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1 From classical particles to quantum fields
First, let’s review the use of the action in classical mechanics. I’ll reproduce here a conden-
sation of my notes from classical mechanics. If you’d like a copy of the full version, just ask;
what’s here is more than enough for our purposes.

1.1 Hamiltonian Mechanics

Perhaps the most beautiful formulation of classical mechanics, and the one which ties most
closely to quantum mechanics, is the canonical formulation. In this approach, the position
and velocity velocity variables of Lagrangian mechanics are replaced by the position and
conjugate momentum, pi ≡ ∂L

∂q̇i
. It turns out that by doing this the coordinates and momenta

are put on an equal footing, giving the equations of motion a much larger symmetry.
To make the change of variables, we use a Legendre transformation. This may be familiar

from thermodynamics, where the internal energy, Gibb’s energy, free energy and enthalpy
are related to one another by making different choices of the independent variables. Thus,
for example, if we begin with

dU = TdS − PdV (1)

where T and P are regarded as functions of S and V, we can set

H = U + V P (2)

and compute

dH = dU + PdV + V dP (3)
= TdS − PdV + PdV + V dP (4)
= TdS + V dP (5)

to achieve a formulation in which T and V are treated as functions of S and P.
The same technique works here. We have the Lagrangian, L(qi, q̇i) and wish to find a

function H(qi, pi). The differential of L is

dL =
N∑
i=1

∂L

∂qi
dqi +

N∑
i=1

∂L

∂q̇i
dq̇i (6)

=
N∑
i=1

ṗidqi +
N∑
i=1

pidq̇i (7)

where the second line follows by using the equations of motion and the definition of the
conjugate momentum. Therefore, set

H(qi, pi) =
N∑
i=1

piq̇i − L (8)
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so that

dH =
N∑
i=1

dpiq̇i +
N∑
i=1

pidq̇i − dL (9)

=
N∑
i=1

dpiq̇i +
N∑
i=1

pidq̇i −
N∑
i=1

ṗidqi −
N∑
i=1

pidq̇i (10)

=
N∑
i=1

dpiq̇i −
N∑
i=1

ṗidqi (11)

Notice that, as it happens, H is of the same form as the energy.
Clearly, H is a function of the momenta. To see that we have really eliminated the

dependence on velocity we may compute directly,

∂H

∂q̇j
=

∂

∂q̇j

(
N∑
i=1

piq̇i − L(qi, q̇i)

)
(12)

=
N∑
i=1

piδij −
∂L

∂q̇j
(13)

= pj −
∂L

∂q̇j
(14)

= 0 (15)

The equations of motion are already built into the expression above for dH. Since the differ-
ential of H may always be written as

dH =
N∑
i=1

∂H

∂qj
dqi +

N∑
i=1

∂H

∂pj
dpi (16)

we can simply equate the two expressions:

dH =
N∑
i=1

dpiq̇i −
N∑
i=1

ṗidqi =
N∑
i=1

∂H

∂qi
dqi +

N∑
i=1

∂H

∂pi
dpi (17)

Then, since the differentials dqi and dpi are all independent, we can equate their coefficients,

ṗi = − ∂H

∂qi
(18)

q̇i =
∂H

∂pj
(19)

These are Hamilton’s equations.
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1.1.1 Poisson brackets

Suppose we are interested in the time evolution of some function of the coordinates, momenta
and time, f(qi, pi, t). It could be any function – the area of the orbit of a particle, the period
of an oscillating system, or one of the coordinates. The total time derivative of f is

df

dt
=
∑(

∂f

∂qi

dqi
dt

+
∂f

∂pi

dpi
dt

)
+
∂f

∂t
(20)

Using Hamilton’s equations we may write this as

df

dt
=
∑(

∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi

)
+
∂f

∂t
(21)

Define the Poisson bracket of H and f to be

{H, f} =
N∑
i=1

(
∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi

)
(22)

Then the total time derivative is given by

df

dt
= {H, f}+

∂f

∂t
(23)

If f has no explicit time dependence, so that ∂f
∂t

= 0, then the time derivative is given
completely by the Poisson bracket:

df

dt
= {H, f} (24)

We generalize the Poisson bracket to two arbitrary functions,

{f, g} =
N∑
i=1

(
∂g

∂qi

∂f

∂pi
− ∂g

∂pi

∂f

∂qi

)
(25)

The importance of the Poisson bracket stems from the underlying invariance of Hamil-
tonian dynamics. Just as Newton’s second law holds in any inertial frame, there is a class
of canonical coordinates which preserve the form of Hamilton’s equations. One central re-
sult of Hamiltonian dynamics is that any transformation that preserves certain fundamental
Poisson brackets is canonical, and that such transformations preserve all Poisson brackets
Since the properties we regard as physical cannot depend on our choice of coordinates, this
means that essentially all truly physical properties of a system can be expressed in terms of
Poisson brackets.

In particular, we can write the equations of motion as Poisson bracket relations. Using
the general relation above we have

dqi
dt

= {H, qi} (26)
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=
N∑
j=1

(
∂qi
∂qj

∂H

∂pj
− ∂qi
∂pj

∂H

∂qj

)
(27)

=
N∑
j=1

δij
∂H

∂pj
(28)

=
∂H

∂pi
(29)

and

dpi
dt

= {H, pi} (30)

=
N∑
j=1

(
∂pi
∂qj

∂H

∂pj
− ∂pi
∂pj

∂H

∂qj

)
(31)

= −∂H
∂qi

(32)

Notice that since qi, pi and are all independent, and do not depend explicitly on time, ∂qi
∂pj

=
∂pi
∂qj

= 0 = ∂qi
∂t

= ∂pi
∂t
.

We list some properties of Poisson brackets. Bracketing with a constant always gives zero

{f, c} = 0 (33)

The Poisson bracket is linear

{af1 + bf2, g} = a{f1, g}+ b{f2, g} (34)

and Leibnitz
{f1f2, g} = f2{f1, g}+ f1{f2, g} (35)

These three properties are the defining properties of a derivation, which is the formal gen-
eralization of differentiation. The action of the Poisson bracket with any given function f
on the class of all functions, {f, ·} is therefore a derivation.

If we take the time derivative of a bracket, we can easily show

∂

∂t
{f, g} = {∂f

∂t
, g}+ {f, ∂g

∂t
} (36)

The bracket is antisymmetric
{f, g} = − {g, f} (37)

and satisfies the Jacobi identity,

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 (38)

6



for all functions f, g and h. These properties are two of the three defining properties of a Lie
algebra (the third defining property of a Lie algebra is that the set of objects considered,
in this case the space of functions, be a finite dimensional vector space, while the space of
functions is infinite dimensional).

Poisson’s theorem is of considerable importance not only in classical physics, but also
in quantum theory. Suppose f and g are constants of the motion. Then Poisson’s theorem
states that thier Poisson bracket, {f, g}, is also a constant of the motion. To prove the
theorem, we start with f and g constant:

df

dt
=
dg

dt
= 0 (39)

Then it follows that

df

dt
= {H, f}+

∂f

∂t
= 0 (40)

dg

dt
= {H, g}+

∂g

∂t
= 0 (41)

Now consider the bracket:

d

dt
{f, g} = {H, {f, g}}+

∂

∂t
{f, g} (42)

Using the Jacobi identity on the first term on the right, and the relation for time derivatives
on the second term, we have

d

dt
{f, g} = {H, {f, g}}+

∂

∂t
{f, g} (43)

= −{f, {g,H}} − {g, {H, f}}+ {∂f
∂t
, g}+ {f, ∂g

∂t
} (44)

= {f, {H, g}} − {g, {H, f}}+ {∂f
∂t
, g}+ {f, ∂g

∂t
} (45)

= {f,
(
−∂g
∂t

)
} − {g,

(
−∂f
∂t

)
}+ {∂f

∂t
, g}+ {f, ∂g

∂t
} (46)

= 0 (47)

We conclude our discussion of Poisson brackets by using them to characterize canonical
transformations.

1.1.2 Canonical transformations

Before characterizing canonical transformations using Poisson brackets, we display a large
class of canonical transformations. Working with the Hamiltonian formulation of classical
mechanics, we are allowed more transformations of the variables than with the Newtonian,
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or even the Lagrangian, formulations. We are now free to redefine our coordinates according
to

qi = qi(xi, pi, t) (48)
πi = πi(xi, pi, t) (49)

as long as the basic equations still hold. It is straightforward to show that given any function
f = f(xi, qi, t) there is a canonical transformation defined by

pi =
∂f

∂xi
(50)

πi = −1

λ

∂f

∂qi
(51)

H ′ =
1

λ

(
H +

∂f

∂t

)
(52)

The first equation

pi =
∂f(xi, qi, t)

∂xi
(53)

gives qi implicitly in terms of the original variables, while the second determines πi. Notice
that once we pick a function qi = qi(pi, xi, t), the form of πi is fixed. The third equation
gives the new Hamiltonian in terms of the old one.

Sometimes it is more convenient to specify the new momentum πi(pi, xi, t) than the new
coordinates qi = qi(pi, xi, t). A Legendre transformation accomplishes this. Just replace
f = g − λπiqi. Then

df = dg − dπiqi − πidqi = pidxi − λπidqi + (λH ′ −H) dt (54)
dg = pidxi + λqidπi + (λH ′ −H) dt (55)

and we see that g = g(xi, πi, t). In this case, g satisfies

pi =
∂g

∂xi
(56)

qi =
1

λ

∂g

∂πi
(57)

H ′ =
1

λ

(
H +

∂g

∂t

)
(58)

Since canonical transformations can interchange or mix up the roles of x and p, they are
called canonically conjugate. Within Hamilton’s framework, position and momentum lose
their independent meaning except that variables always come in conjugate pairs. Notice that
this is also a property of quantum mechanics.

