the full expansion for ϕ̂(t,x) will be symmetric under CPΘ if it is an equal linear combination of
terms

ϕ̂(t,x) ∼ a(E,p)e
i
~ (pαx

α) + a†(E,p)e−
i
~ (pαx

α)

This form agrees with eq.(5.15) for ϕ̂(t,x). But eq.(5.15) was found by setting

ϕ(x, t) =
1

(2π)
3/2

ˆ √
2E
(
a(E,p)e

i
~ (pαx

α) + a†(E,p)e−
i
~ (pαx

α)
)
δ
(
pαp

α −m2
)

Θ(E)~−4d4p

where we included the positive energy step function. The present calculation justifies our earlier step.
Our choice of boundary conditions leads us to ask what boundary conditions the other possible Green

functions represent. A moment’s reflection on the expression

G(x, x′) = G+E,−t(x, x
′) +G−E,+t (x, x′)

suggest that this is the proper Green function for an observer travelling backward in time. For such an
observer, an antiparticle (also moving backward in time) would be assigned positive energy, hence the
G+E,−t(x, x

′) term. To the same observer a matter particle would be a negative energy state travelling in
the positive time direction.

5.1.5 Chronicity, time reversal and the Schrödinger equation
The relationship of chronicity and time reversal to quantum mechanics is also interesting. Consistent with
energy in Newtonian mechanics, the action of time reversal is always taken to leave the Hamiltonian invariant.
By contrast, the chronicity reverses the sign of the energy. We now consider the effect of these transformations
on solutions of the Schrödinger equation.

Suppose a state ψ solves the Schrödinger equation,

i~
∂ψ

∂t
= Ĥψ

We want to know when a transformed state Tψ is also a solution, where T is either time reversal or chronicity.
In either case we have

i~
∂ (Tψ)

∂t
= Ĥ (Tψ)
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A sufficient condition for this to be the case is found by acting on the equation with T−1 and inserting
appropriate identities:

T−1i~
∂ (Tψ)

∂t
= T−1Ĥ (Tψ)(

T−1i~T
)(

T−1 ∂

∂t
T

)
ψ =

(
T−1ĤT

)
ψ

Now, for both time reversal and chronicity, T−1 ∂
∂tT = − ∂

∂t . Therefore the transformed state Tψ is a solution
if

−
(
T−1iT

)
~
∂

∂t
= T−1ĤT

Time reversal and chronicity take advantage of the two simple ways to solve this equation. For time
reversal, is accomplished by making the operator anti-unitary,

T iT −1 = −i

while chronicity is unitary but changes the sign of the Hamiltonian,

ΘĤΘ−1 = −Ĥ

This is the reason that chronicity is not suitable for quantum mechanics: since quantum mechanics includes
neither antiparticles nor pastlike particles, negative energy states cannot be reinterpreted as futurelike,
positive energy states. Then, the presence of both positive and negative energy states of the same quantum
system leads to runaway production of ever more negative energy states. As noted previously, the failure of
energy and momentum to form a 4-vector under time reversal is not a problem in a non-relativistic theory.

With both pastlike and futurelike particles present symmetrically, we may consistently regard all negative
energy states with futurelike positive energy states, so there will be no runaway solutions. Another way to
think about this is to consider interactions. The interaction of a futurelike particle with a pastlike particle
always occurs as if the futurelike particle were encountering a positive energy antiparticle. Nor can futurelike
particles gain arbitrary energy by creating negative energy states, because the only negative energy states are
pastlike. Futurelike particles can only produce pastlike particles under special conditions such as particle-
antiparticle annihilation.

One further consequence of using chronicity is that, being hermitian, it is a quantum observable. Since
T 2 = 1, there will be two eigenvalues. We conjecture that these will correspond to antiparticle number,
with particles assigned the eigenvalue +1 and their antiparticles the eigenvalue −1. Of course, it is arbitrary
which is called the particle, but the two states are distinguishable. This assignment is equivalent to assigning
plus one to futurelike observers and minus one to pastlike observers, which accounts for our observations
revealing only the +1 eigenvalue and only the one pair of Green functions.

119



Chapter 6

Quantization of the Dirac field

6.1 Solution of the free classical Dirac equation
As with the scalar field, we can solve using a Fourier integral. First consider a single value of the momentum.
Then we can write two plane wave solutions with fixed energy 4-momentum pα in the form

ψ(x, t) = u(pα)e−ipαx
α

+ v(pα)eipαx
α

(6.1)

where u(pα) and v(pα) are spinors, pα =
(
E, pi

)
and pα = (E, pi) = (E,−pi). Substituting,

0 = (iγα∂α −m)ψ(x, t)

= (iγα∂α −m)
(
u(pα)e−ipαx

α

+ v(pα)eipαx
α
)

= (γαpα −m)u(pα)e−ipαx
α

− (γαpα +m) v(pα)eipαx
α

we find the pair of equations

(γαpα −m)u(pα) = 0 (6.2)
(γαpα +m) v(pα) = 0 (6.3)

for the u(pα) and v(pα) modes, respectively.
To begin, write out the equation using the Dirac matrices as given in eqs.(2.35),

γ0 =

(
1
−1

)
, γi =

(
0 σi

−σi 0

)
and solve first for u(pα) . If we set

[u(pα)]
A

=

(
α(pα)
β(pα)

)
where A = 1, 2, 3, 4, then we get the matrix equation

0 = (γαpα −m)w(pα)

=

(
E −m σipi
−σipi −E −m

)(
α(pα)
β(pα)

)
which gives the set of 2× 2 equations

(E −m)α(pα) + σipiβ(pα) = 0 (6.4)
−σipiα(pα)− (E +m)β(pα) = 0 (6.5)
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Since E > 0, the quantity E +m is nonzero so Eq.(6.5) may be solved for β(pα),

β(pα) = −
(

σipi
E +m

)
α(pα) (6.6)

Substituting into the first:

(E −m)α(pα) = σipi

(
σipi
E +m

)
α(pα)(

E2 − p2 −m2
)
α(pα) = 0

where we use
(
σipi

)2
= (−pi)(−pi) = p2 in the last line. This just gives the usual relativistic expression

relating mass, energy and momentum, with positive energy solution

E = ±
√
p2 +m2 (6.7)

This determines the possible energies. Notice that despite the first order character of the Dirac equation, E
may still take positive and negative values.

6.1.1 Positive energy eigenstates
Now we need the eigenstates. These must satisfy Eqs.(6.6) and (6.7) with no further constraint on α(pα).
We are free to choose any convenient pair of 2-spinors for α(pα). Therefore, let

α1(pα) ≡
(

1
0

)
(6.8)

α2(pα) ≡
(

0
1

)
(6.9)

For α1(pα), (remembering that pi = −pi) we must have

β1(pα) = −
(

σipi
E +m

)
α1(pα)

=
1

E +m

(
pz px − ipy

px + ipy −pz
)(

1
0

)
=

1

E +m

(
pz

px + ipy

)
while for α2(pα) we find

β2(pα) = −
(

σipi
E +m

)
α2(pα)

=
1

E +m

(
pz px − ipy

px + ipy −pz
)(

0
1

)
=

1

E +m

(
px − ipy
−pz

)

121



These relations define two independent, positive energy solutions, which we normalize and denote by ua(pα):

[u1(pα)]
A

=

√
E +m

2m


1
0
pz

E+m
px+ipy

E+m

 (6.10)

[u2(pα)]
A

=

√
E +m

2m


0
1

px−ipy
E+m
−pz
E+m

 (6.11)

Exercise: Show that u1(pα) and u2(pα) are orthonormal,

〈ua, ub〉 = δab (6.12)

where the inner product of two spinors is given by

〈χ, ψ〉 ≡ χ†hψ = χ̄ψ (6.13)

with h given by eq.(2.45). Notice that this inner product is Lorentz invariant, so our spinor basis
remains orthonormal in every frame of reference.

6.1.2 Negative energy eigenstates
For the second set of mode amplitudes, we solve Eq.(6.3), which becomes

0 = (γαpα +m) v(pα)

=

(
E +m σipi
−σipi −E +m

)(
α(pα)
β(pα)

)
Solving for α(pα) first:

α(pα) = − σipi
E +m

β(pα) (6.14)

Once again, substituging into the second equation yields E2−p2−m2 = 0, so that E = ±
√
p2 +m2. There

are again two solutions. Since β(pα) is arbitrary and α(pα) is given by eq.(6.14), we choose

β1(pα) ≡
(

1
0

)
(6.15)

β2(pα) ≡
(

0
1

)
(6.16)

leading to two more independent, normalized solutions, va(pα),

[v1(pα)]
A

=

√
m+ E

2m


pz

E+m
px+ipy

E+m

1
0

 (6.17)

[v2(pα)]
A

=

√
m+ E

2m


px−ipy
E+m
−pz
E+m

0
1

 (6.18)

The entire set of four spinors, ua(pα), va(pα), a = 1, 2 is a complete, pseudo-orthonormal basis.
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Exercise: Check that v1(pα) and v2(pα) satisfy

〈va(pα), vb(p
α)〉 = −δab (6.19)

〈ua(pα), vb(p
α)〉 = 0 (6.20)

Exercise: Prove the completeness relation,

2∑
a=1

(
[ua(pα)]

A
[ūa(pα)]B − [va(pα)]

A
[v̄a(pα)]B

)
= δAB (6.21)

where A,B = 1, . . . , 4 index the components of the basis spinors.

The completeness relation, Eq.(6.21), guarantees that any spinor may be written as a linear combination
of (ua(pα), va(pα), a = 1, 2), for given any spinor ψA we may write

ψA = δABψ
B

=

2∑
a=1

(
[ua (pα)]

A
[ūa (pα)]B − [va (pα)]

A
[v̄a (pα)]B

)
ψB

=

2∑
a=1

(
[ua (pα)]

A
(ūaψ)− [va (pα)]

A
(v̄aψ)

)
=

2∑
a=1

(ūaψ)uAa −
2∑
a=1

(v̄aψ) vAa

where the four complex numbers (ūaψ) , (v̄aψ) give the components in our basis.

6.1.3 Fourier superposition
Using this basis, we now have a complete solution to the free Dirac equation. Using Θ(E) to enforce positive
energy condition, we have

ψ (x, t) =
1

(2π)
3/2

2∑
a=1

ˆ
d4k 2

√
mωδ

(
E2 − p2 −m2

)
Θ (E)

(
ba (pα)ua (pα) e−

i
~pαx

α

+ d†a (pα) v†a (pα) e
i
~pαx

α
)

Here the Dirac delta function imposes the energy condition while the spinor plane waves ua (pα) e−
i
~pαx

α

and
v†a (pα) e

i
~pαx

α

satisfy the Dirac equation for any fixed pα. The arbitrary mode amplitudes ba (p) and d†a (p)
then form an arbitrary superposition. The factor 2

√
mω is a convenient normaliztion where we define ω ≡

+
√
k2 +m2. Replacing the delta function using Eq.(4.21) Θ (E) δ

(
E2 − p2 −m2

)
= 1

2ω δ
(
E −

√
p2 +m2

)
and integrating over k0,

ψ (x, t) =
1

(2π)
3
2

2∑
a=1

ˆ
d3k

√
m

ω

(
ba (k)ua (k) e−i(ωt−k·x) + d†a (k))va (k) ei(ωt−k·x)

)
(6.22)

Before turning to quantization, we consider the spin of spinors.
Notice that our writing d†i (k) instead of di(k) in the expansion of ψ, while perfectly allowable, is consistent

with what we found for scalar fields. It is purely a matter of definition. However, when we look at the
commutation relations of the corresponding operators, this part of the field operator ψ̂ should create an
antiparticle, and therefore is most appropriately called d†i (k). This is consistent with CPΘ symmetry of the
field.
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6.2 The energy and spin of spinors

6.2.1 Energy projections
The basis spinors (ua(pα), va(pα)) may be thought of as eigenvectors of the operator pαγα. Rewriting Eqs.(6.2)
and (6.3),

γαpαua(pα) = mua(pα)

γαpαva(pα) = −mva(pα)

This allows us to construct projection operators that single out the ua(pα)- and va(pα)-type spinors. We
add the normalized operators ± 1

mγ
αpα, normalized by the eigenvalus to the identity,

P± =
1

2

(
1± 1

m
γαpα

)
(6.23)

then the resulting P± are idempotent,

P 2
± =

1

4

(
1± 1

m
γαpα

)(
1± 1

m
γβpβ

)
=

1

4

(
1± 2

m
γαpα +

1

m2
γαpαγ

βpβ

)
=

1

4

(
1± 2

m
γαpα +

1

m2
p2

)
= P±

where γαpαγβpβ = p2 = m2. They are also orthogonal to one another,

P+P− =
1

4

(
1 +

1

m
γαpα

)(
1− 1

m
γβpβ

)
=

1

4

(
1− 1

m2
γαpαγ

βpβ

)
=

1

4

(
1− 1

m2
m2

)
= 0

and together span the full space,

P+ + P− =
1

2

(
1 +

1

m
γαpα

)
+

1

2

(
1− 1

m
γαpα

)
= 1

Returning to the action of P± on states, we clearly have

P+ua(pα) = ua(pα)

P+va(pα) = 0

and we may build P+ out of its nonzero eigenvectors,

P+ =

2∑
a=1

ua(pα)ūa(pα) (6.24)
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Similarly, we have

P−ua(pα) = 0

P−va(pα) = va(pα)

P− =

2∑
a=1

va(pα)v̄a(pα) (6.25)

The operators P± distinguish between the positive and negative energy states.