Finally, we return to our earlier claim that transformations certain fundamental Poisson
brackets preserve Hamilton’s equations and preserve all Poisson brackets. Specifically, a
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transformation from one set of phase space coordinates (xi, πi) to another (qi, pi) as canonical
if and only if it preserves the fundamental Poisson brackets

{qi, qj}xπ = {pi, pj}xπ = 0 (59)
{pi, qj}xπ = − {qi, pj}xπ = δij (60)

Here the subscript on the bracket, {}xπ means that the partial derivatives defining the bracket
are taken with respect to qi and pi. Brackets {f, g}qp taken with respect to the new variables
(qi, pi) are identical to those {f, g}xπ with respect to (xi, π i) if and only if the transformation
is canonical. In particular, replacing f by H and g by any of the coordinate functions (xi, πi),
we see that Hamilton’s equations are preserved by canonical transformations.

1.1.3 Hamilton’s equations from the action

It is possible to write the action in terms of xi and pi and vary these independently to arrive
at Hamilton’s equations of motion. We have

S =

∫
Ldt (61)

We can write this in terms of xi and pi easily:

S =

∫
Ldt (62)

=

∫
(piẋi −H) dt (63)

=

∫
(pidxi −Hdt) (64)

Since S depends on position and momentum (rather than position and velocity), it is these
we vary. Thus:

δS = δ

∫
(piẋi −H) dt (65)

=

∫ (
δpiẋi + piδẋi −

∂H

∂xi
δxi −

∂H

∂pi
δpi

)
dt (66)

= piδxi|t2t1 +

∫ (
δpiẋi − ṗiδxi −

∂H

∂xi
δxi −

∂H

∂pi
δpi

)
dt (67)

=

∫ ((
ẋi −

∂H

∂pi

)
δpi −

(
ṗi +

∂H

∂xi

)
δxi

)
dt (68)

and since δpi and δxi are independent we conclude

ẋi =
∂H

∂pi
(69)

ṗi = −∂H
∂xi

(70)

as required.
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1.1.4 Hamilton’s principal function and the Hamilton-Jacobi equation

Properly speaking, the action is a functional, not a function. That is, the action is a function
of curves rather than a function of points in space or phase space. We define Hamilton’s
principal function S in the following way. Pick an initial point of space and an initial time,
and let S(x

(f)
i , t) be the value of the action evaluated along the actual path that a physical

system would follow in going from the initial time and place to x(f)
i at time t :

S(x
(f)
i , t) = S |physical=

∫ t

t0

L(xi(t), ẋi(t), t)dt (71)

where xi(t) is the solution to the equations of motion and x(f)
i is the final position at time t.

Now consider the variation of the action. Recall that in general,

δS =

∫ t

t0

(
∂L

∂xi
δxi +

∂L

∂ẋi
δẋi

)
dt (72)

=

[
∂L

∂ẋi
δxi

]t
t0

+

∫ t

t0

(
∂L

∂xi
− d

dt

∂L

∂ẋi

)
δxidt (73)

Now suppose we hold the action constant at t0, and require the equations of motion to hold.
Then we have simply

δS |physical=
∂L

∂ẋi
δxi(t) = piδxi (74)

This means that the change in the function S, when we change xi by dxi is

dS = δS |physical= pidxi (75)

of
∂S
∂xi

= pi (76)

To find the dependence of S on t, we write S = S |physical=
∫
Ldt as

dS
dt

= L (77)

But we also have
dS
dt

=
∂S
∂xi

ẋi +
∂S
∂t

(78)

Equating these and using ∂S
∂xi

= pi gives

L =
∂S
∂xi

ẋi +
∂S
∂t

(79)

= piẋi +
∂S
∂t

(80)
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so that the partial of S with respect to t is

∂S
∂t

= L− piẋi = −H (81)

Combining the results for the derivatives of S we may write

dS =
∂S
∂xi

dxi +
∂S
∂t
dt (82)

= pidxi −Hdt (83)

This is a nontrivial condition on the solution of the classical problem. It means that form
pidxi −Hdt must be a total differential, which cannot be true for arbitrary pi and H.

We conclude by stating the crowning theorem of Hamiltonian dynamics: for any Hamil-
tonian dynamical system there exists a canonical transformation to a set of variables on
phase space such that the paths of motion reduce to single points. Clearly, this theorem
shows the power of canonical transformations! The theorem relies on describing solutions to
the Hamilton-Jacobi equation, which we introduce first.

We have the following equations governing Hamilton’s principal function.

∂S
∂pi

= 0 (84)

∂S
∂xi

= pi (85)

∂S
∂t

= −H (86)

Since the Hamiltonian is a given function of the phase space coordinates and time, H =
H(xi, pi, t), we combine the last two equations:

∂S
∂t

= −H(xi, pi, t) = −H(xi,
∂S
∂xi

, t) (87)

This first order differential equation in s + 1 variables (t, xi; i = 1, . . . s) for the principal
function S is the Hamilton-Jacobi equation. Notice that the Hamilton-Jacobi equation has
the same general form as the Schrödinger equation (and is equally difficult to solve!). It is
this similarity that underlies Dirac’s canonical quantization procedure.

It is not difficult to show that once we have a solution to the Hamiltonian-Jacobi equation,
we can immediately solve the entire dynamical problem. Such a solution may be given in
the form

S = g(t, x1, . . . , xs, α1, . . . , αs) + A (88)

where the αi are the additional s constants describing the solution. Now consider a canonical
transformation from the variables (xi, pi) using the solution g(t, xi, αi) as the generating
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function. We treat the αi as the new momenta, and introduce new coordinates βi. Since g
depends on the old coordinates xi and the new momenta αi, we have the relations

pi =
∂g

∂xi
(89)

βi =
∂g

∂αi
(90)

H ′ =

(
H +

∂g

∂t

)
≡ 0 (91)

where the new Hamiltonian vanishes because g satisfies the Hamiltonian-Jacobi equation!.
With H ′ = 0, Hamilton’s equations in the new canonical coordinates are simply

dαi
dt

=
∂H ′

∂βi
= 0 (92)

dβi
dt

= −∂H
′

∂αi
= 0 (93)

with solutions

αi = const. (94)
βi = const. (95)

The system remains at the phase space point (αi, βi). To find the motion in the original
coordinates as functions of time and the 2s constants of motion, xi = xi(t;αi, βi), we can
algebraically invert the s equations βi = ∂g(xi,t,αi)

∂αi
. The momenta may be found by differ-

entiating the principal function, pi = ∂S(xi,t,αi)
∂xi

. This provides a complete solution to the
mechanical problem.

We now apply these results to quantum theory.

1.2 Canonical Quantization

One of the most direct ways to quantize a classical system is the method of canonical quan-
tization introduced by Dirac. The prescription is remarkably simple. Here we go:

A dynamical variable is any function of the phase space coordinates and time, f(qi, pi, t).
Given any two dynamical variables, we can compute their Poisson bracket,

{f, g} (96)

as described in the previous section. In particular, the time evolution of any dynamical
variable is given by

df

dt
= {H, f}+

∂f

∂t
(97)

and for any canonically conjugate pair of variables,

{pi, qj} = δij (98)
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To quantize the classical system, we let the canonically conjugate variables become oper-
ators (denoted by a “hat”, ô), let all Poisson brackets be replaced by i

} times the commutator
of those operators, and let all dynamical variables (including the Hamiltonian) become op-
erators through their dependence on the conjugate variables:

{ , } → i

}
[ , ] (99)

(pi, qj) → (p̂i, q̂j) (100)
f(pi, qj, t) → f̂ = f(p̂i, q̂j, t) (101)

The operators are taken to act linearly on a vector space, and the vectors are called “states.”
This is all often summarized, a bit too succinctly, by saying “replace all Poisson brackets by
commutators and put hats on everything.” This simple set of rules works admirably.

Insert:

One of our rules, eq.(101), however, is inadequate as it stands. If a dynamical variable f̂
depends on a product of non-commuting variables, (p̂i, q̂j), then we must specify the order
in which to write them. Given the conjugate pair, (p̂i, q̂j), define

âi =
1√
2

(
q̂i −

i

~
p̂i

)
â†i =

1√
2

(
q̂i +

i

~
p̂i

)
Then [

âi, â
†
j

]
=

1

2

[(
q̂i −

i

~
p̂i

)
,

(
q̂j +

i

~
p̂j

)]
=

i

2~
[q̂i, p̂j]−

i

2~
[p̂i, q̂j]

= δij

[âi, âj] =
[
â†i , â

†
j

]
= 0

We then define an ordering of operators by placing all of the âi to the right. This is called
normal ordering, and is denoted by enclosing any expression to be normal ordered between
colons:

f̂ (p̂i, q̂j, t) = : f̂

(
1√
2

(
â† − â

)
,

1√
2

(
â† − â

)
, t

)
:

: ââ† : = â†â

The Hamiltonian is one such dynamical variable, so if it was originally polynomial in coor-
dinates and momenta, it will now be polynomial in â, â†,

Ĥ = :
∑
A

wAP
Ai1···ikj1···jm

(
âi1 . . . âik â

†
i1
. . . â†ik

)
:

13



=
∑
A

wi1···ikj1···jmA â†i1 . . . â
†
ik
âi1 . . . âik

where wA is an arbitrary coefficient and PA is some permutation of the ordering of the
operators.

Now suppose we have an eigenstate of the Hamiltonian,

Ĥ |α〉 = α |α〉

Then if we act on |α〉 with a†i , and then on the resulting state with the normal-ordered
Hamiltonian,

Ĥa†i |α〉 =
∑
A

wi1···ikj1···jmA â†i1 . . . â
†
ik
âj1 . . . âjka

†
i |α〉

= a†i
∑
A

wi1···ikj1···jmA â†i1 . . . â
†
ik
âj1 . . . âjk |α〉+

∑
A

wi1···ikj1···jmA

(
â†i1 . . . â

†
ik

[
âj1 . . . âjk , a

†
i

])
|α〉

Using[
âj1 . . . âjk , a

†
i

]
= âj1 . . . âjk−1

[
âjk , a

†
i

]
+
[
âj1 . . . âjk−1

, a†i

]
âjk

= δjkiâj1 . . . âjk−1
+ δjk−1iâj1 . . . âjk−2

âjk +
[
âj1 . . . âjk−2

, a†i

]
âjk−1

âjk

= δjkiâj1 . . . âjk−1
+ · · ·+ δj1iâj1 . . . âjk−2

âjk + a†i âj1 . . . âjk−2
âjk−1

âjk

Separate H into a pure a† part and a mixed part. Then any a† acting on the α state will
remain an eigenstate with respect to the purely a† part, and if we define a state annihilated
by a, then the extra terms from the commutator above will all annihilate the vacuum. The
trick is to get all eigenstates expressed in terms of the vacuum. For a purely a† Hamiltonian,
we can act with lowering operators. Then?

End insert

As a simple example, let’s quantize the simple harmonic oscillator. In terms of the canonical
variables (pi, xj) the Hamiltonian is

H =
p2

2m
+

1

2
kx2 (102)

We quantize by making the replacements

xj ⇒ x̂j (103)
pi ⇒ p̂i (104)

{pi, xj} = δij ⇒
i

}
[p̂i, x̂j] = δij (105)
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{xi, xj} = 0⇒ i

}
[x̂i, x̂j] = 0 (106)

{pi, pj} = 0⇒ i

}
[p̂i, p̂j] = 0 (107)

Ĥ =
p̂2

2m
+

1

2
kx̂2 (108)

We therefore have

[p̂i, x̂j] = −i}δij (109)
[x̂i, x̂j] = 0 (110)
[p̂i, p̂j] = 0 (111)

Ĥ =
p̂2

2m
+

1

2
kx̂2 (112)

as well as the transformed Heisenberg equations of motion:

dx̂j
dt

=
i

}
[Ĥ, x̂j] (113)

=
i

}

[
p̂2

2m
+

1

2
kx̂2, x̂j

]
(114)

=
i

}

[
p̂2

2m
, x̂j

]
(115)

=
ip̂i
m}

[p̂i, x̂j] (116)

= −i}δij
ip̂i
m}

(117)

=
p̂j
m

(118)

and similarly

dp̂j
dt

=
i

}
[Ĥ, p̂j] (119)

= −kx̂j (120)

As an exercise, work out these two commutators (and as many other features of the oscillator
as you like) in detail. From these relations we can construct the usual raising and lowering
operators and find a complete set of states on which these operators act. Normally we are
interested in eigenstates of the Hamiltonian, because these have a definite value of the energy.

There is one point requiring caution with Dirac quantization: ordering ambiguity. The
problem arises when the Hamiltonian (or any other dynamical variable of interest) depends in
a more complicated way on position and momentum. The simplest example is a Hamiltonian
containing a term of the form

H1 = αp · x (121)

15



For the classical variables, p · x = x · p, but since operators don’t commute we don’t know
whether to write

Ĥ1 = αp̂ · x̂ (122)

or
Ĥ1 = αx̂ · p̂ (123)

or even a linear combination
Ĥ1 =

α

2
(p̂ · x̂ + x̂ · p̂) (124)

In many circumstances the third of these turns out to be preferable, and certain rules of
thumb exist. At an algebraic level, this problem means that, unlike Poisson brackets, com-
mutators are order-specific. Thus, we can write the Leibnitz rule as

[Â, B̂Ĉ] = B̂[Â, Ĉ] + [Â, B̂]Ĉ (125)

but must remember that
[Â, B̂Ĉ] 6= [Â, Ĉ]B̂ + [Â, B̂]Ĉ (126)

For now it is enough to be aware of the problem.
As noted, the rules above reproduce the Heisenberg formulation, involving commutators.

We can also arrive at the Schrödinger picture by choosing a set of functions as our vector
space of states. Let ψ(x) be an element of this vector space. Then we satisfy the fundamental
commutators,

[p̂i, x̂j] = −i}δij (127)
[x̂i, x̂j] = 0 (128)
[p̂i, p̂j] = 0 (129)

if we represent the operators as

x̂i = xi (130)

p̂i = −i} ∂

∂xi
(131)

Ĥ = i}
∂

∂t
(132)

=
p̂2

2m
+ V (x̂) (133)

The representation of x̂i by xi simply means we replace the operator by the coordinate. Now
consider the time evolution of a state ψ. This is given by the action of the Hamiltonian:

Ĥψ = i}
∂ψ

∂t
(134)

and we immediately recognize the Schrödinger equation. Inserting the form of Ĥ,

− }2

2m
∇2ψ + V (x)ψ = i}

∂ψ̂

∂t
(135)
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Notice that ψ is a field. This means that even in quantum mechanics we are working with a
type of field theory. The difference between this field theory and “quantum field theory” lies
principally in the way the operators are introduced. In quantum mechanics, the dynamical
variables (energy, momentum, etc.) simply become operators, but in quantum field theory it
is the fields themselves that become operators. This change is not really a change at all. In
classical field theory it is perfectly possible to identify the canonically conjugate momentum
density of any given field. Quite generally these dynamical densities of the field can be
written in terms of the field and its derivatives. We therefore can (indeed must) make the
dynamical quantities into operators by making the field into operators.

Other than this difference, the method for quantization is the same. We demand the usual
fundamental canonical commutators for the field (which, as we show in the next section
acts as a coordinate when we take the continuum limit of many small particles) and the
field momentum. It turns out that we can implement these fundamental commutators by
imposing a certain commutator on the field and the momentum density. We will see all of
this in detail before long.

1.3 Continuum mechanics

Kaku deals with a simple example of many particles transforming in the limit to a (2-
dimensional) field. Let’s see if we can be a little more general. Suppose we have a system
of N particles spread throughout space at positions xi, with i = 1, 2, 3, with masses mi. We
want to make the distribution so dense that we can take the limit at the difference between
any two nearby particles |xi−yi| tends to zero. We have a bit of a labeling problem, however.
Let’s suppose that the particles are in equilibrium at lattice positions so that we can relabel
the position vectors as

xi ⇒ xjkl = (jε, kε, lε)

where the integers j, k and l tell us at which lattice point the particle lies, and ε is the
adjustable lattice spacing. We want to take the limit as the spacing ε goes to zero. At the
same time, we want the masses to tend to zero in such a way that the mass density becomes
a smooth function. The mass density is the mass per unit volume, hence as xjkl becomes a
continuous position variable xjkl → x, we have

ρ(x) = lim
ε→0

mjkl

ε3
= lim

ε→0

m(x)

ε3

We ask that this limit be finite. The kinetic energy of the system is not too hard to get. Let
the particle with equilibrium point xjkl actually be at position

y(xjkl) (136)

(presumably not too far from equilibrium, so that |y(xjkl) − xjkl| is small). As the lattice
spacing goes to zero, yjkl goes over into a continuous function of position:

y (xjkl)→ y (x)
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This means that we have many coordinates y(xjkl) – so many that in the continuum limit
they will be indexed by the points of our space! This y(x) will become our field, and this is
the sense in which the field is a coordinate.

Now the kinetic energy of the particle at yjkl ≡ y(xjkl) is

T =
1

2
mjklẏ

2
jkl

The total kinetic energy is a sum over all jkl. If we take the limit as the cell size goes to
zero, we have

T (y, ẏ) =
∑
jkl

lim
ε→0

(
1

2
mjklẏ

2
jkl

)
=

∑
jkl

lim
ε→0

(
1

2

mjkl

ε3
ε3ẏ2

jkl

)
Since we have the limits

lim
ε→0

(ẏjkl) = ẏ(x) (137)

lim
ε→0

(mjkl

ε3

)
= ρ (138)

lim
ε→0

∑
jkl

ε3 =

∫
d3x (139)

the kinetic energy becomes simply

T (y, ẏ) =
1

2

∫
ρ(x)ẏ2d3x

For the forces between particles, we’ll use a potential depending on all of the particle
positions ∑

pairs

V (yjkl,yj′k′l′) =
1

2

∑
jkl,j′k′l′

V (|yjkl − yj′k′l′|)

and we’ll assume the forces depend only on the distances between pairs of particles. Now,
assume that the forces between particles decrease with distance, so that we can expand V in
a Taylor series. The strongest forces will be between nearest neighbors and so on. If we only
consider nearest neighbors, and make the usual approximations of small oscillations (that
is, we choose the equilibrium potential to be zero, and recognize that ∇V = 0 at the
equilibrium point) the potential is approximately

V =
∑
jkl

V (yjkl)

=
1

2

∑
jkl

∂2V

∂x2

∣∣∣∣
yjkl

(yj+1,k,l − yjkl)
2
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+
∑
jkl

∂2V

∂x∂y

∣∣∣∣
yjkl

(yj+1,k,l − yjkl) (yj,k+1,l − yjkl)

+ . . .

Let the matrix of second partials be written as:

∂2V

∂xi∂xi′

∣∣∣∣
yjkl

= σii′(yjkl) (140)

Then the potential reduces to

V =
1

2

∑
jkl

∑
nearest neighbors

ε3 1

ε
σii′(xjkl)

1

ε

(
yij′,k′,l′ − yijkl

) 1

ε

(
yi
′

j′,k′,l′ − yi
′
jkl

)
where the raised index identifies the x, y or z component of yjkl. Then for taking the limit
we have

xjkl = lim
ε→0

yjkl (141)

σii′(x) = lim
ε→0

∑
jkl

1

ε
σii′(yjkl) (142)

∂yijkl
∂xj

= lim
ε→0

1

ε

(
yij′kl − yijkl

)
nearest neighbors

(143)

so that

V (x) = lim
ε→0

V

=
1

2
lim
ε→0

∑
jkl

∑
nearest nbrs

ε3 1

ε
σii′(xjkl)

1

ε

(
yij′,k′,l′ − yijkl

) 1

ε

(
yi
′

j′,k′,l′ − yi
′

jkl

)
=

1

2

∫
σii′(x)

∂yijkl
∂xj

∂yi
′

jkl

∂xj
d3x

=
1

2

∫
σij(x) (∇yi(x)) · (∇yj(x)) d3x

Notice that we have two fields different here. The one we expected is the infinite set of
coordinates, y(x), which now form a vector field. But we also have a tensor field, σij(x). All
we really know about σij(x) is that it is symmetric. We can also make it traceless, by adding
and subtracting σij(x) = 1

3
δijσ(x) where σ(x) =

∑
i σii(x). Then σ̃ij(x) = σij(x)− 1

3
δijσ(x)

is symmetric and traceless, so

V (x) =
1

2

∫ [
σ̃ij(x) (∇yi(x)) · (∇yj(x)) +

1

3
σ(x) (∇yi(x)) · (∇yi(x))

]
d3x
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We could also develop a kinetic energy term for σ(x) and σ̃ij(x), but we don’t need that
level of detail here. If we had carried the calculation beyond nearest neighbors, we would
have introduced higher derivatives of yi as well.