6.2.2 Spin projections
Next, we seek a pair of operators which distinguishes between u1 and u2 and between v1 and v2. Since ua
and va are pseudo-orthonormal, Eqs.(6.12), (6.19) and (6.20), we can simply write

[Π+]
A
B = u1 ⊗ ū1 − v2 ⊗ v̄2

= [u1]
A [
γ0
]
BC

[
u†1

]C
− [v2]

A [
γ0
]
BC

[
v†2

]C
to project into the u1 and v2 directions. This is immediately seen to satisfy Π+u2 = Π+v1 = 0 and
Π+u1 = u1, Π+v2 = v2.

To find an explicit form for Π+, consider first the rest frame of the particle, where the 4-momentum is
given by pα = (mc, 0). There we have

u1 (pα) = (1, 0, 0, 0)

u2 (pα) = (0, 1, 0, 0)

v1 (pα) = (0, 0, 1, 0)

v2 (pα) = (0, 0, 0, 1) (6.26)

so that

[Π+]
A
B =


1

0
0

1


This combination is easy to construct from the gamma matrices. With the forms given in Eq.(2.35) and

with γ5 =

(
1

1

)
, we note that

γ3γ5 =

(
σ3 0
0 −σ3

)
=


1
−1

−1
1


From this we see that all of the basis vectors, eq.(6.26), are eigenvectors of γ3γ5 :

γ3γ5u1 = u1

γ3γ5u2 = −u2

γ3γ5v1 = −v1

γ3γ5v2 = v2
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and we construct two projection operators,

Π+ =
1

2

(
1 + γ3γ5

)
=

1

2
(1 + nαγ

αγ5)

Π− =
1

2

(
1− γ3γ5

)
=

1

2
(1− nαγαγ5)

where nα = (0, 0, 0, 1) . Notice that nα is spacelike, with n2 = −1, and that pαnα = 0.
Now, we generalize these new projections by writing

Π± ≡ 1

2
(1± sµγµγ5) (6.27)

where sµ is any 4-vector. These are still projection operators provided sα is spacelike, sµsνηµν = s2 = −1,
since then we have

Π2
± =

1

4
(1± sµγµγ5) (1± sνγνγ5)

=
1

4
(1± 2sµγ

µγ5 + sµγ
µγ5sνγ

νγ5)

=
1

4
(1± 2sµγ

µγ5 − sµsνγµγνγ5γ5)

=
1

4
(1± 2sµγ

µγ5 − sµsνηµν)

= Π±

In addition, we can require these Π± to commute with P+ and P− . Consider

[Π±, P+] =

[
1

2
(1± sµγµγ5) ,

1

2

(
1 +

1

m
γαpα

)]
=

1

4

(
1± sµγµγ5 +

1

m
γαpα ±

1

m
sµpαγ

µγ5γ
α

)
−1

4

(
1 +

1

m
γαpα ± sµγµγ5 ±

1

m
pαsµγ

αγµγ5

)
= ± 1

4m
(−sµpαγµγαγ5 + pαsµγ

αγµγ5)

= − 1

4m
sµpα (γµγα + γαγµ) γ5

= − 1

2m
sµpαη

µαγ5

This will vanish if sα and pα are orthogonal, sαpα = 0.
The vector sα is the 4-dimensional generalization of the spin direction, si, reducing in the rest frame to

sα =
(
0, si

)
but transforming as a 4-vector.

Spin operators.
In quantum mechanics, the Pauli matrices σi give us three spin operators,

Si =
~
2
σi

In quantum field theory, we start instead with the spin representation of the Poincaré group, where we found
the Lorentz generators,

σµν = [γµ, γν ]
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These generate both rotations and boosts, and we are now interested in the rotational part. The rotations
are given by the part of σµν orthogonal to the momentum 4-vector,

Jα ≡ 1

2
εα βµνP

βMµν

ua and va are eigenvectors of the z-component of spin.
Since, P+P− = 0 and Π+Π− = 0, the set of projection operators,

{P+, P−,Π+,Π−}

is fully commuting and therefore simultaneously diagonalizable. Moreover, they are independent. To see
this, consider the four products

{P+Π+, P+Π−, P−Π+, P−Π−}

These are mutually orthogonal, i.e., (P+Π+) (P+Π−) = P+P+Π+Π− = 0 and so on. Each combination
projects into a 1-dimensional subspace of the spinor space since,

tr (P+Π+) =
1

4
tr

(
1 + sµγ

µγ5 +
1

m
γαpα +

1

m
sµpαγ

µγ5γ
α

)
=

1

4
(4 + 0 + 0 + 0)

= 1

and similarly tr (P+Π−) = tr (P−Π+) = tr (P−Π−) = 1. Finally, they span the 4-dimensional space as we
see from the completeness relation:

P+Π+ + P+Π− + P−Π+ + P−Π− = P+ (Π+ + Π−) + P− (Π+ + Π−)

= P+ + P−

= 1

We are free to choose ua and va to be eigenvectors of any 3-vector si, and therefore eigenspinors of the
corresponding Π+(sα),Π−(sα). As a result, we can label the spinors by their 4-momentum and their spin
vectors,

ua
(
pα, sβ

)
va
(
pα, sβ

)
and since we have expressed the parameterization in terms of 4-vectors we have

Π+ = u1

(
pα, sβ

)
ū1

(
pα, sβ

)
− v2

(
pα, sβ

)
v̄2

(
pα, sβ

)
=

1

2
(1 + sµγ

µγ5)

Π− = u2

(
pα, sβ

)
ū2

(
pα, sβ

)
− v1

(
pα, sβ

)
v̄1

(
pα, sβ

)
=

1

2
(1− sµγµγ5)

in any frame of reference and for any choice of spin direction satisfying sαsα = −1 and sαpα = 0.
Using these expressions for the spin projection operators together with the corresponding expressions,

eqs.(6.24) and (6.25), for the energy, we can rewrite the outer products of the completeness relation, eq.(6.21),
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as

u1

(
pα, sβ

)
ū1

(
pα, sβ

)
= P+Π+

=
1

2

(
1 +

1

m
γαpα

)
1

2
(1 + sµγ

µγ5)

u2

(
pα, sβ

)
ū2

(
pα, sβ

)
= P+Π−

=
1

2

(
1 +

1

m
γαpα

)
1

2
(1− sµγµγ5)

= u1

(
pα,−sβ

)
ū1

(
pα,−sβ

)
v1

(
pα, sβ

)
v̄1

(
pα, sβ

)
= −P−Π−

= −1

2

(
1− 1

m
γαpα

)
1

2
(1− sµγµγ5)

v1

(
pα, sβ

)
v̄1

(
pα, sβ

)
= −P−Π+

= −1

2

(
1− 1

m
γαpα

)
1

2
(1 + sµγ

µγ5)

= v1

(
pα,−sβ

)
v̄1

(
pα,−sβ

)
These identities will be useful for calculating scattering amplitudes, allowing us to express various spinor
products in terms of gamma matrices.

6.3 Hamiltonian formulation
Now we turn to the quantization of the Dirac field. We rewrite the action, Eq.(2.47),

S =

ˆ
d4x ψ̄ (iγµ∂µ −m)ψ

The conjugate momentum to ψ is the spinor field

πA ≡ δL

δ (∂0ψA)
= iψ̄γ0

= i
[
ψ†
]B
hBC

[
γ0
]C

A
(6.28)

We can also write this as

πγ0 = iψ̄

and in a basis where, numerically hAB =
[
γ0
]A

B
, as

π = iψ†

Undaunted by the peculiar lack of a time derivative in the momentum, we press on with the Hamiltonian:

H =

ˆ
d3x

(
πψ̇ − L

)
=

ˆ
d3x

(
iψ̄γ0∂0ψ − ψ̄ (iγµ∂µ −m)ψ

)
=

ˆ
d3x

(
iψ̄γ0∂0ψ − iψ̄γ0∂0ψ − iψ̄γi∂iψ +mψ̄ψ

)
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The time derivatives cancel, leaving

H =

ˆ
d3x

(
−iψ̄γi∂iψ +mψ̄ψ

)
= i

ˆ
d3x iψ̄

(
iγi∂i −m

)
ψ

= i

ˆ
d3x πγ0

(
iγi∂i −m

)
ψ (6.29)

Once again, we are struck by the absence of time derivatives in the energy. If we ust the field equation, we
may rewrite H as

H = i

ˆ
d3x πγ0

(
iγi∂i −m

)
ψ

=

ˆ
d3x πγ0

(
γ0∂0

)
ψ

=

ˆ
d3x π∂0ψ (6.30)

but since this assumes the field equation we cannot use this form to write Hamilton’s equations. Indeed,
computing ∂0ψ using Eq.(6.30) merely gives an identity,

∂0ψ =

ˆ
d3x′

(
δH(x)

δπ(x′)

δψ(x)

δψ(x′)
− δH(x)

δψ(x′)

δψ(x)

δπ(x′)

)
=

ˆ
d3x′ (∂0ψ(x′)) δ3(x− x′)

= ∂0ψ(x)

Still, eq.(6.30) is useful for computing the operator form of the Hamiltonian from solutions.
We may find the field equation using Eq.(6.29) for H,

∂0ψ = {H,ψ}

=

ˆ
d3x′

(
δH(x)

δπ(x′)

δψ(x)

δψ(x′)
− δH(x)

δψ(x′)

δψ(x)

δπ(x′)

)
=

ˆ
d3x′ iγ0

(
iγi∂i −m

)
ψ(x′) δ3(x− x′)

= iγ0
(
iγi∂i −m

)
ψ(x)

Multiplying by iγ0 this becomes iγ0∂0ψ = −
(
iγi∂i −m

)
ψ(x) and combining the gamma terms as a sum,

we recover the Dirac equation,

(iγα∂α −m)ψ(x) = 0

For the momentum Hamilton equation, we find the conjugate field equation:

∂0π = {H,π}

=

ˆ
d3x′

(
δH(x)

δπ(x′)

δπ(x)

δψ(x′)
− δH(x)

δψ(x′)

δπ(x)

δπ(x′)

)
=

ˆ
d3x′

(
− δH(x)

δψ(x′)

δπ(x)

δπ(x′)

)
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To find δH(x)
δψ(x′) we integrate the Hamiltonian by parts,

H = i

ˆ
d3x πγ0

(
iγi∂i −m

)
ψ

=

ˆ
d3x

(
iπγ0iγi∂iψ −miπγ0ψ

)
=

ˆ
d3x

(
−i∂iπγ0iγiψ −miπγ0ψ

)
= −

ˆ
d3x i

(
i∂iπγ

0γi +mπγ0
)
ψ

The first term is often written as
i∂iπγ

0γi = iπγ0γi
←−
∂ i

to indicate that the derivative acts to the left on π, without having to re-order the terms. Then the
Hamiltonian becomes

H = −i
ˆ
d3x

(
iπγ0γi

←−
∂ i +mπγ0

)
ψ

= −i
ˆ
d3x πγ0

(
iγi
←−
∂ i +m

)
ψ

an the functional derivative is
δH(x)

δψ(x′)
= −iπγ0

(
iγi
←−
∂ i +m

)
The Hamilton equation for π is therefore

∂0π = iπγ0
(
iγi
←−
∂ i +m

)
iψ̄γ0←−∂ 0 = −ψ̄

(
iγi
←−
∂ i +m

)
giving the conjugate Dirac equation,

ψ̄
(
iγα
←−
∂ α +m

)
= 0 (6.31)

Finally, we write the fundamental Poisson brackets,{
ψA (x, t) , ψB (x′, t)

}
PB

= 0{
πA (x, t) , ψB (x′, t)

}
PB

= δBAδ
3 (x− x′)

{πA (x, t) , πB (x′, t)}PB = 0 (6.32)

We may now quantize the classical solution.

6.3.1 Quantization of the Dirac field
Following the rule for canonical quantization we used for scalar fields, we use Eqs.(6.32) to write the funda-
mental commutator of the spinor field as[

ψ̂A (x, t) , ψ̂B (x′, t)
]

= 0[
π̂A (x, t) , ψ̂B (x′, t)

]
= iδBAδ

3 (x− x′)

[π̂A (x, t) , π̂B (x′, t)] = 0 (6.33)

with the caution that these will be modified for reasons discussed below. We can immediately turn to our
examination of the commutation relations of the mode amplitudes.
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6.3.1.1 Solving for the mode amplitudes

From the classical solution given by Eq.(6.22),

ψ (x, t) =
1

(2π)
3/2

2∑
a=1

ˆ
d3k

√
m

ω

(
ba (k)ua (k) e−i(ωt−k·x) + d∗a (k))va (k) ei(ωt−k·x)

)
we immetiately find the conjugate momentum, π = iψ̄γ0,

π(x, t) =
i

(2π)
3/2

2∑
a=1

ˆ
d3k

√
m

ω

(
b∗a(k)ūa(k)e−i(ωt−k·x) + da(k)v̄a(k)ei(ωt−k·x)

)
γ0

and we may solve for the amplitudes. In addition to the sort of linear combination we used for scalar fields,
however, we have to eliminate the basis spinors to isolate the mode amplitudes.