For simplicity, let’s assume we can neglect σ̃ij(x). Then we write the Lagrangian as just

L = T − V (144)

=
1

2

∫ (
ρ(x)ẏ2 − σ(x)∇yi · ∇yi

)
d3x (145)

and the corresponding action

S =

∫
Ldt (146)

=
1

2

∫ (
ρ(x)ẏ2 − σ(x)∇yi · ∇yi

)
d3xdt (147)

=
1

2

∫ (
ρ(x)ẏ2 − σ(x)∇yi · ∇yi

)
d4x (148)

Several interesting things have happened here. First, notice that the Lagrangian itself is
replaced by a spatial integral. The integrand is called the Lagrangian density,

L =
1

2

(
ρ(x)ẏ2 − σ(x)∇yi · ∇yi

)
(149)

and the action is now an integral over both space and time. The field theory action is
therefore ideally suited to our goal of a relativistic generalization of quantum mechanics.

Notice that we end up with a vector field, y(x), instead of the scalar field that Kaku
derives. Varying the action, we find

0 = δS (150)

=
1

2
δ

∫ (
ρ(x)ẏ2 − σ(x)∇iy · ∇iy

)
d4x (151)

=

∫
(ρ(x)ẏ·δẏ − σ(x)∇iy · ∇iδy) d4x (152)

=

∫ (
− ∂

∂t
(ρ(x)ẏ) ·δy +∇i (σ(x)∇iy) · δy

)
d4x (153)

where in the last step we have thrown out two surface terms from the two integrations by
parts. Since δy is arbitrary, the field equation (as opposed to “equation of motion”) is a wave
equation:

0 = −ρ(x)ÿ +∇i (σ(x)∇iy)

or
0 = − 1

v2
ÿ +

1

σ
∇i (σ∇iy)
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where the position-dependent wave velocity is given by v =
√

σ(x)
ρ(x)

. (To see that this is a
wave equation, notice that if σ and ρ are constant, the equation reduces to 0 = − 1

v2
ÿ+∇2y).

We can easily recover a 3-dimensional version of Kaku’s scalar by making the assumption
that in the limit as ε→ 0, the angular motions of the particles about their equilibrium points
becomes negligible in comparison to the radial motion. Then we can write

y(x) = φn (154)

where n is a unit vector. All of the angular information is in n, so we just ignore any
derivatives of n. Then the time derivative is

ẏ(x) = φ̇n + φṅ (155)
≈ φ̇n (156)

and similarly, the spatial derivatives reduce to

∂iy(x) = ∂iφn + φ∂in (157)
≈ ∂iφn (158)

The action reduces to
S =

1

2

∫ (
ρ(x)φ̇2 − σ(x)∇φ · ∇φ

)
d4x (159)

We find the field equation as above. If σ is slowly varying and φ is small, we can expand to
second order, so that the field equation is

1

v2
φ̇2 −∇φ · ∇φ = 0 (160)

where v =
√

σ(x)
ρ(x)
≈
√

σ0
ρ(x)

. If the velocity is constant and equal to the speed of light, the
result is the relativistic wave equation:

�φ =
1

c2

∂2φ

∂t2
−∇2φ = 0 (161)

(Exercise: prove this claim by varying S).

1.4 Canonical quantization of a field theory

Without going into careful detail, we can see some features of the quantization of a field
theory. Let’s consider the action for the relativistic scalar field φ. Well use Greek indices for
spacetime α, β, . . . = 0, 1, 2, 3 and Latin for space i, j, . . . = 1, 2, 3. Let’s write

∂α = (∂0, ∂i) (162)

where
∂0 =

1

c

∂

∂t
(163)
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We’ll use the metric

ηαβ =


1
−1

−1
−1

 (164)

to raise and lower indices. For example, we can write the d’Alembertian � as

� = ηαβ∂α∂β (165)
= ∂α∂α = ∂α∂

α (166)

where
∂α = ηαβ∂β = (∂0,− ∂i) (167)

With this notation, the action for the relativistic wave equation is

S =
1

2

∫ (
φ̇2 −∇φ · ∇φ

)
d4x (168)

=
1

2

∫
∂αφ∂

αφ d4x (169)

The relativistic summation convention always involves one raised index and one lowered
index. When summed, repeated indices are both in the same position the sum is Euclidean.
Thus, ∂α∂α = (∂0)2 +∇2 is the 4-dimensional Euclidean Laplacian.

Now we can illustrate the quantization. We know that the field φ is the limit of an
uncountable infinity of independent particle coordinates, so all we need to set up the canonical
commutator is its conjugate momentum. This, as usual, is

p =
∂L

∂φ̇
(170)

=
1

2

∂

∂φ̇

∫
∂αφ∂

αφ d3x (171)

=
1

2

(∫
2∂0φ d3x

)
(172)

=

∫
∂0φ d3x (173)

The canonical momentum is given in terms of the momentum density,

π = ∂0φ (174)

p =

∫
π d3x (175)

and we can achieve the canonical commutator

[p̂, φ̂] = −i} (176)
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by setting
[π̂(x), φ̂(x′)] = −i}δ3(x− x′) (177)

Before continuing with further details of relativistic quantization, we need two things. First,
we prove Noether’s theorem, which relates symmetries to conserved quantities. The rela-
tionship is central to our understanding of field theory. Second, in the next chapter, we
develop group theory both because of the relationship of group symmetries to conservation
laws and because it is from group theory that we learn the types of fields that are important
in physics, including spinors. Then we will return to quantization.

1.5 Special Relativity

Since we have just introduced some relativitistic notation, this seems like a good place to
review special relativity, and especially the reason that the notation is meaningful.

1.5.1 The invariant interval

The first thing to understand clearly is the difference between physical quantities such as the
length of a ruler or the elapsed time on a clock, and the coordinates we use to label locations
in the world. In 3-dim Euclidean geometry, for example, the length of a ruler is given in
terms of coordinate intervals using the Pythagorean theorem. Thus, if the positions of the
two ends of the ruler are (x1, y1, z1) and (x2, y2, z2), the length is

L =

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (178)

Observe that the actual values of (x1, y1, z1) are irrelevant. Sometimes we choose our coor-
dinates cleverly, say, by aligning the x-axis with the ruler and placing one end at the origin
so that the endpoints are at (0, 0, 0) and (x2, 0, 0). Then the calculation of L is trivial:

L =

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (179)

= x2 (180)

but it is still important to recognize the difference between the coordinates and the length.
With this concept clear, we next need a set of labels for spacetime. Starting with a

blank page to represent spacetime, we start to construct a set of labels. First, since all
observers agree on the motion of light, let’s agree that (with time flowing roughly upward in
the diagram and space extending left and right) light beams always move at 45 degrees in a
straight line. An inertial observer (whose constant rate of motion has no absolute reality; we
only consider the relative motions of two observers) will move in a straight line at a steeper
angle than 45 degrees – a lesser angle would correspond to motion faster than the speed of
light. For any such inertial observer, we let the time coordinate be the time as measured by a
clock they carry. The ticks of this clock provide a time scale along the straight, angled world
line of the observer. To set spatial coordinates, we use the constancy of the speed of light.

23



Suppose our inertial observer send out a pulse of light at 3 minutes before noon, and suppose
the nearby spacetime is dusty enough that bits of that pulse are reflected back continuously.
Then some reflected light will arrive back at the observer at 3 minutes after noon. Since the
trip out and the trip back must have taken the same length of time and occurred with the
light moving at constant velocity, the reflection of the light by the dust particle must have
occurred at noon in our observer’s frame of reference. It must have occurred at a distance of
3 light minutes away. If we take the x direction to be the direction the light was initially sent,
the location of the dust particle has coordinates (noon, 3 lightminutes, 0, 0). In a similar
way, we find the locus of all points with time coordinate t = noon and both y = 0 and z = 0.
These points form our x axis. We find the y and z axes in the same way. It is somewhat
startling to realize when we draw a careful diagram of this construction, that the x axis
seems to make an acute angle with the time axis, as if the time axis has been reflected about
the 45 degree path of a light beam. We quickly notice that this must always be the case if
all observers are to measure the same speed (c = 1 in our construction) for light.

This gives us our labels for spacetime events. Any other set of labels would work just as
well. In particular, we are interested in those other sets of coordinates we get by choosing a
different initial world line of an different inertial observer. Suppose we consider two inertial
observers moving with relative velocity v. Using such devices as mirror clocks and other
thought experiments, most elementary treatments of special relativity quickly arrive at the
relationship between such a set of coordinates. If the relative motion is in the x direction, the
transformation between the two frames of reference is the familiar Lorentz transformation:

t′ = γ
(
t− vx

c2

)
(181)

x′ = γ (x− vt) (182)
y′ = y (183)
z′ = z (184)

where
γ =

1√
1− v2

c2

(185)

The next step is the most important: we must find a way to write physically meaningful
quantities. These quantities, like length in Euclidean geometry, must be independent of
the labels, the coordinates, that we put on different points. If we get on the right track by
forming a quadratic expression similar to the Pythagorean theorem, then it doesn’t take long
to arrive at the correct answer. In spacetime, we have a pseudo-Euclidean length interval,
given by

c2τ 2 = c2t2 − x2 − y2 − z2 (186)

Computing the same quantity in the primed frame, we find

c2τ ′2 = c2t′2 − x′2 − y′2 − z′2 (187)

= c2γ2
(
t− vx

c2

)2

− γ2 (x− vt)2 − y2 − z2 (188)
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= c2γ2

(
t2 − 2vxt

c2
+
v2x2

c4

)
(189)

−γ2
(
x2 − 2xvt+ v2t2

)
− y2 − z2 (190)

= γ2

(
c2t2 − v2t2 − x2 +

v2x2

c2

)
− y2 − z2 (191)

= c2t2 − x2 − y2 − z2 (192)
= c2τ 2 (193)

so that τ = τ ′. Tau is called the proper time, and is invariant under Lorentz transformations.
It plays the role of L in spacetime geometry, and becomes the defining property of space-
time symmetry: we define Lorentz transformations to be those transformations that leave τ
invariant.