Setting t = t′ = 0, we first invert the Fourier transform:

ψ̃ (k) ≡ 1

(2π)
3/2

ˆ
ψ(x, 0)e−ik·xd3x

=
1

(2π)
3

2∑
a=1

ˆ
d3x

ˆ
d3k′

√
m

ω′

(
ba (k′)ua (k′) ei(k

′−k)·x + d∗a (k′) va (k′) e−i(k
′+k)·x

)
=

2∑
a=1

ˆ
d3k′

√
m

ω′
(
ba (k′)ua (k′) δ3 (k′ − k) + d∗a (k′) va (k′) δ3 (k′ + k)

)
=

2∑
a=1

√
m

ω
(ba (k)ua (k) + d∗a (−k) va (−k))

and for π, we immediately find

ψ̃†(k) ≡ 1

(2π)
3/2

ˆ
ψ†(x, 0)eik·xd3x

=

2∑
a=1

√
m

ω

(
b∗a(k)u†a(k) + da(−k)v†a(−k)

)
(6.34)

so that

π̃ (k) = iψ̃† (k)hγ0

= iψ̃ (k) γ0

= i

2∑
j=1

√
m

ω

(
b∗a (k)u†a (k) + da (−k) v†a (−k)

)
hγ0

= i

2∑
j=1

√
m

ω
(b∗a (k) ūa (k) + da (−k) v̄a (−k)) γ0

Now, we would like to use the spinor inner product to isolate ba and da. However, since ψ̃ (k) involves
vj (−k) instead of vj (k) , we need a modified form of the orthonormality relation. From the form of our
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solution for vj (k) , we immediately see that

v1 (−k) =

√
m+ ω

2m


−kz
ω+m

−k
x+iky

ω+m

1
0

 = −γ0v1 (k)

v2 (−k) =

√
m+ ω

2m


−k

x−iky
ω+m
kz

ω+m

0
1

 = −γ0v2 (k) (6.35)

We also need
v̄i (−k) = v†i (−k)h =

(
−γ0vi (k)

)†
h = −v†i (k) γ0h

as well as two more identities to reach our goal.

Exercise: Show that

ūaγ
0ub =

ω

m
δab

v̄aγ
0vb =

ω

m
δab (6.36)

In explicit components, these are[
u†a (k)

]C
hCB

[
γ0
]B

A
uAb (k) =

ω

m
δab[

v†a (k)
]C
hCB

[
γ0
]B

A
vAb (k) =

ω

m
δab

Returning to the Fourier transforms,

ψ̃† (k) =

2∑
a=1

√
m

ω

(
b∗a (k)u†a (k) + da (−k) v†a (−k)

)
so that

π̃ (k) = iψ̃† (k)hγ0

= iψ̃ (k) γ0

= i
2∑
j=1

√
m

ω

(
b∗a (k)u†a (k) + da (−k) v†a (−k)

)
hγ0

= i

2∑
j=1

√
m

ω
(b∗a (k) ūa (k) + da (−k) v̄a (−k)) γ0

where we used γ0hγ0 = h. As a result,

ūi (k) γ0ψ̃(k) =

2∑
j=1

√
m

ω

(
bj(k)ūi(k)γ0uj(k)− d†j(−k)ūi(k)vj(k)

)

=

2∑
j=1

√
m

ω
bj(k)ūi (k) γ0uj(k)

=

√
ω

m
bi(k)
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and similarly

v̄i (k) ψ̃ (k) =

2∑
j=1

√
m

ω

(
bj (k) v̄i (k)uj (k)− d†j (−k) v̄i (k) γ0vj (k)

)

= −
2∑
j=1

√
m

ω
d∗j (−k) v̄i (k) γ0vj (k)

= −
√
ω

m
d∗j (−k)

while for the momentum,

π̃ (k)ui (k) = i

2∑
j=1

√
m

ω

(
b∗j (k)u†j(k)hγ0ui (k)− dj (−k) v†j (k)hui (k)

)

= i

2∑
j=1

√
m

ω
b∗j (k)u†j (k)hγ0ui (k)

= i

√
ω

m
b∗i (k)

and

π̃ (k) γ0vi (k) = i

2∑
j=1

√
m

ω

(
b∗j (k)u†j (k)hγ0γ0vi (k)− dj (−k))v†j (k)hγ0vi (k)

)

= −i
2∑
j=1

√
m

ω

(
dj (−k) v†j (k)hγ0vi (k)

)
= −i

√
ω

m
dj (−k)

Noting that

ψ̃ (k) ≡ 1

(2π)
3/2

ˆ
ψ (x, 0) e−ik·xd3x

ψ̃† (k) =
1

(2π)
3/2

ˆ
ψ† (x, 0) eik·xd3x

we collect terms and replace the mode amplitudes by operators and the conjugates by adjoints. Then, using
Eqs.(6.35)

b̂i (k) =

√
m

ω

1

(2π)
3/2

ˆ
ūi (k) γ0ψ̂ (x, 0) e−ik·xd3x (6.37)

b̂†i (k) =

√
m

ω

1

(2π)
3/2

ˆ
ψ̂† (x, 0)hγ0ui (k) eik·xd3x (6.38)

d̂j (k) =

√
m

ω

1

(2π)
3/2

ˆ
ψ̂† (x, 0)hγ0vi (k) e−ik·xd3x (6.39)

d̂†j (k) =

√
m

ω

1

(2π)
3/2

ˆ
v̄i (k) γ0ψ̂ (x, 0) eik·xd3x (6.40)
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Next we want to find the commutation relations satisfied by these mode amplitudes. We start from
the fundamental commutators, Eqs.(6.33), rewriting the

(
π̂A, ψ̂

B
)
commutator by replacing π̂A (x, t) with

iψ̂†(x, t)hγ0. We then have

i

[[
ψ̂†(x, t)

]C
hCD

[
γ0
]D

A
,
[
ψ̂(x′, t)

]B]
= iδBAδ

3 (x− x′)

i

[[
ψ̂†(x, t)

]
D
,
[
ψ̂(x′, t)

]B] [
γ0
]D

A
= iδBAδ

3 (x− x′)[[
ψ̂†(x, t)

]
C
,
[
ψ̂(x′, t)

]B]
=

[
γ0
]B

C
δ3 (x− x′)

or simply [
ψ̂†(x, t)h, ψ̂(x′, t)

]
= γ0δ3 (x− x′)

We are now in a position to compute the commutators of the mode operators

6.3.1.2 Anticommutation

Now consider the b̂a (k) , b̂†b (k′) and d̂j (k) , d̂†i (k
′) commutators:[

b̂a (k) , b̂†b(k
′)
]

=
m

(2π)
3
ω

ˆ ˆ
d3xd3x′eik

′·x−ik·x′
ūaC (k)

[
γ0
]C

D

[
ψD (x′, 0) ,

(
ψ† (x, 0)h

)
A

] [
γ0
]A

B
[ub (k′)]

B

= − m

(2π)
3
ω

ˆ ˆ
d3xd3x′eik

′·x−ik·x′
ūaC (k)

[
γ0
]C

D

[
γ0
]D

A

[
γ0
]A

B
[ub (k′)]

B
δ3 (x− x′)

= − m

(2π)
3
ω

ˆ
d3xei(k

′−k)·xūaC (k)
[
γ0
]C

B
[ub (k′)]

B

= −m
ω

1

(2π)
3

ˆ
d3x

ω

m
δabe

i(k′−k)·x

= −δ3 (k′ − k) δab

and[
d̂a (k) , d̂†b (k′)

]
=

m

ω

1

(2π)
3

ˆ ˆ
d3xd3x′e−ik·x+ik′·x′ [

γ0
]D

E
vEa (k)

[[
ψ†
]C

(x′, 0)hCD, ψ
B (x, 0)

]
v̄bA (k′)

[
γ0
]A

B

=
m

ω

1

(2π)
3

ˆ ˆ
d3xd3x′e−ik·x+ik′·x′ [

γ0
]D

E
vEa (k)

[
γ0
]B

D
δ3 (x− x′) v̄bA (k′)

[
γ0
]A

B

=
m

ω

1

(2π)
3

ˆ ˆ
d3xd3x′e−ik·x+ik′·x′

v̄bA (k) γ0va (k′) δ3 (x− x′)

=
m

ω
δ3 (k− k′) v̄bA (k)

[
γ0
]A

E
vEb (k′)

= δabδ
3 (k− k′)

This is just the relationship we expect for d̂a (k) – the mode amplitudes d̂a (k) and d̂†a (k) act as annihilation
and creation operators, respectively. However, commutator[

b̂a (k) , b̂†b (k′)
]

= −δ3 (k− k′) δab

has the wrong sign, with b̂a (k) rather than b̂†b (k) acting like the creation operator. However, b̂a (k) multiplies
e−i(ωt−k·x) while d̂†a (k) multiplies the CPT conjugate of e−i(ωt−k·x). This is consistent with our identification
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of these modes as particles and antiparticles, respectively. As we shall see, this pairing of particle creation
with antiparticle annihilation, and vice versa, is necessary for other reasons as well. The identification we
have chosen is necessary for conservation of charge. In addition, particle-antiparticle annihilation would not
work correctly – every interaction that created a particle would have to annihilate a particle. We do not
observe this. What went wrong?

We have very little freedom for introducing a sign here. In particular, the bilinear form v†i γ
0vj is governed

by the Lorentz invariance properties of the spinor products. An overall sign on the field or the momentum
would change the sign of the d̂a (k) commutator as well as the b̂a (k) commutator, thereby merely displacing
the problem. Moreover, since b̂a (k) and b̂†b (k) enter the commutator together, a relative sign in the definition
of b̂a (k) is cancelled by a corresponding sign from b̂†b (k). The only place a sign enters in a way that we could
change the outcome is in our use of the antisymmetry of the commutator. If this “bracket” of conjugate
variables were symmetric instead of antisymmetric, the proper relationship would be restored. But recall
that this bracket was imposed by fiat – it is simply a rule that says we should take Poisson brackets to field
commutators to arrive at the quantum field theory from the classical field theory.

Of course, we know that using anticommutators for fermionic fields is the right answer – essentially
all of the rigid structure of the world, from the discretely stacked energy levels of nucleons in the nucleus
and electrons in atoms to the endstates of stars as white dwarfs and neutron stars, relies on the Pauli
exclusion principle. This principle states that no two fermions can occupy the same state and it is enforced
mathematically by requiring fermion fields to anticommute. Here, we see the principle emerging from field
theory as a condition of CPT invariance. Below, we will see that the same conclusion follows from a
consideration of energy.

Returning to the previous calculations, we see that nothing goes awry if we replace the canonical quan-
tization rule with a sign change to an anticommutator in the case of fermions. Defining the anticommutator{

Â, B̂
}
≡ ÂB̂ + B̂Â

the fundamental anticommutation relations for the Dirac field are:{
ψ̂A (x, t) , ψ̂B (x′, t)

}
= 0{

π̂A (x, t) , ψ̂B (x′, t)
}

= iδBAδ
3 (x− x′)

{π̂A (x, t) , π̂B (x′, t)} = 0 (6.41)

with the consequence {
b̂†a (k) , b̂b (k′)

}
= δabδ

3 (k− k′) (6.42){
d̂†a (k) , d̂b (k′)

}
= δabδ

3 (k− k′) (6.43)

All other anticommutators vanish. This implies the exclusion principal, since the vanishing of{
ψ̂ (x, t) , ψ̂ (x′, t)

}
= ψ̂ (x, t) ψ̂ (x′, t) + ψ̂ (x′, t) ψ̂ (x, t)

implies

ψ̂ (x, t) ψ̂ (x′, t) = −ψ̂ (x′, t) ψ̂ (x, t)

for any two spinor fields, and therefore for two identical spinors at the same point,

ψ̂ (x, t) ψ̂ (x, t) = −ψ̂ (x, t) ψ̂ (x, t) = 0

Identical fermions cannot exist in the same state.
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6.3.1.3 The Dirac Hamiltonian

Next, consider the Hamiltonian. We wish to express it as a quantum operator in terms of the creation and
annihilation operators. It is now convenient to use the simplified form of the Dirac Hamiltonian, eq.(6.30):

H = i

ˆ
d3x πγ0

(
iγi∂i −m

)
ψ =

ˆ
d3x π∂0ψ

which assumes the field equation is satisfied.
We begin by substituting the field operator expansions,

ψ̂ (x, t) =
1

(2π)
3/2

2∑
a=1

ˆ
d3k

√
m

ω

(
b̂a (k)ua (k) e−i(ωt−k·x) + d̂†a (k))va (k) ei(ωt−k·x)

)
π̂ (x, t) = iψ† (x, t)hγ0 =

i

(2π)
3/2

2∑
a=1

ˆ
d3k

√
m

ω

(
b̂†a (k) ūa (k) e−i(ωt−k·x) + d̂a (k) v̄a (k) ei(ωt−k·x)

)
γ0

into the integral for the Hamiltonian,

Ĥ =

ˆ
d3x : π̂∂0ψ̂ :

=
i

(2π)
3

2∑
a=1

2∑
b=1

ˆ
d3x

ˆ
d3k

ˆ
d3k′

m√
ωω′

:
(
d̂a (k) v†a (k)hγ0e−i(ωt−k·x) + b̂†a (k)u†a (k)hγ0ei(ωt−k·x)

)
×
(
−iω′b̂b (k′)ub (k′) e−i(ω

′t−k′·x) + iω′d̂†b (k′) vb(k
′)ei(ω

′t−k′·x)
)

:

Collecting terms we have

Ĥ =
i

(2π)
3

2∑
a=1

2∑
b=1

ˆ
d3x

ˆ
d3k

ˆ
d3k′

iω′m√
ωω′

× :
(
−d̂a (k) b̂b (k′) v†a (k)hγ0ub (k′) e−i(ω+ω′)t+i(k+k′)·x + d̂a (k) d̂†b (k′) v†a (k)hγ0vb(k

′)e−i(ω−ω
′)t+i(k−k′)·x

+ −b̂†a (k) b̂b (k′)u†a (k)hγ0ub (k′) ei(ω−ω
′)t−i(k−k′)·x + b̂†a (k) d̂†b (k′)u†a (k)hγ0vb(k

′)ei(ω+ω′)t−i(k+k′)·x
)

:

Now, integrating over d3x, we produce Dirac delta functions:

Ĥ = −
2∑
a=1

2∑
b=1

ˆ
d3k

ˆ
d3k′

ω′m√
ωω′

× :
(
−d̂a (k) b̂b (k′) v†a (k)hγ0ub (k′) δ3 (k + k′) e−2iωt + d̂a (k) d̂†b (k′) v†a (k)hγ0vb(k

′)δ3 (k− k′)

+ −b̂†a (k) b̂b (k′)u†a (k)hγ0ub (k′) δ3 (k− k′) + b̂†a (k) d̂†b (k′)u†a (k)hγ0vb(k
′)δ3 (k + k′) e2iωt

)
:

which immediately integrate to give

Ĥ = −m
2∑
a=1

2∑
b=1

ˆ
d3k :

(
−d̂a (k) b̂b (−k) v†a (k)hγ0ub (−k) e−2iωt + d̂a (k) d̂†b (k) v†a (k)hγ0vb(k)

+ −b̂†a (k) b̂b (k)u†a (k)hγ0ub (k) + b̂†a (k) d̂†b (−k)u†a (k)hγ0vb(−k)e2iωt
)

:

Using Eqs.(6.35),

va (−k) = −γ0va (k)

ua (−k) = γ0ua (k)
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we have

Ĥ = −m
2∑
a=1

2∑
b=1

ˆ
d3k :

(
−d̂a (k) b̂b (−k) v†a (k)hub (k) e−2iωt + d̂a (k) d̂†b (k) v†a (k)hγ0vb(k)

+ −b̂†a (k) b̂b (k)u†a (k)hγ0ub (k)− b̂†a (k) d̂†b (−k)u†a (k)hvb(k)e2iωt
)

:

= −m
2∑
a=1

2∑
b=1

ˆ
d3k :

(
−d̂a (k) b̂b (−k) (v̄a (k)ub (k)) e−2iωt + d̂a (k) d̂†b (k)

(
v̄a (k) γ0vb(k)

)
+ −b̂†a (k) b̂b (k)

(
ūa (k) γ0ub (k)

)
− b̂†a (k) d̂†b (−k) ūa (k) vb(k)e2iωt

)
:

Finally, with the orthonormality we set v̄a (k)ub (k) = 0 = ūa (k) vb(k) and use Eqs.(6.36) to write

Ĥ = −m
2∑
a=1

2∑
b=1

ˆ
d3k :

(
d̂a (k) d̂†b (k)

ω

m
δab − b̂†a (k) b̂b (k)

ω

m
δab

)
:

and finally

Ĥ =

2∑
a=1

ˆ
d3k ω :

(
b̂†a (k) b̂a (k)− d̂a (k) d̂†a (k)

)
:

This would be a troubling result if it weren’t for the anticommutation relations. If we simply used the
normal ordering procedure, the second term would be negative and the energy indefinite. However, using
the anticommutator, Eq.(6.43), the normal ordering prescription for fermions is taken to mean

: d̂b(k
′)d̂†a(k) : = −d̂†a(k)d̂b(k

′) (6.44)

We therefore write the normal ordered Hamiltonian operator as

Ĥ =

2∑
a=1

ˆ
d3k ω

(
b̂†a (k) b̂a (k) + d̂†a (k) d̂a (k)

)
(6.45)

This convention preserves the anticommutativity, while still eliminating the infinite delta function contribu-
tion to the vacuum energy.

6.3.2 Symmetries of the Dirac field
We’d now like to find the conserved currents of the Dirac field. There are two kinds – the spacetime
symmetries, including Lorentz transformations and translations, and a U(1) phase symmetry. We’ll discuss
the spacetime symmetries first. We put off our study of the phase symmetry to the next chapter, where it
leads us systematically to Quantum Electrodynamics: QED.

6.3.2.1 Translations

Under a translation, xα → xα + aα, the Dirac field changes by

ψ (xα)→ ψ (xα + aα) = ψ (xα) +
∂ψ (xα)

∂xβ
aβ

so we identify ∆ of eq.(1.35) as
∆ = (∂βψ) aβ
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The four conserved currents form the energy-momentum tensor, given by eq.(1.37):

Tαβ =
δL

δ (∂αψ)
∂βψ − Lηµβ

= iψ̄γα∂βψ − ηαβψ̄ (iγµ∂µ −m)ψ

= iψ̄γα∂βψ

since the Lagrangian density vanishes when the field equation is satisfied. This form is called the canonical
energy-momentum tensor, but it is not symmetric. Instead, write the action in the symmetric form

S =

ˆ
ψ
(
i�∂ −m

)
ψ

=
1

2

ˆ (
ψ
(
i�∂ −m

)
ψ − ψ

(
i
←−
�∂ +m

)
ψ
)

then the energy-momentum takes the Belinfante form

Tαβ =
δL

δ (∂αψ)
∂βψ + ∂βψ

δL
δ
(
∂αψ

) − Lηµβ
=

1

2

(
ψiγα

)
∂βψ +

1

2
∂βψ (−iγαψ)− 1

2

(
ψ
(
i�∂ −m

)
ψ − ψ

(
i
←−
�∂ +m

)
ψ
)
ηµβ

=
i

2

(
ψγα∂βψ − ∂βψγαψ

)
=

i

2

(
ψγα∂βψ − ∂βψγαψ

)
We check that this is divergence free, �∂ψ = −imψ

∂αT
αβ =

i

2

(
∂αψγ

α∂βψ − ∂α∂βψγαψ + ψγα∂β∂αψ − ∂βψγα∂αψ
)

=
i

2

(
ψ
←−
�∂ ∂

βψ − ∂βψ
←−
�∂ ψ + ψ∂β�∂ψ − ∂βψ�∂ψ

)
=

i

2

(
imψ∂βψ − im∂βψψ − imψ∂βψ + im∂βψψ

)
= −m

2

(
ψ∂βψ − ∂βψψ − ψ∂βψ + ∂βψψ

)
= 0

For the conserved charges, we therefore find that the conserved energy is the Hamiltonian,

P̂ 0 = i

ˆ
d3xψ̄γ0∂0ψ = Ĥ

while the conserved momentum is

P̂ i = −i :

ˆ
d3xψ̄γ0∂iψ :

=

2∑
a=1

2∑
b=1

ˆ
d3k

mk′i

ω

(
b̂†a(k)b̂b(k)u†a(k)hγ0ub(k)− b̂†a(k)d̂†b(−k)u†a(k)hγ0e2iωtvb(−k)

+d̂a(k)b̂b(−k)v†a(k)hγ0e−2iωtub(−k)− : d̂a(k)d̂†b(k) : v†a(k)hγ0vb(k)
)

=

2∑
a=1

ˆ
d3k k′i

(
b̂†a(k)b̂a(k) − : d̂a(k)d̂†a(k) :

)
=

2∑
a=1

ˆ
d3k k′i

(
b̂†a(k)b̂a(k) + d̂†a(k)d̂a(k)

)
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so that

P̂ =

2∑
a=1

ˆ
d3k k

(
b̂†a(k)b̂a(k) + d̂†a(k)d̂a(k)

)
This is just what we expect.

6.4 Gauging the Dirac action
Starting with the action for the Dirac equation,

S =

ˆ
d4x ψ̄ (iγµ∂µ −m)ψ

we note that in addition to the Poincaré symmetry, it has a global phase symmetry. That is, if we replace

ψ → ψeiη

ψ̄ → ψ̄e−iη (6.46)

for any constant phase η, the action S remains unchanged. This leads immediately to a conserved current.
For an infinitesimal phase change,

∆ = ψ (1 + iη)− ψ = iηψ

∆̄ = ψ̄ (1 + iη)− ψ̄ = −iηψ̄

so computing Jα ≡ ∂L
∂(∂αψ) (iηψ), and writing the result with operators, we find the Dirac U (1) current,

Ĵα = − η ˆ̄ψγαψ̂ (6.47)

In terms of creation and annihilation operators the conserved charge operator is thererfore

Q̂ =

ˆ
Ĵ0d3x

= − η

ˆ
d3x : ˆ̄ψγ0ψ̂ :

= − η

2∑
a=1

2∑
b=1

ˆ
d3k

m

ω

(
: b̂†a(k)u†a(k)hγ0b̂b(k)ub(k) + b̂†a(k)u†a(k)e2iωthγ0d̂†b(−k)vb(−k)

+d̂a(k)v†a(k)e−2iωthγ0b̂b(−k)ub(−k) + d̂a(k)v†a(k)hγ0d̂†b(k)vb(k) :
)

= − η

2∑
a=1

ˆ
d3k

(
b̂†a(k)b̂a(k)+ : d̂a(k)d̂†a(k) :

)
Applying the fermionic normal ordering, the charge operator is therefore

Q̂ = − η

2∑
a=1

ˆ
d3k

(
b̂†a(k)b̂a(k)− d̂†a(k)d̂a(k)

)
(6.48)

Therefore, the total conserved charge Q is proportional to the difference between the number of particles and
the number of antiparticles. The most straightforward interpretation of this conservation law is a conservation
of electrical charge and (with some slight modification for the electroweak theory) this interpretation is
correct.
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6.4.1 The covariant derivative
We could now take the electromagnetic current of the spinor field, Jα = − ηψ̄γαψ as the source for the
Maxwell field by including JαAα with the Maxwell action. However, gauging provides a more systematic
way to come up with the same action in a way that immediately generalizes to other types of interactions.
The procedure is as follows.

Suppose we try to write a revised version of the Dirac action which is invariant under local phase
transformations,

ψ → ψ′ = ψeiϕ(t,x)

ψ̄ → ψ̄′ = ψ̄e−iϕ(t,x) (6.49)

Clearly, this must be a different action because of the derivative acting on the phase. If we substitute these
expressions into the Dirac action we find

S′ =

ˆ
d4x ψ̄e−iϕ(t,x) (iγµ∂µ −m)ψeiϕ(t,x)

= S − ψ̄γµψ (∂µϕ (t,x))

In order to build a new action which is invariant, we somehow need to cancel this extra term.
The key to a solution is that an extra, undesired piece occurs whenever we take a derivative. We can fix

the problem by introducing a different kind of derivative, Dα, called a covariant derivative. For local phase
symmetry, we say that the derivative must be made covariant with respect to phase transformations. All
this means is that it should commute with the phase change, in the sense that

D′αψ
′ = eiϕ(t,x) (Dαψ) (6.50)

We just demand that the derivative Dαψ should transform in the same way as ψ itself. If we can find such
a covariant derivative, then we may set

Slocal =

ˆ
d4x ψ̄ (iγµDµ −m)ψ (6.51)

This is the action we need because then

S′local =

ˆ
d4x

(
iψ̄′γµD′µψ

′ −mψ̄′ψ′
)

=

ˆ
d4x

(
iψ̄e−iϕ(t,x)γµeiϕ(t,x)Dµψ −mψ̄ψ

)
= Slocal

The only trick is to find a suitable generalization of the derivative.