1.5.2 Lorentz transformations

Notice that with this definition, 3-dim rotations are included as Lorentz transformations
because τ only depends on the Euclidean length x2 + y2 + z2; any transformation that leaves
this length invariant also leaves τ invariant. Lorentz transformations that map the three
spatial directions into one another are called rotations, while Lorentz transformations that
involve time and velocity are called boosts. As we shall see, there are 6 independent Lorentz
transformations: three planes ((xy), (yz), (zx)) of rotation and three planes ((tx), (ty), (tz))
of boosts.

Notice that Lorentz transformations are linear. If we define the 4× 4 matrix

Λα
β =


γ − v

c2

−v γ
1

1

 (194)

and the four coordinates by xα = (ct, x, y, z), then a “boost in the x direction” is given by

(x′)
α

= Λα
βx

β (195)

where we assume a sum on β. Any object that transforms in this linear, homogeneous way,
where Λα

β is any boost or rotation matrix, is called a Lorentz vector or a 4-vector. The
proper time, or more generally, the proper interval, defines the allowed forms of Λα

β; we
say that Λα

β is the matrix of a Lorentz transformation if and only if it leaves all intervals
invariant.

We can write the interval in terms of a metric. Let

ηαβ =


1
−1

−1
−1

 (196)
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as given in the previous section. Then the interval spanned by a 4-vector xα is

c2τ 2 = ηαβx
αxβ =

(
ct x y z

)
1
−1

−1
−1




ct
x
y
z

 (197)

It is convenient to define two different forms of a vector, called covariant (xα) and contravari-
ant (xα). These two forms exist anytime we have a metric. If we let

xα ≡ ηαβx
β (198)

then we can write invariant intervals as

c2τ 2 = xβx
β = xβxβ (199)

where the second expression uses the symmetry of the metric, ηαβ = ηβα.
The defining property of a Lorentz transformation can now be written in a way that

doesn’t depend on the coordinates. Invariance of the interval requires

c2τ 2 = ηαβx
αxβ = ηαβ (x′)

α
(x′)

β (200)

so that for any Lorentz vector xβ,

ηµνx
µxν = ηαβ (x′)

α
(x′)

β (201)
= ηαβ

(
Λα

µx
µ
) (

Λβ
νx

ν
)

(202)

=
(
ηαβΛα

µΛβ
ν

)
xµxν (203)

Since xµ is arbitrary, and ηαβ is symmetric, this implies

ηµν = ηαβΛα
µΛβ

ν (204)

From now on, we will take this as the defining property of a Lorentz transformation.
Suppose wα is any set of four quantities that transform just like the coordinates, so that

if we boost or rotate to a new inertial frame, the new components of wα are given by

(w′)
α

= Λα
βw

β (205)

where Λα
β is the matrix describing the boost or rotation. It follows immediately that wαwα

is invariant under Lorentz transformations. As long as we are careful to use only quantities
that have such simple transformations (i.e., linear and homogeneous) it is easy to construct
Lorentz invariant quantities by “contracting” indices. Anytime we sum one contravariant
vector index with one covariant vector index, we produce an invariant.

It is not hard to derive dynamical variables which are Lorentz vectors. Suppose we have
a path in spacetime (perhaps the path of a particle), specified parametrically

xβ(λ) (206)
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so as λ increases, xβ(λ) gives the coordinates of the particle. We can even let λ be the proper
time along the world line of the particle, since this increases monotonically as the particle
moves along. In fact, this is an excellent choice. To compute the parameter, consider an
infinitesimal displacement along the path,

dxβ (207)

Then the change in the proper time for that displacement is

dτ =
(
ηαβdx

αdxβ
)1/2 (208)

=

(
dt2 − 1

c2

(
dxi
)2
)1/2

(209)

where the Latin index runs over the spatial coordinates so that dxidxi is the usual Euclidean
interval. Now we can integrate the infinitesimal proper time along the path to a general
point at proper time τ :

τ =

∫
dτ (210)

=

∫ √
dt2 − 1

c2
(dxi)2 (211)

=

∫
dt

√
1− 1

c2

(
dxi

dt

)2

(212)

=

∫
dt

√
1− v2(t)

c2
(213)

As soon as we know the path x(t), we can differentiate to find v(t), integrate to find τ(t), and
invert to find t(τ). This gives xα(τ) = (t(τ),x(τ)) . Notice the useful relationship between
infinitesimals,

dτ = dt

√
1− v2(t)

c2
(214)

or
γdτ = dt (215)

Once we have the path parameterized in terms of proper time, we can find the tangent
to the path simply by differentiating:

uβ =
dxβ

dτ
(216)

Since τ is Lorentz invariant and the Lorentz transformation matrix is constant (between two
given inertial frames), we have

(u′)
β

=
d (x′)β

dτ ′
(217)
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=
d
(
Λβ

αx
α
)

dτ
(218)

= Λβ
αu

α (219)

so the tangent to the path is a Lorentz vector. It is called the 4 -velocity. It is easy to find
the components of the 4-velocity in terms of the usual “3-velocity”, v :

uβ =
dxβ

dτ
(220)

=
d

dτ
(ct,x) (221)

=

(
c
dt

dτ
,
dx

dτ

)
(222)

=

(
c
dt

dτ
,
dt

dτ

dx

dt

)
(223)

=

(
cγ, γ

dx

dt

)
(224)

= γ (c,v) (225)

Since uα is a 4-vector, its length must be something that is independent of the frame of
reference of the observer. Let’s compute it to check:

uαuα = γ (c,v) · γ (c,−v) (226)
= γ2

(
c2 − v2

)
(227)

=
c2 − v2

1− v2

c2

(228)

= c2 (229)

Indeed, all observers agree on this value!
Now let m be the (Lorentz invariant!) mass of a particle. We define the 4 -momentum,

pα = muα (230)

Since uα is a Lorentz vector and m is invariant, pα is a Lorentz vector. Once again, the mag-
nitude is invariant, since pαpα = m2uαu

α = m2c2. Notice that if m is not Lorentz invariant,
the 4-momentum is not a 4-vector. The components of pα are called the (relativistic) energy
and the (relativistic) 3-momentum. They are given by the familiar formulas,

pα = (E/c,p) (231)
= muα (232)
= (mγc,mγv) (233)
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Expanding the γ factor when v2 << c2,

γ =

(
1− v2

c2

)−1/2

(234)

= 1 +
v2

2c2
+O

(
v4

c4

)
(235)

we recover the non-relativistic expressions

E = mγc2 ≈ mc2 +
1

2
mv2 (236)

p = mγv ≈ mv (237)

We will shortly see other objects with linear, homogeneous transformations under the
Lorentz group. Some have multiple indices,

Tαβ...µ (238)

and transform linearly on each index,

(T ′)
αβ...µ

= Λα
ρΛ

β
σΛµ

νT
ρσ...ν (239)

The collection of all such objects is called the set of Lorentz tensors. More specifically, we are
discussing the group of transformations (Exercise: prove that the Lorentz transformations
form a group!) that preserves the matrix diag(−1, 1, 1, 1). This group is name O(3, 1),
meaning the pseudo-orthogonal group that preserves the 4-dimensional metric with 3 plus
and 1 minus sign. In general the group of transformations preserving diag(1, . . . 1,−1, . . .−1)
with p plus signs and q plus signs is named O(p, q). From the definition of Λα

µ via

ηµν = ηαβΛα
µΛβ

ν (240)

or, more concisely
η = ΛtηΛ (241)

we see that (det Λ)2 = 1. If we restrict to det Λ = +1, the corresponding group is called
SO(3, 1), where the S stands for “special”.

1.5.3 Lorentz invariant tensors

Notice that the defining property of Lorentz transformations, eq.(204) or eq.(240), states the
invariance of the metric ηαβ under Lorentz transformations. This is a very special property
– in general, the components of tensors are shuffled linearly by Lorentz transformations.

The Levi-Civita tensor, defined to be the unique, totally antisymmetric rank four tensor
εαβµν with

ε0123 = 1 (242)
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is the only other independent tensor which is Lorentz invariant. To see that εαβµν is invariant,
we first note that it may be used to define determinants. For any matrix Mαβ, we may write

detM = εαβµνM
α0Mβ1Mµ2Mν3 (243)

=
1

4!
εγδρσεαβµνM

αγMβδMµρMνσ (244)

=
1

4!
εγδρσεαβµνM

α
γM

β
δM

µ
ρM

ν
σ (245)

because the required antisymmetrizations are accomplished by the Levi-Civita tensor. An
alternative way to write this is

(detM) εγδρσ = εαβµνM
α
γM

β
δM

µ
ρM

ν
σ (246)

because the right side is totally antisymmetric on γδρσ and if we set γδρσ = 0123 we get
our original expression for detM. Since this last expression holds for any matrix Mα

γ, it
holds for the Lorentz transformation matrix, Λα

γ :

(det Λ) εγδρσ = εαβµνΛ
α

γΛ
β

δΛ
µ

ρΛ
ν

σ (247)

However, since the determinant of a (proper) Lorentz transformation is +1, we have the
invariance of the Levi-Civita tensor,

εγδρσ = εαβµνΛ
α

γΛ
β

δΛ
µ

ρΛ
ν

σ (248)

This also shows that under spatial inversion, which has det Λ = −1, the Levi-Civita tensor
changes sign. The presence of an odd number of Levi-Civita tensors in any relativistic
expression therefore shows that that expression is odd under parity.