6.4.1.1 Derivations

To generalize the derivative, we need to know the properties that make an operator a derivation. We define

Define: A derivation is an operator D which is linear and Leibnitz:

1. Linear: D (αf + βg) = αDf + βDg

2. Leibnitz: D (fg) = (Df) g + f (Dg)

Notice that these two conditions together require D to vanish when acting on constants. The Leibnitz
property gives D (αf) = (Dα) f + αDf, while linearity requires D (αf) = αDf. These are consistent only if
(Dα) f = 0 for any function f. Choosing f(x) = 1 gives the result.
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Next, consider how two derivations may differ. If D1 is a derivation and we define

D2 = D1 + F (x)

then D2 is also linear

D2 (αf + βg) = (D1 + F ) (αf + βg)

= D1 (αf + βg) + F (αf + βg)

= αD1f + βD1g + αFf + βFg

= α (D1 + F ) f + β (D1 + F ) g

= α (D2f) + β (D2g)

but the Leibnitz property fails:

D2 (fg) = D1 (fg) + Ffg

= (D1f) g + f (D1g) + Ffg

6= (D2f) g + f (D2g)

We can fix this problem by introducting additive weights for functions. If fn has weight n, and gm has
weight m, then we require the product, hm+n = fngm to have weight m+ n. Now we can define

D2gm = D1gm +mFgm

and the Leibnitz rule is satisfied:

D2 (fngm) = D1 (fngm) + (n+m)Ffngm

= (D1fn) gm + fn (D1gm) + (n+m)Ffngm

= (D2fn) gm + fn (D2gm)

The use of weights is consistent with phase transformations, because if we have a product of two spinors and
each changes by a phase, we get a doubled phase factor:

χψ →
(
χeiϕ

) (
ψeiϕ

)
= χψe2iϕ

Thus, each spinor would be assigned a weight of one.
The additive term in a covariant derivative is called a connection.

6.4.1.2 The U (1)-covariant derivative

We are now in a position to find a suitable covariant derivative. Since the partial derivative, ∂α, is a
derivation, we may add a single vector field to form another derivation,

Dα = ∂α − iηAα

where the factor of −i is simply a convenient convention. This definition is sufficient. The condition we
require, Eq.(6.50), becomes

D′αψ
′ = eiϕ(t,x) (Dαψ)

where not only ψ′ = eiϕ(t,x)ψ but also,

D′α = ∂α − iA′α
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Combining these expressions,

D′αψ
′ = (∂α − iA′α)

(
eiϕψ

)
= i (∂αϕ)ψ + eiϕ∂αψ − iA′αeiϕ(t,x)ψ

This must reduce to a phase times the original covariant derivative,

eiϕ (Dαψ) = eiϕ∂αψ − ieiϕAαψ

so equating,

ieiϕ (∂αϕ)ψ + eiϕ∂αψ − iA′αeiϕψ = eiϕ∂αψ − ieiϕAαψ
ieiϕ (∂αϕ)ψ − iA′αeiϕψ = −ieiϕAαψ

Since this must hold for all ψ we see that Aα must change according to

A′α = Aα + ∂αϕ (6.52)

Other than this necessary transformation property, Aα is an arbitrary vector field. The new action, Slocal is
now invariant under the combined transformations,

ψ → ψ′ = ψeiϕ(t,x)

ψ̄ → ψ̄′ = ψ̄e−iϕ(t,x)

Aα → A
′

α = Aα + ∂αϕ (t,x) (6.53)

6.4.2 Gauging
Given the preceeding construction, the action

Slocal =

ˆ
d4x ψ̄ (iγαDα −m)ψ (6.54)

where Dα = ∂α − iAα, is invariant under local phase transformations.

Exercise: Demonstrate the invariance of Slocal under the simultaneous transformations of Eqs.(6.53) by
explicit substitution.

This procedure, of making a global symmetry into a local symmetry by introducing a covariant derivative,
is called gauging the symmetry.

We are left with a question: What is the new field Aα? As it stands, it does not matter much because
Aα has no interesting physical properties. Since no derivatives of Aα appear in Slocal, Aα cannot propagate.
In fact, we can’t even vary Slocal with respect to Aα because it forces the current to vanish:

δSlocal
δAα

= ψ̄γαψ

We can fix this by adding a term built from derivatives of the connection Aα, but because Aα obeys an
inhomogeneous transformation property we need some way to tell what parts of Aα are physical. For
example, we could not just write

�Aα = 0

as a field equation for Aα because under a phase transformation the simple wave equation changes to

�Aα +� (∂αϕ) = 0
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Which equation would we solve?
Fortunately, there is a standard way to find physical fields associated with a connection. It depends

on the fact that, unlike partial derivatives, covariant derivatives do not commute. For the U (1) case, the
commutator of two covariant derivatives on an arbitrary spinor gives

[Dα, Dβ ]ψ = Dα (∂βψ − iAβψ)−Dβ (∂αψ − iAαψ)

= ∂α∂βψ − i (∂αAβ)ψ − iAβ (∂αψ)− iAα (∂βψ − iAβψ)

−∂β∂αψ + i (∂βAα)ψ + iAα (∂βψ) + iAβ (∂αψ − iAα)

= −i (∂αAβ − ∂βAα + i [Aα, Aβ ])ψ

Several important things have happened here. First, because the covariant expression on the right, [Dα, Dβ ]ψ
is U (1)-covariant, it transforms the same way as ψ, that is,[

D
′

α, D
′

β

]
ψ

′
= eiϕ(x,t) [Dα, Dβ ]ψ

The left side must transform in the same way. Since ψ on the right is convariant changes to eiϕ(x,t)ψ (that
is, ψ transforms linearly and homogeneously under a U (1) transformation) the remaining factor

Fαβ = ∂αAβ − ∂βAα + i [Aα, Aβ ] (6.55)

must be invariant when we transform the fields according to Eq.(6.53). For more general - non-Abelian -
group symmetries, the connection is more involved and the commutator term does not vanish, but in the
present case the U (1)-field strength is simply

Fαβ = ∂αAβ − ∂βAα
and we immediately check that

F
′

αβ = ∂αA
′

β − ∂βA
′

α

= ∂α (Aβ + ∂βϕ)− ∂β (Aα + ∂αϕ)

= ∂αAβ − ∂βAα
= Fαβ

as expected.
This is also a characteristic property – the curvature of a connection is always a tensor : it transforms

linearly and homogeneously under a gauge transformation.
A relationship of this same form may be familiar from the Ricci identity of general relativity, where the

more complicated general-coordinate-covariant derivative,

Dαv
β = ∂αv

β + vµΓβµα

yields the Riemann curvature tensor as the field strength of the Christoffel connection,

[Dα, Dβ ] vµ = Dα

(
∂βv

µ + vνΓµνβ

)
−Dβ (∂αv

µ + vνΓµνα)

= ∂α

(
∂βv

µ + vνΓµνβ

)
+
(
∂βv

ρ + vνΓρνβ

)
Γµρα −

(
∂ρv

µ + vνΓµνρ
)

Γρβα

−∂β (∂αv
µ + vνΓµνα)− (∂αv

ρ + vνΓρνα) Γµρβ +
(
∂ρv

µ + vνΓµνρ
)

Γρβα

= ∂α∂βv
µ + ∂αv

νΓµνβ + vν∂αΓµνβ + ∂βv
ρΓµρα + vνΓρνβΓµρα −

(
∂ρv

µ + vνΓµνρ
)

Γρβα

−∂β∂αvµ − ∂βvνΓµνα − vν∂βΓµνα − ∂αvρΓ
µ
ρβ − v

νΓρναΓµρβ +
(
∂ρv

µ + vνΓµνρ
)

Γρβα

Cancelling like terms and using the symmetry of mixed partials and the symmetry of the Christoffel connec-
tion, Γρβα = Γραβ , we have the Riemann curvature tensor as the invariant

[Dα, Dβ ] vµ = vν
(
∂αΓµνβ + ΓρνβΓµρα − ∂βΓµνα − ΓρναΓµρβ

)
≡ vνRµναβ

The computation is similar for arbitrary Lie groups.
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6.4.2.1 Gauged action

We can use the curvature to write an action for Aα. Any Lorentz invariant quantity built purely from Fαβ
is a possible term in the action. There are two possible terms:

FαβF
αβ

εαβµνFαβFµν

However, the second of these does not contribute to the field equations for Aα because it is a total divergence:

εαβµνFαβFµν = εαβµν (∂αAβ − ∂βAα)Fµν

= 2εαβµν∂αAβFµν

= ∂α
(
2εαβµνAβFµν

)
− 2εαβµνAβ∂αFµν

= ∂α
(
2εαβµνAβFµν

)
where the last term vanishes because

εαβµνAβ∂αFµν =
1

3
εαβµνAβ (∂αFµν + ∂µFνα + ∂νFαµ)

and

∂αFµν + ∂µFνα + ∂νFαµ = ∂α (∂µAν − ∂νAµ) + ∂µ (∂νAα − ∂αAν) + ∂ν (∂αAµ − ∂µAα)

≡ 0

Therefore, the only gauge invariant action up to second order in the field strength Fαβ is

Slocal =

ˆ
d4x

(
ψ̄ (iγαDα −m)ψ − 1

4
FαβF

αβ

)
(6.56)

This is the result of U(1) gauge theory, since U(1) is the group of possible phase transformations. The
procedure is readily generalized to other symmetry groups.

Notice that if we restore the charge η in the covariant derivative, Dα = ∂α − iηAα, and expand the
covariant derivative in Slocal,

Slocal =

ˆ
d4x

(
ψ̄ (iγα∂α −m)ψ + ψ̄γαηAαψ −

1

4
FαβF

αβ

)
=

ˆ
d4x

(
ψ̄ (iγα∂α −m)ψ − JαAα −

1

4
FαβF

αβ

)
we get exactly the JαAα coupling to the Dirac current Jα = −ηψ̄γαψ that we hypothesized in the beginning,
but now automatically from the gauge construction.
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Chapter 7

Quantizing the Maxwell field

We have quantized spin zero and spin 1/2 fields; we now come to the most important spin 1 case, the Maxwell
field. The free Maxwell theory is described in terms of the Faraday tensor Fαβ by the action

S = −1

4

ˆ
d4x FαβF

αβ (7.1)

Fαβ = ∂αAβ − ∂βAα (7.2)

Notice that the field Aα is necessarily massless, because mass term in the action would be of the form
m2AαAα, and this term is not gauge invariant.

Before starting the Hamiltonian formulation and quantization, we carry out the classical theory to es-
tablish relations between the fields and sign conventions.

7.1 The Maxwell equations

7.1.1 The Maxwell equations in vector notation
The vector form of the homogeneous Maxwell equations is

∇×E +
∂B

∂t
= 0

∇ ·B = 0

while the sourced equations are

∇ ·E = ρ

∇×B− ∂E

∂t
= J

These are written so that the electromagnetic fields are written on the left, the sources on the right.
The homogeneous equation for the magnetic field, ∇ · B = 0, immediately gives B as the curl of the

vector potential,

B = ∇×A (7.3)

Substituting this into the remaining homogeneous equation shows that

0 = ∇×E +
∂B

∂t

= ∇×
(
E +

∂A

∂t

)
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so that E + ∂A
∂t must be the gradient of a scalar. Therefore, we may write

E = −∇ϕ− ∂

∂t
A (7.4)

7.1.2 Relations to the Faraday tensor
Now consider the Faraday tensor, related to the vector potential as in Eq.(7.2). With the 4-vector potential
Aα =

(
A0,A

)
defined as

Aα = (ϕ,A)

Aα = (ϕ,Ai) =
(
ϕ,−Ai

)
we may find the components of Fαβ = ∂αAβ − ∂βAα.

Writing in components with ηαβ = diag (1,−1,−1,−1) and εijk as usual but εijk = −εijk, the magnetic
field is

Bi = εijk∂jA
k

= εijk∂jA
k

= εijk∂jAk

=
1

2
εijk (∂jAk − ∂kAj)

=
1

2
εijkFjk

where raising and lowering any single spatial index introduces a sign. We can invert this, giving Fmn as:

Bi =
1

2
εijkFjk

εimnB
i =

1

2
εimnε

ijkFjk

εimnB
i = −1

2

(
δjmδ

k
n − δkmδjn

)
Fjk

εimnB
i = −Fmn

Fmn = −εimnBi

Now, for the electric field, Eq.(7.4) becomes

Ei = −∂iϕ−
∂

∂t
Ai

= −∂iA0 − ∂0A
i

= −∂iA0 + ∂0Ai

= F0i

Therefore,

Fαβ =


0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bx 0 −Bz
−Ez −By Bz 0

 (7.5)

and

Fαβ =


0 −Ex −Ey −Ez
Ex 0 −Bz By

Ey Bx 0 −Bz
Ez −By Bz 0

 (7.6)
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7.1.3 The Maxwell equations in terms of the Faraday tensor
Now we examine the Maxwell equations.

First, notice that from the definition of the Faraday tensor, Eq.(7.2) we have

Fαβ,µ + Fβµ,α + Fµα,β = ∂µ (∂αAβ − ∂βAα) + ∂α (∂βAµ − ∂µAβ) + ∂β (∂µAα − ∂αAµ)

(∂µ∂αAβ − ∂α∂µAβ)− (∂µ∂βAα − ∂β∂µAα) + (∂α∂βAµ − ∂β∂αAµ)

≡ 0

Then, including a source term, Jβ =
(
ρ, J i

)
, to the Maxwell action, Eq.(7.1), and varying,

0 = δS

= δ

ˆ
d4x

(
−1

4
FαβF

αβ −AαJα
)

=

ˆ
d4x

(
−1

2
Fαβ (∂αδAβ − ∂βδAα)− δAαJα

)
=

ˆ
d4x

(
−Fαβ∂αδAβ − δAαJα

)
=

ˆ
d4x

(
∂αF

αβ − Jβ
)
δAβ

so

∂βF
βα = Jα

In terms of the Faraday tensor, the Maxwell equations are therefore

∂µFαβ + ∂αFβµ + ∂βFµα = 0 (7.7)
∂βF

βα = Jα (7.8)

We combine the the homogeneous Eq.(7.7) with the explicit covariant form of the Faraday tensor, Eq.(7.5),
by expanding into time and space parts and checking one combination of indices at a time. Since Eq.(7.7)
is totally antisymmetric, each index must be distinct – setting α = 0, β = 0, µ = 0 or α = i, β = 0, µ = 0
simply gives zero.

Now let α = i, β = j, µ = 0. We find

Fij,0 + Fj0,i + F0i,j = 0

This is

−εijk
∂

∂t
Bk − ∂

∂xi
Ej +

∂

∂xj
Ei = 0

−εijk
(
∂

∂t
Bk + (∇×E)

k

)
= 0

∂

∂t
B + ∇×E = 0

as expected. Finally, with all three indices spacelike,

Fij,k + Fjk,i + Fki,j = 0

−εijm∂kBm − εjkm∂iBm − εkim∂jBm = 0

εijk (−εijm∂kBm − εjkm∂iBm − εkim∂jBm) = 0

−2δmk ∂kB
m − 2δmi ∂iB

m − 2δmj ∂jB
m = 0

−6∂mB
m = 0

∇ ·B = 0
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Now, for Eq.(7.8), we have
∂βF

βα = Jα

Let α = 0 and we find Gauss’ law,

∂βF
β0 = J0

∂iE
i = ρ

∇ ·E = ρ

Finally, with α = k,

∂βF
βk = Jk

∂0F
0k + ∂jF

jk = Jk

−∂0E
k − εjkm∂jBm = Jk

−∂0E
k + (∇×B)

k
= Jk

∇×B− ∂E

∂t
= J

Note that the Lagrange density is

FαβF
αβ = 2F0iF

0i + FijF
ij

= −2E2 +
(
−εkijBk

) (
−ε ij

m Bm
)

= −2E2 + εkijε
ij
m BkBm

= −2E2 − εkijεmijBkBm

= −2E2 + 2δmk B
kBm

= −2
(
E2 −B2

)
We may now turn to the Hamiltonian formulation and quantization.

7.2 Hamiltonian formulation of the Maxwell equations
Now we know that

S = −1

4

ˆ
d4x FαβF

αβ

Fαβ = ∂αAβ − ∂βAα

We immediately hit a problem when we try to write the Hamiltonian formulation, because

πµ(x) =
δS

δ∂0Aµ(x)

= ηµν
δS

δ∂0Aν(x)

= −1

2
ηµν

ˆ
d3x′ Fαβ (x′)

δ

δ∂0Aµ (x)
(∂αAβ (x′)− ∂βAα (x′))

= −1

2
ηµν

ˆ
d3x′ Fαβ (x′)

(
δ0
αδ
µ
β − δ

0
βδ
µ
α

)
δ3 (x− x′)

= −1

2
ηµν

ˆ
d3x′

(
F 0µ (x′)− Fµ0 (x′)

)
δ3 (x− x′)

= −ηµνF 0ν (x)
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and therefore the conjugate momentum to A0 vanishes:

π0 = F 00 = 0

πi = F i0 = Ei (7.9)

We should expect something like this. Since Aα is gauge dependent, not all of its components are physical.
There are several ways to deal with this problem. First, let’s see what happens if we just ignore it. Then

the Hamiltonian is

H =

ˆ
d3x

(
π0∂0A

0 + πi∂0A
i +

1

4
FαβF

αβ

)
=

ˆ
d3x

(
0 + πi∂0A

i − 1

2
Fi0F

i0 +
1

4
FijF

ij

)
=

ˆ
d3x

(
Ei∂0Ai −

1

2
EiEi +

1

4
FijF

ij

)
=

ˆ
d3x

(
πiAi,0 −

1

2
πiπi − 1

4
FijF

ij

)
Remembering that εijk = −εijk,

B = ∇×A

Bm = −εmij (Ai,j −Aj,i)

−1

2
εmijB

m =
1

2
εmijε

mkn (Ak,n −An,k)

=
1

2

(
δki δ

n
j − δni δkj

)
(Ak,n −An,k)

= Ai,j −Aj,i
= Fij

H =

ˆ
d3x

(
EiAi,0 +

1

2
πiπi −

1

4
FijF

ij

)
=

ˆ
d3x

(
EiAi,0 +

1

2
πiπi −

1

4
FijF

ij

)

H = −
ˆ
d3x

(
πα∂0A

α − 1

2
F 0i (A0,i −Ai,0)− 1

4
(Ai,j −Aj,i)

(
Ai,j −Aj,i

))
= −

ˆ
d3x

(
Fi0∂0A

i − 1

2
F 0i (A0,i −Ai,0)− 1

4
(Ai,j −Aj,i)

(
Ai,j −Aj,i

))
= −

ˆ
d3x

(
F 0i∂0A

i − 1

2
F 0i

(
A0,i + ∂0A

i
)
− 1

4
(Ai,j −Aj,i)

(
Ai,j −Aj,i

))
= −

ˆ
d3x

(
1

2
F 0i∂0A

i − 1

2
F 0iA0,i −

1

4
(Ai,j −Aj,i)

(
Ai,j −Aj,i

))
= −

ˆ
d3x

(
1

2
πi (−Ai,0 −A0,i)−

1

4
(Ai,j −Aj,i)

(
Ai,j −Aj,i

))
=

ˆ
d3x

(
1

2
πiπi + πiA0,i +

1

4

(
−εijkBk

) (
−εijmBm

))
=

ˆ
d3x

(
1

2
πiπi + πiA0,i +

1

2
BiBi

)
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where we have defined the magnetic field as

Bm = εmij (Ai,j −Aj,i)
1

2
Bmεmij = Ai,j −Aj,i

B = ∇×A

Check

εjnm∂nBm = εjnm∂n
(
−εmij

(
Ai,j −Aj,i

))
= −εjnmεmij∂n

(
Ai,j −Aj,i

)
= −

(
−εnjm

)
(εijm) ∂n

(
Ai,j −Aj,i

)
= 2δni ∂n

(
Ai,j −Aj,i

)
= 2∂k

(
Ai,j −Aj,i

)
When the field equations are satisfied, we have ∇ · E = 0. Then the middle term becomes a surface term
which does not contribute to the field equations,

ˆ
d3x

(
πiA0,i

)
=

ˆ
d3x

(
EiA0,i

)
=

ˆ
d3x

(
∂i
(
EiA0

)
− (∇ · E)A0

)
= EiA0

∣∣
boundary

and final expression is simply

H =
1

2

ˆ
d3x

(
E2 + B2

)
In fact, throwing out the surface term, we can write the Hamiltonian in general as

H =

ˆ
d3x

(
1

2
πiπi +

1

2
BiBi −A0

(
∂iπ

i
))

(7.10)

Then A0 appears as a Lagrange multiplier, enforcing ∇ · E = 0 as a constraint. Since H is independent of
π0, we have Ȧ0 = {H,A0} = 0.

Now we check Hamilton’s equations:

∂0A
0 =

δH

δπ0
= 0

∂0A
i =

δH

δπi

= − δ

δπi

ˆ
d3x

(
1

2
πiπi + πiA0,i +

1

2
BiBi

)
= −

(
πi +A0,i

)
where δ

δπi
= − δ

δπi . The first expression ∂0A
0 = 0, is a possible gauge choice but not necessary. Something

about the formalism has forced this upon us. The second expression gives the usual expression for the electric
field,

Ei = −∂0A
i − ∂iA0
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For the momentum we have

∂0π
0 = − δH

δA0

= − δ

δA0

ˆ
d3x′

(
1

2
πiπi + πiA0,i +

1

2
BiBi

)
= ∂iπ

i (7.11)

and

∂0π
j = − δH

δAj

= − δ

δAj

ˆ
d3x′

(
1

2
πiπi + πiA0,i +

1

2
BiBi

)
= −

ˆ
d3x′

(
δ

δAj

1

4
(Am,n −An,m) (Am,n −An,m)

)
= −1

2

ˆ
d3x′ (Am,n −An,m)

δ

δAj
(Am,n −An,m)

= −1

2

ˆ
d3x′ (Am,n −An,m)

(
∂n

δ

δAj
Am − ∂m

δ

δAj
An

)
=

1

2

ˆ
d3x′

(
∂n (Am,n −An,m) δjm − ∂m (Am,n −An,m) δjn

)
δ3(x− x′)

= ∂n
(
Aj,n −An,j

)
=

(
−εjnm∂nBm

)
= − (∇×B)

j

which we may write as

∇ ·E = 0 = 0
∂E

∂t
+∇×B = 0 = 0

using π0 = 0. The final Maxwell equation follows automatically from our definition of the magnetic field
as the curl of the potential, B = ∇×A. Notice that in order to get the complete set of equations we had
to use all four conjugate momenta even though π0 ≡ 0. So far, the only thing that has gone wrong is the
emergence of the condition ∂0A

0 = 0, which is not a necessary consequence of Maxwell theory.
Now let’s check the fundamental Poisson brackets. Normally we would expect{

πα, A
β
}
P.B.

= δβαδ
3 (x− x′)

but we immediately see an inconsistency with π0 = 0. Setting α = β = 0, the right side does not vanish, but
the left side does. Let’s check it explicitly:

{
π0, A

0
}
P.B.

=

ˆ
d3x′

(
δπ0

δπα

δA0

δAα
− δπ0

δAα
δA0

δπα

)
=

ˆ
d3x′

(
δ (0)

δπα

δA0

δAα

)
= 0
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While some ambiguity might be claimed for δπ0

δπα
, consider the Poisson bracket of A0 with anything else,

computed in the (Aα, πβ) basis:

{
f (A, π) , A0

}
P.B.

=

ˆ
d3x′

(
δf

δπα

δA0

δAα
− δf

δAα
δA0

δπα

)
=

ˆ
d3x′

(
δf

δπα
δ0
αδ

3 (x− x′)
)

=
δf

δπ0
(x)

= 0

since f will not ever depend on π0 = 0.
One resolution of the dilemma is to choose a gauge in which A0 also vanishes. Though such a gauge

choice breaks manifest Lorentz covariance of the formulation, it is always possible. Suppose we begin with a
generic form of the 4-potential Ãα. Then performing a gauge transformation to a new potential Aα we have

Aα = Ãα + ∂αϕ (t,x)

and in particular we demand

0 = A0 = Ã0 + ∂0ϕ (t,x)

Therefore, we need only choose

ϕ (t,x) = −
tˆ

t′

Ã0 (t′,x) dt′

to eliminate A0. Notice that this does not use all of the gauge freedom. If we choose, we can make another
gauge transformation (say, by a function ϕ′) as long as ∂0ϕ

′ = 0. This just means that we can still adjust
the gauge using an arbitrary function of the spatial coordinates, ϕ (x) .

Now the problem has been shifted to a different location. By eliminating A0 and π0 from our list of
independent variables, we have lost the ability to derive one of the Maxwell equations, ∇ ·E = 0, since this
follows from Eq.(7.11) and H no longer depends on A0. This equation remains as a constraint that must be
satisfied by hand. The remaining (equal time) Poisson brackets are{

πj (t,x) , Ai (t,x′)
}
P.B.

= δijδ
3 (x− x′) (7.12)

This still gives problems. Since momentum is given by the electric field, πi = Ei, the divergence constraint
requires

∂

∂xi
{
πi (t,x) , Aj (t,x′)

}
P.B.

= δij
∂

∂xi
δ3 (x− x′)

so that

0 = {∇ ·E (x) , Aj (x′)}P.B. = δij
∂

∂xi
δ3 (x− x′)

and once again we have an inconsistency.