In fact, we need only know this parity argument for a single Levi-Civita tensor, because
any pair of them may always be replaced by four antisymmetrized Kronecker deltas using

εαβµνεγδρσ = δα[γδ
β
δ δ

µ
ρ δ

ν
σ] (249)

where the square brackets around the indices indicate antisymmetrization over all 24 per-
mutations of γδρσ, with the normalization 1

4!
. By taking one, two, three or four contractions

we obtain the following identities:

εαβµνεαδρσ = 6δβ[δδ
µ
ρ δ

ν
σ] (250)

εαβµνεαβρσ = 2
(
δµρ δ

ν
σ − δµσδνρ

)
(251)

εαβµνεαβµσ = 6δνσ (252)
εαβµνεαβµν = 24 (253)

Similar identities hold in every dimension. In n dimensions, the Levi-Civita tensor is of rank
n. For example, the Levi-Civita tensor of Euclidean 3-space is εijk, where

ε123 = 1 (254)
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and all other components follow using the antisymmetry. Along with the metric, gij = 1
1

1

 , εijk is invariant under SO(3). It is again odd under parity, and satisfies the

following identities

εijkεlmn = δi[lδ
j
mδ

k
n] (255)

εijkεimn = δjmδ
k
n − δjnδkm (256)

εijkεijn = 2δkn (257)
εijkεijk = 6 (258)

These identities will be useful in our discussion of the rotation group.

1.5.4 Discrete Lorentz transformations

In addition to rotations and boosts, there are two additional discrete transformations which
preserve τ . Normally these are taken to be parity (P) and time reversal (T ). Parity is
defined as spatial inversion,

P : (t,x)→ (t,−x) (259)

We do not achieve new symmetries by reflecting only two of the spatial coordinates, e.g.,
(t, x, y, z)→ (t,−x,−y, z) because this effect is achieved by a rotation by π about the z axis.
For the same reason, reflection of a single coordinate is equivalent to reflecting all three. The
effect of the parity on energy and momentum follows easily. Since the 4-momentum is defined
by

pβ = m
dxβ

dτ
(260)

and because m and τ are Lorentz invariant, we have

P (E/c,p) = P
(
m
d (t,x)

dτ

)
(261)

= m
d

dτ
P (t,x) (262)

= m
d

dτ
(t,−x) (263)

= (E/c,−p) (264)

Time reversal is chosen to mimic Newtonian time reversal. In the Newtonian case, time
reversal is just the replacement t→ −t,

TN : (t,x)→ (−t,x) (265)

Acting on non-relativistic energy and momentum this gives

TNE = TN

(
1

2
m

(
dx

dt

)2
)

=
1

2
m

(
dx

d (−t)

)2

= E (266)
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TNp = TNm
(
dx

dt

)
= m

dx

d (−t)
= −p (267)

so that Newtonian time reversal is given by

TN : (E,p)→ (E,−p) (268)

Define: Relativistic time reversal, T , is the discrete Lorentz transformation which reduces
in the non-relativistic limit to Newtonian time reversal, TN .

An useful mnemonic for the effect of time reversal is to imagine filming some motion,
then running the movie backward. The backward running film is the time reversed motion.
It follows that:

T : (t,x)→ (t,x) (269)
T : (E,p)→ (E,−p) (270)

This transformation is a Lorentz transformation, since it preserves the fundamental invari-
ant, τ = (xαxα)1/2 . However, the definition means that the 4-momentum is not a proper
Lorentz vector, since it does not have the same transformation law as the position vector.
Correspondingly, we see that the quantity relativistic norm of xα + βpα is not invariant:

(xα + βpα) (xα + βpα) = τ 2 + 2β (Et− p · x) +m2 (271)

but
(T xα + βT pα) (T xα + βT pα) = τ 2 + 2β (Et+ p · x) +m2 (272)

In this case we might call the 4-momentum a pseudo-vector or a semi-vector. As with polar
vectors in classical mechanics, this distinction causes little confusion. However, there is an
alternative definition of time reversal which appears better suited to relativistic problems:
chronicity.

We define chronicity as follows.

Define: Chronicity, ×, is the reversal of the time component of 4-vectors,

× : (t,x)→ (−t,x) (273)

This is clearly a Lorentz transformation. Now we compute the effect of chronicity on energy
and momentum from their definitions in terms of the coordinates:

× (E/c,p) = ×
(
m
d (t,x)

dτ

)
= m

d

dτ
× (t,x) = m

d

dτ
(−t,x) = (−E/c,p) (274)

With this definition of the symmetry, the energy-momentum is once again a proper 4-vector,
but the non-relativistic limit is exactly opposite to Newtonian time reversal.
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Notice the unexpected role played by the invariance of the proper time. By contrast
with Newtonian time reversal, with the invariance of τ and the linearity of both E and p
in τ, only the energy reverses sense. The difference is easy to see in a spacetime diagram,
where the old “run the movie backward” prescription is seen to require some fine tuning. In
spacetime, the “motion” of the particle is replaced by a world line. Under chronicity, this
world line flips into the past light cone. An observer (still moving forward in time in either
the Newtonian or the relativistic version) experiences this flipped world line in reverse order,
so negative energy appears to depart the endpoint and later arrive at the initial point of
the motion. A collision at the endpoint, however, imparts momentum in the same direction
regardless of the time orientation (see fig.(1)).

In discussing the inevitable negative energy states that arise in field and their relation to
antiparticles, chronicity plays a central role.

The subgroup of Lorentz transformations for which the coordinate system remains right
handed is called the proper Lorentz group, and the subgroup of Lorentz transformations
which maintains the orientation of time is called the orthochronous Lorentz group. The
simply connected subgroup which maintains both the direction of time and the handedness
of the spatial coordinates is the proper orthochronous Lorentz group.

1.6 Noether’s Theorem

While now turn to a proof of Noether’s Theorem. This theorem establishes the relationship
between symmetry and conserved quantities. This important relationship means that the
measurable quantities in physics come from symmetries of the action.

By a symmetry we mean any set of transformations of the fields and/or coordinates
that leaves the action invariant. Generally we expect symmetries to form a group. We can
argue this as follows. Certainly, if we can transform a field from one value to another, we can
transform back to the original field, showing that the set of symmetry transformations include
inverses. Also, we can always count the identity transformation, which just leaves the fields
alone, as an element of the set. And surely the set of transformations is closed: transforming
a field twice, we still have a field, so the composition of two symmetry transformations
defines a third symmetry transformation. The only remaining requirement for the set of
transformations to be a group is that the transformations be associative. This is a bit
harder to argue qualitatively, so we won’t. But it turns out to be the case in all of the
symmetries we will consider.

To derive the theorem, suppose we have an action built from some fields φA, where A is
any collection of labels or indices. In this way, φA can represent any number of scalar, vector
and/or other types of fields. Let the transformation

φA → φA + ∆A(φB, x) (275)

be a transformation that leaves S invariant. The function ∆ is some specific function of the
coordinates and fields.
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The simplest form of Noether’s theorem applies when not only S, but even the Lagrangian
density L is invariant.Then, substituting the transformation into L the variation is given by

δ∆L =
∂L
∂φA

δ∆φ
A +

∂L
∂ (∂µφA)

δ∆

(
∂µφ

A
)

(276)

=
∂L
∂φA

∆A +
∂L

∂ (∂µφA)
∂µ∆A (277)

In order for the transformation to be a symmetry, δL must vanish identically, regardless of
the values of the fields. The fields do not have to satisfy the field equations. However, we
get Noether’s theorem when we consider what happens when the fields do satisfy the field
equations, because then the action is invariant under arbitrary variations, not just this one.
For such a variation, the Lagrangian density changes by

δL =
∂L
∂φA

δφA +
∂L

∂ (∂µφA)
δ
(
∂µφ

A
)

(278)

=
∂L
∂φA

δφA +
∂L

∂ (∂µφA)
∂µ
(
δφA

)
(279)

=
∂L
∂φA

δφA + ∂µ

(
∂L

∂ (∂µφA)
δφA

)
− ∂µ

(
∂L

∂ (∂µφA)

)
δφA (280)

=

(
∂L
∂φA

− ∂µ
(

∂L
∂ (∂µφA)

))
δφA + ∂µ

(
∂L

∂ (∂µφA)
δφA

)
(281)

We recognize the first term in parentheses as the Euler-Lagrange equations for the fields.
Now consider these results combined. Let the variation be restricted to the symmetry,

that is, δφA = ∆A, but let the action be extremal so that the Euler-Lagrange equations hold.
Then

δ∆L = 0 (282)

because of the symmetry and

∂L
∂φA

− ∂µ
(

∂L
∂ (∂µφA)

)
= 0 (283)

are the field equations. Substituting both of these into the general variation of L gives

0 = δ∆L (284)

=

(
∂L
∂φA

− ∂µ
(

∂L
∂ (∂µφA)

))
δ∆φ

A + ∂µ

(
∂L

∂ (∂µφA)
δ∆φ

A

)
(285)

= ∂µ

(
∂L

∂ (∂µφA)
∆A

)
(286)

We identify the Noether current,

Jµ ≡ ∂L
∂ (∂µφA)

∆A (287)
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and see that it is conserved,
∂µJ

µ = 0

Now that we see how it works, we can generalize the theorem to cases when the Lagrangian
density is not invariant under the symmetry transformation. The action is invariant and
therefore has a symmetry if the Lagrangian density varies to give a total divergence:

δ∆L = ∂µK
µ (288)

for any Kµ built from the fields and coordinates. Then by the same reasoning used above
we have

δ∆L = ∂µ

(
∂L

∂ (∂µφA)
∆A

)
(289)

so that
∂µK

µ = ∂µ

(
∂L

∂ (∂µφA)
∆A

)
(290)