7.2.1 Handling the constraint
The differential condition that the divergence of the electric field vanish, ∇ · E = 0, may be turned into
an algebraic condition by parameterizing our fields by wave number rather than position. Thus, our fields
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Ai (x) and πj (x) at any time t may be recast as Fourier transforms,

Ai(x, t) =
1

(2π)
3/2

ˆ
d3k√

2ω

(
Ãi(k)eikαx

α

+ Ãi∗(k)e−ikαx
α
)

(7.13)

πi(x, t) = −∂0A
i

=
−i

(2π)
3/2

ˆ
d3k

√
ω

2

(
Ãi(k)eikαx

α

− Ãi∗(k)e−ikαx
α
)

(7.14)

where ω is an as yet unspecified function of k2. We also easily find the inverse transforms,

1

(2π)
3/2

ˆ
d3xAi(x, t)e−ikmx

m

=
1

(2π)
3

ˆ
d3x

ˆ
d3k′√

2ω′

(
Ãi(k′)eik

′
αx

α

e−ikmx
m

+ Ãi∗(k′)e−ik
′
αx

α

e−ikmx
m
)

=

ˆ
d3k′√

2ω′

(
Ãi(k′)eiω

′tδ3 (k− k′) + Ãi∗(k′)e−iω
′tδ3 (k + k′)

)
=

1√
2ω

(
Ãi(k)eiωt + Ãi∗(−k)e−iωt

)
1

(2π)
3/2

ˆ
d3xπi(x, t)e−ikmx

m

=
−i

(2π)
3

ˆ
d3x

ˆ
d3k

√
ω

2

(
Ãi(k)eikαx

α

− Ãi∗(k)e−ikαx
α
)
e−ikmx

m

= −i
√
ω

2

(
Ãi(k)eiωt − Ãi∗(−k)e−iωt

)
Solving for the transforms,

Ãi(k) =
1

(2π)
3/2

√
ω

2

ˆ
d3x

(
Ai(x, t) +

i

ω
πi(x, t)

)
e−ikαx

α

Ãi∗(−k) =
1

2 (2π)
3/2

ˆ
d3x

(
√

2ωAi(x, t)− i
√

2

ω
πi(x, t)

)
e−ikmx

m

eiωt

Ãi∗(k) =
1

(2π)
3/2

√
ω

2

ˆ
d3x

(
Ai(x, t)− i

ω
πi(x, t)

)
eikαx

α

from which can directly show that the change to new variables, Ãi(k) and −iÃi∗(k), is canonical. To see
this we compute the Poisson bracket,{
Ãi(k),−iÃi†(k′)

}
A,π

= −i
ˆ
d3y

(
δÃi(k)

δπk (y)

δÃj†(k′)

δAk (y)
− δÃi(k)

δAk (y)

δÃj†(k′)

δπk (y)

)

=
−i

(2π)
3

ˆ
d3y

ˆ
d3x

ˆ
d3x′

[
δ

δπk (y)

(√
ω

2

(
i

ω
πi(x, t)

)
e−ikαx

α

)
δ

δAk (y)

(√
ω′

2

(
Aj(x′, t)

)
eik

′
αx

′α

)

− δ

δAk (y)

(√
ω

2

(
Ai(x, t)

)
e−ikαx

α

)
δ

δπk (y)

(√
ω′

2

(
− i

ω′
πj(x′, t)

)
eik

′
αx

′α

)]
Carrying out the functional derivatives and integrating over the resulting delta functions, we have{
Ãi(k),−iÃi∗(k′)

}
A,π

=
1

2 (2π)
3

ˆ
d3y

ˆ
d3x

ˆ
d3x′

√
ω

ω′
(
δ3 (x− y) ηijδ3 (x′ − y) + δ3 (x− y) δikδ

3 (x′ − y) ηjk
)
e−ikαx

α+ik′αx
′α

=
1

(2π)
3

ˆ
d3x

√
ω′

ω
ηije−i(kα−k

′
α)xα

= ηij
√
ω′

ω
e−i(ω−ω

′)tδ3 (k− k′)

= ηijδ3 (k− k′)
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Therefore, Ãi(k) and −iÃi∗(k) are just as good as Ai(x, t) and πi(x, t) for describing the fields. We can
equally well think of x or k as a continuous index for the “coordinates” Ai(x, t), and we can write our Poisson
brackets in terms of either set.

Now consider the awkward constraint, ∇ ·E (x) = 0. In the momentum basis this becomes

0 = ∇iπi (x, t)

= − i

(2π)
3/2

ˆ
d3k

√
ω

2

(
ikiÃ

i(k)ei(ωt−k·x) + kiÃ
i∗(k)e−i(ωt−k·x)

)
Inverting the Fourier transform shows that we must have the algebraic contraints,

kiÃ
i(k) = 0

kiÃ
i∗(k) = 0

We have therefore succeeded in finding a set of canonical variables in which the constraint equation is
algebraic. The algebraic constraint simply says the the field Ai and its momentum are transverse, a fact
which we already knew about electromagnetic waves.

Defining the transverse projection operator

P ij = δij −
kikj
k2

(7.15)

satisfying P ijki = 0. Then we can finally isolate the physical degrees of freedom as two polarization vectors,

εi ≡ P ijÃ
j(k)

εi† ≡ P ijÃ
j†(k) (7.16)

These automatically satisfy

kiε
i(k) = 0

kiε
i†(k) = 0

Finally, we compute the Poisson bracket of εi(k) and −iεi†(k). Since εi(k) and −iεi†(k) span the physical
subspace, these are our fundamental Poisson brackets. To do this, we simply project the brackets we have
already found for the transforms of the fields:{

εi(k), εj†(k′)
}
A,π

=
{
P ikÃ

k(k),−iP jmÃm†(k′)
}
A,π

= P ikP
j
mη

kmδ3 (k− k′)

= P ijδ3 (k− k′)

Now the bracket is consistent: if we dot ki into both sides we get zero, while on the two dimensional subspace
spanned by εi, the bracket, P ij reduces to a Kronecker delta.

Notice that if we transform back to the original, position-dependent variables, we get a projective Dirac
delta,

P ij (x− x′) ≡ 1

(2π)
3

ˆ
d3k

(
δij −

kikj
k2

)
eiki(x−x

′)
i

(7.17)

Then we have

∂

∂xi
P ij (x− x′) ≡ 1

(2π)
3

ˆ
d3k

(
δij −

kikj
k2

)
∂

∂xi
eiki(x−x

′)
i

≡ i

(2π)
3

ˆ
d3k

(
kj − kj

kiki
k2

)
eiki(x−x

′)
i

= 0
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and the corresponding Poisson bracket,{
πj (x) , Ai (x′)

}
P.B.

= P ij (x− x′)

is consistent, with one further caveat. Since P ij is symmetric in i and j, we have not only{
∂jπj (x) , Ai (x′)

}
P.B.

= ∂jP ij (x− x′) = 0

but also must have {
∂jπj (x) , ∂iA

i (x′)
}
P.B.

=
∂

∂x′i
P ij (x− x′) = 0

and therefore we need an additional gauge condition,

∇ ·A = 0 (7.18)

From the Fourier expansion of Ai, we see that the condition already follows from kiε
i = 0, but we must also

check that the condition is consistent with the gauge freedom of the potential.
To check the consistency, recall that we have some residual gauge freedom beyond what was required to

set A0 = 0. Now suppose we have imposed A0 = 0, and in that gauge,

∇ ·A = f (x, t)

for some function f (x, t). Then changing the gauge again by ϕ(x, t), we have A′ = A + ∇ϕ(x, t) so that
the divergence of the new A′ is given by

∇ ·A′ = ∇ · (A +∇ϕ(x, t))

= f(x, t) +∇2ϕ(x, t)

Demanding ∇ ·A′ = 0 is always possible since we know how to solve the Poisson equation, ∇2ϕ(x, t) = −f
using Green functions. In the case of vanishng boundary conditions at infinity, the solution is

ϕ(x, t) = − 1

4π

ˆ
d3x′
∇ ·A(x′, t)

|x− x′|

However, we also have to maintain A0 = 0, which, in general, will change by the time derivative of ϕ :

A′0 = A0 + ∂0ϕ(x, t)

= 0 +
1

4π

ˆ
d3x′∂0∇ ·A(x′, t)

|x− x′|

We are saved here by the constraint, Gauss’ law, since interchanging the time derivative and the divergence,

−∂0∇ ·A = ∂i
(
−∂0A

i
)

= ∂iE
i = 0

Therefore, A′0 = A0 = 0, and we have simultaneously imposed the pair of gauge conditions,

A0 = 0

∇ ·A = 0 (7.19)

Notice that, as a consequence of these, Aα also satisfies the Lorentz gauge condition

∂αA
α = 0

With these two gauge conditions we have reduced the vector potential to two independent components.
These correspond to the two polarization states of light. We now turn to the free solution and quantization.
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7.2.2 Vacuum solution to classical E&M
First, we need the solutions to the classical theory. The homogeneous field equations, Eqs.(7.7) are auto-
matically satisfied by writing E and B in terms of the potentials, and Gauss’s law ∇ ·E = ρ = 0 is satisfied
by the gauge conditions Eqs.(7.19)

∇ ·E = ∇ ·
(
−∇A0 − ∂

∂t
A

)
= ∇ ·

(
− ∂

∂t
A

)
= − ∂

∂t
(∇ ·A)

= 0

The only remaining field equation is

∇×B− ∂E

∂t
= J = 0 (7.20)

Substituting the expressions forB and E in terms of the potentials given by Eqs.(7.3) and (7.4), into Eq.(7.20)
gives:

0 = ∇×B− ∂E

∂t

= ∇× (∇×A)− ∂

∂t

(
−∂A
∂t
−∇ϕ

)
= −∇2A +∇ (∇ ·A)− ∂2A

∂t2
− ∂

∂t
∇ϕ

so with ϕ = 0 and ∇ ·A = 0 we have the wave equation for the vector potential,

0 = −∇2A +
∂2A

∂t2
= �A

Starting with the Fourier integral for A, Eq.(7.13)

Ai (x, t) =
1

(2π)
3/2

ˆ
d3k√

2ω

(
Ãi (k) eikαx

α

+ Ãi∗ (k) e−ikαx
α
)

we apply the required conditions. First, the wave equation,

0 = �Ai (x, t)

=
1

(2π)
3/2

ˆ
d3k√

2ω

(
Ãi (k)�eikαx

α

+ Ãi∗ (k)�e−ikαx
α
)

=
1

(2π)
3/2

ˆ
d3k√

2ω
kαk

α
(
Ãi (k) eikαx

α

+ Ãi∗ (k) e−ikαx
α
)

so we require

kαk
α = ω2 − k2 = 0

This gives the angular frequency in terms of the wave vector. For positive energies, ω =
√
k2.
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Next, we have the gauge condition

0 = ∇ ·A (x, t)

=
1

(2π)
3/2

ˆ
d3k√

2ω

(
∇ ·

(
eikαx

α

Ã (k)
)

+ ∇ ·
(
e−ikαx

α

Ã∗ (k)
))

=
1

(2π)
3/2

ˆ
d3k√

2ω

(
ieikαx

α

k · Ã (k)− ie−ikαx
α

k · Ã∗ (k)
)

Thus k · Ã (k) = 0 and k · Ã∗ (k) = 0 leaving the transverse projections,

Ai (x, t) =
1

(2π)
3/2

ˆ
d3k√

2ω

(
εi (k) ei(ωt−k·x) + εi∗ (k) e−i(ωt−k·x)

)
(7.21)

The only differences from the scalar field is that here we have a different expansion for each polarization of
the potential and this time the field equation gives us a simpler expression for the frequency in terms of the
wave vector, ω =

√
k2 because the photon has zero mass.

The conjugate momentum, πi = −πi = −∂0A
i, follows immediately,

πi (x, t) = − i

(2π)
3/2

ˆ
d3k

√
ω

2

(
εi (k) ei(ωt−k·x) − εi∗ (k) e−i(ωt−k·x)

)
(7.22)

so we are ready to quantize.
Now we invert the transforms to find the solution for the mode amplitudes in terms of the fields,

1

(2π)
3/2

ˆ
d3xAi (x, t) eik

′·x =
1

(2π)
3

ˆ
d3x

ˆ
d3k√

2ω

(
εi (k) ei(ωt−k·x) + εi∗ (k) e−i(ωt−k·x)

)
eik

′·x

=
1

(2π)
3

ˆ
d3k√

2ω

ˆ
d3x

(
εi (k) eiωte−i(k−k

′)·x + εi∗ (k) e−iωtei(k+k′)·x
)

=

ˆ
d3k√

2ω

(
εi (k) eiωtδ3 (k− k′) + εi∗ (k) e−iωtδ3 (k + k′)

)
=

1√
2ω′

(
εi (k′) eiωt + εi† (−k′) e−iωt

)
and

1

(2π)
3/2

ˆ
d3xπi (x, t) eik

′·x = − i

(2π)
3

ˆ
d3x

ˆ
d3k

√
ω

2

(
εi(k)ei(ωt−ik·x) − εi∗(k)e−i(ωt−k·x)

)
eik

′·x

= −i
ˆ
d3k

√
ω

2

(
εi(k)eiωtδ3 (k− k′)− εi∗(k)e−iωtδ3 (k + k′)

)
= −i

√
ω′

2

(
εi(k′)eiωt − εi∗(−k′)e−iωt

)
At t = 0, we solve

1

(2π)
3/2

ˆ
d3x
√

2ωAi (x, 0) eik·x = εi (k) + εi∗ (−k)

i

(2π)
3/2

ˆ
d3x

√
2

ω′
πi (x, 0) eik·x = εi (k)− εi∗ (−k)

so adding

εi (k) =
1

(2π)
3/2

√
ω

2

ˆ
d3x

(
Ai (x, 0) +

i

ω
πi (x, 0)

)
eik·x

εi∗ (k) =
1

(2π)
3/2

√
ω

2

ˆ
d3x

(
Ai (x, 0)− i

ω
πi (x, 0)

)
e−ik·x
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7.2.3 Quantization
Returning to our fundamental Poisson brackets for Ai and πj at t = 0,{

πj (x) , Ai (y)
}
P.B.