We therefore define
Jµ ≡ ∂L

∂ (∂µφA)
∆A −Kµ (291)

and once again the current Jµ is conserved:

∂µJ
µ = 0

1.6.1 Example 1: Translation invariance

Consider an action of the form

S =

∫
L(φA, ∂φA)d4x (292)

Since the integral is over all of spacetime, the value of the integral cannot depend on a
translation of the coordinates, either in time or space. If aµ is an arbitrary constant 4-vector
then the replacement

xµ → xµ + aµ (293)

leaves S unchanged. The change in the fields for infinitesimal aµ is

φA(x)→ φA(x+ a) ≈ φA(x) +
∂φA

∂xα
aα (294)

so that δ∆φ
A = ∂φA

∂xα
aα. Then

δ∆

(
∂µφ

A
)

= ∂µ
(
δ∆φ

A
)

(295)

= ∂µ

(
∂φA

∂xα
aα
)

(296)

=
∂2φA

∂xµ∂xα
aα (297)
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so that the variation of the Lagrangian density is

δ∆L =
∂L
∂φA

δ∆φ
A +

∂L
∂ (∂µφA)

δ∆

(
∂µφ

A
)

(298)

=
∂L
∂φA

∂φA

∂xα
aα +

∂L
∂ (∂µφA)

∂2φA

∂xµ∂xα
aα (299)

=
∂L
∂xα

aα (300)

=
∂

∂xα
(Laα) (301)

As required, this is a divergence. When the action is extremal, δS = 0, the Euler-Lagrange
field equations are satisfied so for any variation

δL =

(
∂L
∂φA

− ∂µ
(

∂L
∂ (∂µφA)

))
δφA + ∂µ

(
∂L

∂ (∂µφA)
δφA

)
(302)

= ∂µ

(
∂L

∂ (∂µφA)
δφA

)
(303)

Specifically, the infinitesimal translation gives

∂

∂xα
(Laα) = δ∆L = ∂µ

(
∂L

∂ (∂µφA)
δ∆φ

A

)
(304)

0 = ∂µ

(
∂L

∂ (∂µφA)

∂φA

∂xα
aα − Laµ

)
(305)

Notice that there is a current for each of the four (3 space and 1 time) translations. For each
different translation we get a distinct conservet current. Since aµ is constant, we can extract
it from the derivative:

0 = aα∂µ

(
∂L

∂ (∂µφA)

∂φA

∂xα
− Lδµα

)
(306)

and since it is arbitrary we can drop it altogether:

0 = ∂µ

(
∂L

∂ (∂µφA)

∂φA

∂xα
− Lδµα

)
(307)

We now have four independent currents

T µ α =
∂L

∂ (∂µφA)

∂φA

∂xα
− Lδµα (308)

We can raise an index with the metric,

T µβ = ηβαT µ α = ηβα
∂L

∂ (∂µφA)

∂φA

∂xα
− Lηβαδµα (309)

=
∂L

∂ (∂µφA)
∂βφA − Lηµβ (310)
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and because the metric is constant we still have

∂µT
µβ = 0 (311)

The 2nd rank tensor (matrix) T µβ is called the stress-energy tensor. Although our expression
here is not necessarily symmetric (T µβ 6= T βµ in general), there is enough freedom in its
definition that it can always be made symmetric. It is the symmetric version of the stress-
energy tensor that provides the source for curvature in general relativity. Therefore, even
though many solutions in general relativity use macroscopic versions of T µβ in which the
elements correspond to energy density, pressures and stresses, the field theory approach
shows that it is really built from fundamental particle fields. Of course, a statistical average
of the fundamental fields gives the pressures and stresses in the macroscopic form, but in
a truly fundamental theory T µβ is built from fields. For example, researchers studying the
early universe will drive the cosmological model by introducing a scalar field, the inflaton,
to produce an inflationary phase to the overall cosmological expansion.

We construct conserved charges by integrating the time component of each current over
a spatial 3-volume Σ

P β =

∫
Σ

T 0βd3x (312)

Then

dP β

dt
=

d

dt

∫
Σ

T 0βd3x (313)

=

∫
Σ

∂

∂t
T 0βd3x (314)

= −
∫

Σ

∂iT
iβd3x (315)

= −
∫
δΣ

T iβnid
2x (316)

where ni is normal to the 2-dimensional boundary, δΣ, of the 3-volume, Σ. Therefore, the
time rate of change of P β is given by the rate of flow of T iβ across the boundary.

What are these charges? They are the conserved energy and momentum of the field. It is
interesting that conservation of momentum arises from invariance of the action under spatial
translations while conservation of energy arises from invariance under displacement in time.

1.6.2 Example 2: Lorentz invariance

We are only interested in relativistic field theories, and therefore demand that the actions
we consider must be Lorentz invariant. This requirement also leads to conserved charges.

First, we find the form of an infinitesimal Lorentz transformation. The defining property
is

ηµν = ηαβΛα
µΛβ

ν (317)
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We let Λα
µ be infinitesimally close to the identity

Λα
µ = δα µ + εα µ (318)

and expand to first order in epsilon:

ηµν = ηαβΛα
µΛβ

ν (319)

= ηαβ
(
δα µ + εα µ

) (
δβ ν + εβ ν

)
(320)

= ηαβ
(
δα µδ

β
ν + δα µε

β
ν + εα µδ

β
ν + εα µε

β
ν

)
(321)

≈ ηµν + ηµβε
β

ν + ηανε
α

µ (322)

The ηµν terms cancel, leaving

0 = ηµβε
β

ν + ηανε
α

µ (323)
= εµν + ενµ (324)

which simply says that εµν is antisymmetric. Since an antisymmetric 4 × 4 matrix has
6 independent components, we see directly the six independent degrees of freedom of the
Lorentz transformations.

Now we consider the Noether currents. This time, the infinitesimal transformation of the
fields depends not only on the change in the coordinates,

xβ → Λβ
νx

ν = xβ + εβ νx
ν (325)

δxβ = εβ νx
ν (326)

but also on what type of field we consider. For example, scalar, contravariant vector fields
and covariant vector fields change as

φ(x) → φ(Λx) = φ(x) +
∂φ

∂xα
δxα (327)

vα(x) → Λα
µv

µ(Λx) =
(
δα µ + εα µ

)(
vµ(x) +

∂vµ

∂xβ
δxβ
)

(328)

vα(x) → vµ(Λx)
(
Λ−1

)µ
α

=

(
vµ(x) +

∂vµ
∂xβ

δxβ
)

(δµ α − εµ α) (329)

Other types of fields have other transformation properties. Notice the use of the inverse
Lorentz transformation for covariant vectors. This follows from the Lorentz invariance of
vαvα. The infinitesimal expression δµ α−εµ α is easily shown to be the inverse to δα µ+εα µ

to first order in epsilon.
For simplicity, we’ll consider only the scalar field. Then

δ∆φ =
∂φ

∂xα
δxα (330)

= ∂αφ δx
α (331)

= ∂αφ ε
α

νx
ν (332)
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The variation of the derivative term δ∆ (∂µφ) is a bit trickier. Since ∂µφ is a covariant vector,
we need to include a factor Λ−1 on the derivative. However, in the variation of the Lagrange
density, the Λ−1 is always cancelled by a factor Λ on the corresponding contravariant vector
(i.e., since L is Lorentz invariant, every covariant vector is summed with a contravariant
one) so we need only consider

δ∆ (∂µφ) = ∂α (δ∆φ) (333)
= ∂µ

(
∂βφ ε

β
νx

ν
)

(334)
= ∂µ∂βφ ε

β
νx

ν + ∂βφ ε
β

µ (335)

Where we use ∂µxν = δνµ in the last step.
The change in the Lagrangian density under the infinitesimal Noether symmetry is there-

fore

δ∆L =
∂L
∂φ

δ∆φ+
∂L

∂ (∂µφ)
δ∆ (∂µφ) (336)

=
∂L
∂φ

∂αφ (337)

varepsilonα νx
ν +

∂L
∂ (∂µφA)

∂µ
(
∂βφ ε

β
νx

ν
)

(338)

=
∂L
∂φ

∂αφ (339)

varepsilonα νx
ν +

∂L
∂ (∂µφA)

(∂µ∂βφ) εβ νx
ν +

∂L
∂ (∂µφA)

∂βφ εβµ (340)

= ∂αL εα νx
ν +

∂L
∂ (∂µφA)

∂βφ εβµ (341)

= ∂α (L εα νx
ν)− (Lεα α) +

∂L
∂ (∂µφA)

∂βφ εβµ(342)

But
εα α = ηαβεβα = 0 (343)

since the metric is symmetric and epsilon is antisymmetric. So we have

δ∆L = ∂α (L) +
∂L

∂ (∂µφA)
∂βφ εβµ (344)

= ∂α (L εα νx
ν) +

∂L
∂ (∂µφA)

∂βφ εβµ (345)

= ∂α (L εα νx
ν) +

1

2

(
∂L

∂ (∂µφA)
∂αφ− ∂L

∂ (∂αφA)
∂µφ

)
εαµ (346)

Notice how we use the antisymmetry of the infinitesimal Lorentz transformation. In a little
more detail, here’s how it works:

∂L
∂ (∂µφA)

∂αφ εαµ =
∂L

∂ (∂µφA)
∂αφ

1

2
(εαµ − εµα) (347)
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=
1

2

(
∂L

∂ (∂µφA)
∂αφ εαµ −

∂L
∂ (∂µφA)

∂αφ εµα

)
(348)

=
1

2

(
∂L

∂ (∂µφA)
∂αφ εαµ −

∂L
∂ (∂αφA)

∂µφ εαµ

)
(349)

=
1

2

(
∂L

∂ (∂µφA)
∂αφ − ∂L

∂ (∂αφA)
∂µφ

)
εαµ (350)

In the first step we use the antisymmetry of epsilon, while in the last step we simply rename
the indices in the second term.