= P ij (x− y)

we introduce the commutators as [
π̂j (x) , Âi (y)

]
= i~P ij (x− y)

From this we compute the commutator of the mode amplitudes,

[
ε̂i (k) , ε̂j† (k′)

]
=

[
1

(2π)
3/2

√
ω

2

ˆ
d3x

(
Ai (x, 0) +

i

ω
πi (x, 0)

)
eik·x,

1

(2π)
3/2

√
ω′

2

ˆ
d3y

(
Aj (y, 0)− i

ω
πj (y, 0)

)
e−ik

′·y

]

=
1

(2π)
3

√
ωω′

2

ˆ
d3x

ˆ
d3yeik·x−ik

′·y
[
Âi (x, 0) +

i

ω
π̂i (x, 0) , Aj (y, 0)− i

ω
πj (y, 0)

]
=

1

(2π)
3

√
ωω′

2

ˆ
d3x

ˆ
d3yeik·x−ik

′·y
(
− i
ω

[
Âi (x, 0) , πj (y, 0)

]
+
i

ω

[
π̂i (x, 0) , Aj (y, 0)

])
=

1

(2π)
3

√
ωω′

2

i

ω

ˆ
d3x

ˆ
d3yeik·x−ik

′·y
(
i~P ij (x− y) + i~P ji (x− y)

)
=

1

(2π)
3

√
ωω′

ω
~
ˆ
d3x

ˆ
d3yeik·x−ik

′·yP ij (x− y)

Now, substituting from Eq.(7.17),

[
ε̂i (k) , ε̂j† (k′)

]
=

1

(2π)
6

√
ω′

ω

ˆ
d3k′′

ˆ
d3x

ˆ
d3y

(
δij − kikj

k2

)
eik·x−ik

′·yeik
′′·(x−y)

=
1

(2π)
6

√
ω′

ω

ˆ
d3k′′

ˆ
d3x

ˆ
d3y

(
δij − kikj

k2

)
ei(k+k′′)·xe−i(k

′+k′)·y

=

√
ω′

ω

ˆ
d3k′′

(
δij − kikj

k2

)
δ3 (k + k′′) δ3 (k′ + k′′)

and therefore [
ε̂i (k) , ε̂j† (k′)

]
= P ijδ3 (k− k′) (7.23)

The mode amplitudes are therefore raising and lowering operators. As with scalar and spinor fields, we could
go on and define a complete set of energy eigenstates using these raising and lowering operators.

Exercise: Define the space of states of the electromagnetic field.

It is most convenient to rewrite each mode amplitude as a product of an operator with polarization
4-vector.

ε̂i (k) = εα(i) (k) â(i) (k) (7.24)

The operators â†(i) (k) and â(i) (k) now create or anihilate one quantum of light with wave vector k and
polarization vector εα(i). For each i = 1, 2, εα(i)(k) is a spacelike 4-vector giving one of the two polarization
directions.

The two vectors εα(i)(k) satisfy a pair of covariant constraints, in place of kiεi(k) = 0. One of the pair of
constraints expresses the transverse condition, while the additional constraint gives εα(i)(k) a vanishing time
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component in the current frame of reference, i.e., the Lorentz reference frame in which we fixed A0 = 0. In
this frame, let tα be the unit timelike vector, tα = (1,0) . This allows us to rewrite our gauge conditions in
a Lorentz invariant way,

tαAα = 0

∂αA
α = 0

Exercise: Show that the two conditions

tαAα = 0

∂αA
α = 0

are equivalent to the gauge conditions

A0 = 0

∇ ·A = 0

Now, noting that kα = (ω,k) , demand

tαε
α
(i)(k) = 0

kαε
α
(i)(k) = 0

The first equation reduces each εα(i)(k) to a purely spatial vector, εα(i)(k) =
(
0, ε(i)(k)

)
, and the second then

reduces to k · ε(i)(k) = 0, as required. We may also choose the two polarizations εα(i)(k) to be orthonormal

εα(i)(k)ε(j)α(k) = −δij

Exercise: In a frame of reference where tα = (1, 0, 0, 0) for an electromagnetic wave in the z direction (i.e.,
kα = (0, 0, 0, 1)), find expressions for εα(1)(k) and εα(2)(k).

We can now write the field operator in final form:

Âα (x, t) =
1

(2π)
3/2

2∑
i=1

ˆ
d3k√

2ω

(
εα(i) (k) â(i)(k)ei(ωt−k·x) + εα†(i) (k) â†(i)(k)e−i(ωt−k·x)

)
(7.25)
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Chapter 8

Appendices

8.1 Appendix A: The Casimir operators of the Poincaré group.
The Lie algebra of the Poincaré group is:

[Mαβ ,Mρσ] = ηβρMασ − ηβσMαρ − ηαρMβσ + ηασMβρ[
Mα

β , Pν
]

= ηνβP
α − δαν Pβ

[Pα, Pβ ] = 0

Exercise: Prove that P 2 and W 2 are Casimir operators of the Poincaré group, where

P 2 = ηαβPαPβ

W 2 = ηαβW
αW β

and Wα is given by

Wµ =
1

2
εµναβPνMαβ

It is easy to show that P 2 is a Casimir operator. Just compute[
Pµ, P

2
]

= ηαβ [Pµ, PαPβ ]

= ηαβPα [Pµ, Pβ ] + ηαβ [Pµ, Pα]Pβ

= 0

and (with Mµν = ηµαM
α
ν),[
Mµν , P

2
]

= ηαβ [Mµν , PαPβ ]

= ηαβPα [Mµν , Pβ ] + ηαβ [Mµν , Pα]Pβ

= ηαβPα (ηνβPµ − ηµβPν)

+ηαβ (ηναPµ − ηµαPν)Pβ

= PνPµ − PµPν + PµPν − PνPµ
= 0
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Now we turn to W 2. First find the commutator of Pµ with a single Wβ ,

[Pµ,Wβ ] =
[
Pµ, ε

νρσ
β PνMρσ

]
= ε νρσ

β Pν [Pµ,Mρσ]

= −ε νρσ
β Pν [Mρσ, Pµ]

= −ε νρσ
β Pν (ησµPρ − ηρµPσ)

= −ε νρσ
β (ησµPνPρ − ηρµPνPσ)

= 0

and therefore, [
Pµ,W

2
]

= ηαβWα [Pµ,Wβ ] + ηαβ [Pµ,Wα]Wβ

= 0

Finally, consider the co mmutator of W 2 with Mαβ . This is automatic since W 2 is a scalar; alternatively
we may use the Lorentz invariance to boost to Pµ = m (1, 0, 0, 0). Then

Wµ =
1

2
ε ναβ
µ PµMαβ

=
m

2
ε 0αβ
µ Mαβ

Wµ = −m
2
ε0µαβMαβ

so in this frame,

W 0 = 0

W i = −m
2
ε0ijkMjk

= −m
2
εijkMjk

Now, contracting a pair of Levi-Civita tensors with the spatial part of the Lorentz commutator,

[Mαβ ,Mρσ] = ηβρMασ − ηβσMαρ − ηαρMβσ + ηασMβρ

[Mjk,Mmn] = ηkmMjn − ηjmMkn − ηknMjm + ηjnMkm

= −δkmMjn + δjmMkn + δknMjm − δjnMkm[
εijkMjk, ε

lmnMmn

]
= εijkεlmn (−δkmMjn + δjmMkn + δknMjm − δjnMkm)

= εijkεlnkMjn + εikmεlnmMkn + εijkεlmkMjm + εiknεlmnMkm

= εijkεlnkMjn + εijmεlnmMjn + εijkεlnkMjn + εijmεlnmMjn

= 4εijkεlnkMjn

so that

4

m2

[
W i,W l

]
= 4εijkεlnkMjn

= 4εijkεlnkMjn

Now using

εkijε
kmnMmn =

(
δmi δ

n
j − δni δmj

)
Mmn

= 2Mij
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we have

4

m2

[
W i,W l

]
= 2εijkεlnkεrjnε

rstMst

= 2
(
δirδ

k
n − δkr δin

)
εlnkεrstMst

= −2
(
εli rε

rst
)
Mst

= −4εli rW
r

Now compute

εijk
[
Mij ,W

2
]

= 2
[
W k,W 2

]
= 2δmn

([
W k,Wm

]
Wn +Wm

[
W k,Wn

])
= −2m2δmn

(
εkmsW

sWn +WmεknsW
s
)

= −2m2εk ms (W sWm +WmW s)

= 0

so in this Lorentz frame,
[
Mij ,W

2
]

= 0. But W 2 is Lorentz invariant, so the commutastor vanishes in every
Lorentz frame.

8.1.1 Appendix B: Completeness relation for Dirac solutions
Exercise: Prove the completeness relation,

2∑
a=1

(
[ua(pα)]

A
[ūa(pα)]B − [va(pα)]

A
[v̄a(pα)]B

)
= δAB

where A,B = 1, . . . , 4 label the components of the basis spinors, and the spinors are given by

[u1(pα)]
A

=

√
E +m

2m


1
0
pz

E+m
px+ipy

E+m

 ; [u2(pα)]
A

=

√
E +m

2m


0
1

px−ipy
E+m
−pz
E+m



[v1(pα)]
A

=

√
m+ E

2m


pz

E+m
px+ipy

E+m

1
0

 ; [v2(pα)]
A

=

√
m+ E

2m


px−ipy
E+m
−pz
E+m

0
1


We also have the barred spinors given by ūa = u†ah and v̄a = v†ah :

[ū1(pα)]A =

√
E +m

2m


1
0

− pz

E+m

−p
x−ipy
E+m

 ; [ū2(pα)]A =

√
E +m

2m


0
1

−p
x+ipy

E+m
pz

E+m



[v̄1(pα)]A =

√
m+ E

2m


pz

E+m
px−ipy
E+m

−1
0

 ; [v̄2(pα)]A =

√
m+ E

2m


px+ipy

E+m
−pz
E+m

0
−1
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First, compute the individual products. For the u-type spinors,

[u1]
A

[ū1]B =
E +m

2m


1 0 − pz

E+m −p
x−ipy
E+m

0 0 0 0

pz

E+m 0 −
(

pz

E+m

)2

−p
z(px−ipy)

(E+m)2

px+ipy

E+m 0 −p
z(px+ipy)

(E+m)2
− (px)2+(py)2

(E+m)2



[u2]
A

[ū2]B =
E +m

2m


0 0 0 0

0 1 −p
x+ipy

E+m
pz

E+m

0 px−ipy
E+m − (px)2+(py)2

(E+m)2
pz(px−ipy)

(E+m)2

0 −pz
E+m

pz(px+ipy)

(E+m)2
−
(

pz

E+m

)2


so the sum is

[u1]
A

[ū1]B + [u2]
A

[ū2]B =
E +m

2m


1 0 − pz

E+m −p
x−ipy
E+m

0 1 −p
x+ipy

E+m
pz

E+m
pz

E+m
px−ipy
E+m − p2

(E+m)2
0

px+ipy

E+m
−pz
E+m 0 − p2

(E+m)2


For the v-type spinors, we find

[v1]
A

[v̄1]B =
m+ E

2m


(

pz

E+m

)2
pz(px−ipy)

(E+m)2
−pz
E+m 0

pz(px+ipy)

(E+m)2
(px)2+(py)2

(E+m)2
−p

x+ipy

E+m 0
pz

E+m
px−ipy
E+m −1 0

0 0 0 0



[v2]
A

[v̄2]B =
m+ E

2m


(px)2+(py)2

(E+m)2
−p

z(px−ipy)

(E+m)2
0 −p

x−ipy
E+m

−p
z(px+ipy)

(E+m)2

(
pz

E+m

)2

0 pz

E+m

0 0 0 0
px+ipy

E+m
−pz
E+m 0 −1


with sum

[v1]
A

[v̄1]B + [v2]
A

[v̄2]B =
m+ E

2m


p2

(E+m)2
0 −pz

E+m −p
x−ipy
E+m

0 p2

(E+m)2
−p

x+ipy

E+m
pz

E+m
pz

E+m
px−ipy
E+m −1 0

px+ipy

E+m
−pz
E+m 0 −1


The difference between the sum of the u-type and the sum of the v-type matrices is

1

2m

(
1− p2

(E +m)
2

)
1

1
1

1

 = δAB

so the full completeness relation is

2∑
a=1

(
[ua(pα)]

A
[ūa(pα)]B − [va(pα)]

A
[v̄a(pα)]B

)
= δAB

as claimed.
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