Now, returning to the variation, we have already found that

T µβ =
∂L

∂ (∂µφ)
∂βφ− Lηµβ (351)

so
∂L

∂ (∂µφ)
∂βφ = T µβ + Lηµβ (352)

and therefore

∂L
∂ (∂µφ)

∂βφ− ∂L
∂ (∂βφ)

∂µφ = T µβ + Lηµβ − T βµ − Lηβµ (353)

= T µβ − T βµ (354)

Thus, the symmetry variation becomes:

δ∆L = ∂α (L) +
1

2

(
∂L

∂ (∂µφA)
∂αφ− ∂L

∂ (∂αφA)
∂µφ

)
εαµ (355)

= ∂α (L εα νx
ν) +

1

2
(T µα − Tαµ) εαµ (356)

This needs to be a divergence, but the second term doesn’t look like one. There’s no prob-
lem if the stress-energy tensor is symmetric because then the contraction Tαµεαµ vanishes
identically. For the scalar field case, Tαµ is symmetric. Let’s work out this case first, then
come back to the asymmetric case.

1.6.3 Symmetric stress-energy tensor (Scalar Field):

With Tαµ = T µα we have simply
δ∆L = ∂α (L) (357)

Then, requiring a general variation of the action to vanish so that the field equations hold
we have as before,

δL = ∂α

(
∂L

∂ (∂αφ)
δφ

)
(358)

40



Restricting to the symmetry variation this becomes

δ∆L = ∂α (L) = ∂α

(
∂L

∂ (∂αφ)
δ∆φ

)
(359)

0 = ∂α

(
∂L

∂ (∂αφ)
δ∆φ− Lεα νx

ν

)
(360)

= ∂α

(
∂L

∂ (∂αφ)
∂βφ ε

β
νx

ν − Lεα νx
ν

)
(361)

= εβ ν∂α

(
∂L

∂ (∂αφ)
∂βφ x

ν − Lδαβxν
)

(362)

= εβ ν∂α
(
Tα βx

ν
)

(363)

= εβν∂α
(
Tαβ xν

)
(364)

Because epsilon is antisymmetric, only the divergence of the antisymmetric part of Tαβ xν
vanishes. Therefore, we define

Mαβν = Tαβ xν − Tαν xβ (365)

and it is conserved:
∂αM

αβν = 0 (366)

Notice that if the stress-energy tensor is not symmetric,Mαβν is not conserved, because then
we have

∂αM
αβν = ∂α

(
Tαβ xν − Tαν xβ

)
(367)

= ∂αT
αβ xν − ∂αTαν xβ − Tαβ∂α xν + Tαν∂α x

β (368)
= −Tαβδνα + Tανδβα (369)
= −T νβ + T βν (370)

Therefore, we return to consider what to do when Tαβ is asymmetric.

1.6.4 Asymmetric stress-energy vector field

We will consider the case of a vector field, which may have an antisymmetric stress-energy
tensor. For example, let’s figure out the stress-energy tensor for the simplest actoin involving
a complex vector field:

S =

∫
d4x

(
∂αv̄β∂αvβ

)
(371)

where v̄β is the complex conjugate of vβ. The stress-energy tensor is then

T µβ =
∂L

∂ (∂µφA)
∂βφA − Lηµβ (372)

=
∂L

∂ (∂µvα)
∂βvα − Lηµβ (373)

= ∂µv̄α∂
βvα − Lηµβ (374)
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The first term can be antisymmetric:

Tµν − Tνµ = ∂µv̄α∂νv
α − ∂ν v̄α∂µvα 6= 0 (375)

It is easy to write down other asymmetric examples.
To handle this case, we will compute the variations in a slightly different way. For vectors

(and other rank tensors) there are two ways to look at Lorentz transformations. First, like
the scalar field, we have the coordinate dependence,

xα → Λα
βx

β (376)

which induces a change in vα(x). Second, since vα is a Lorentz vector, the vector itself
transforms according to

vα → Λα
βv

β (377)

This transformation law is the definition of a Lorentz vector; similarly, Lorentz tensors are
objects with any number of indices, which transform linearly and homogeneously under
Lorentz transformations:

Tα...β → Λα
µ . . .Λ

β
νT

µ...ν (378)

Since covariant tensors (with lowered indices) transform by (Λ−1)
α

µ , it is easy to build
actions which are invariant under this second form of transformation simply by making sure
that every raised index is contracted with a lowered index, and vice versa. For example, we
have

vαvα → Λα
βv

βvµ
(
Λ−1

)µ
α

(379)

=
(
Λ−1

)µ
α

Λα
βv

βvµ (380)

= δµ βv
βvµ (381)

= vβvβ (382)

and the contraction is invariant.
The separate invariance of the theory under transformations of the fields and transfor-

mations of the coordinates makes it possible to consider the two types of transformation
independently. This simplifies the calculations.

First, consider the transformation of a vector field without a change of coordinates:

vα(x) → Λα
βv

β(x) = vα + εα βv
β (383)

δvα = εα βv
β (384)

Then for derivatives we have

∂µ (δvα) = εα β∂µv
β + (∂βv

α) εβ µ (385)
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The second term arises because the derivative of vα is a second rank tensor, and each index
of a tensor must be transformed. Now the variation of vα under a Lorentz transformation is

δ∆L =
∂L
∂vα

δ∆v
α +

∂L
∂ (∂µvα)

δ∆ (∂µv
α) (386)

=
∂L
∂vα

(
εα βv

β
)

+
∂L

∂ (∂µvα)

(
εα β∂µv

β + (∂βv
α) εβ µ

)
(387)

=
∂L
∂vα

(
εα βv

β
)

+
∂L

∂ (∂µvα)
εα β∂µv

β +
∂L

∂ (∂µvα)
(∂βv

α) εβ µ (388)

Because we are only considering the active transformation of the fields and not of the coor-
dinates, the Lagrangian density is invariant. So we can simply set δ∆L = 0 :

0 = δ∆L (389)

=
∂L
∂vα

(
εα βv

β
)

+
∂L

∂ (∂µvα)
εα β∂µv

β +
∂L

∂ (∂µvα)
(∂βv

α) εβ µ (390)

Now we assume a general variation, so we can use the field equations,

0 =
∂L
∂vα
− ∂µ

(
∂L

∂ (∂µvα)

)
(391)

We also use the expression for the stress-energy tensor.

T µ α =
∂L

∂ (∂µvβ)
∂αv

β − Lδµα (392)

Then, combining these with the vanishing symmetry variation,

0 =
∂L
∂vα

(
εα βv

β
)

+
∂L

∂ (∂µvα)
εα β∂µv

β +
∂L

∂ (∂µvα)
(∂βv

α) εβ µ (393)

= ∂µ

(
∂L

∂ (∂µvα)

)(
εα βv

β
)

+
∂L

∂ (∂µvα)
εα β∂µv

β +
(
T µ β + Lδµβ

)
εβ µ (394)

= ∂µ

(
∂L

∂ (∂µvα)

)(
εα βv

β
)

+
∂L

∂ (∂µvα)
εα β∂µv

β + T µ βε
β

µ (395)

= ∂µ

(
∂L

∂ (∂µvα)
vβ
)
εα β + T µβεβµ (396)

= ∂µ

(
∂L

∂ (∂µvα)
vβ
)
εα β +

1

2

(
T µβ − T βµ

)
εβµ (397)

where we used δµβε
β

µ = εβ β = 0. Notice the explicit appearance of the antisymmetric part
of the stress-energy tensor. Extract the arbitrary matrix εβµ :

0 =
1

2

(
∂µ

(
∂L

∂ (∂µvα)
vβ
)
− ∂µ

(
∂L

∂ (∂µvβ)
vα
)
−
(
Tαβ − T βα

))
εαβ (398)

43



Since the expression contracted with εαβ is now explicitly antisymmetric we can drop the
εαβ.

0 = ∂µ

(
∂L

∂ (∂µvα)
vβ
)
− ∂µ

(
∂L

∂ (∂µvβ)
vα
)
−
(
Tαβ − T βα

)
(399)

This is our first result.
Eq.(399) gives us the tool we need to construct a new, symmetric form of the stress

energy tensor. To see why, suppose we have any tensor Σµαβ which is antisymmetric on the
first two indices,

Σµαβ = −Σαµβ (400)

Then its divergence ∂µΣµαβ is automatically divergence free:

∂α∂µΣµαβ = 0 (401)

This follows because the mixed partials are symmetric on µα while sigma is antisymmetric.
Therefore,

Θαβ = Tαβ + ∂µΣµαβ (402)

is conserved as long as Tαβ is. In addition, Θαβ will be symmetric provided

0 = Θαβ −Θβα (403)
= Tαβ + ∂µΣµαβ − T βα − ∂µΣµβα (404)

Let’s find what Σµαβ must be. If we define

λµαβ =
∂L

∂ (∂µvα)
vβ (405)

then the condition of Lorentz symmetry, eq.(399), may be written more compactly:

Tαβ − T βα = ∂µλ
µαβ − ∂µλµβα (406)

Therefore, we have two conditions on Σµβα :

∂µΣµβα − ∂µΣµαβ = Tαβ − T βα (407)
= ∂µλ

µαβ − ∂µλµβα (408)

and

Σµαβ = −Σαµβ (409)

It is sufficient (but not necessary) to drop the divergence on each term of the first equation.
Then

Σµβα − Σµαβ = λµαβ − λµβα (410)
Σµαβ = −Σαµβ (411)
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This is not hard to sort out if you know the trick. Write the first equation three times,
permuting the indices each time:

Σµβα − Σµαβ = λµαβ − λµβα (412)
Σβαµ − Σβµα = λβµα − λβαµ (413)
Σαµβ − Σαβµ = λαβµ − λαµβ (414)

Each of these is a correct equation, so we can combine them freely. The trick is to add the
first two equations and subtract the third. For the left side this gives

LHS = Σµβα − Σµαβ + Σβαµ − Σβµα − Σαµβ + Σαβµ (415)
=

(
Σµβα − Σβµα

)
−
(
Σµαβ + Σαµβ

)
+
(
Σβαµ + Σαβµ

)
(416)

= 2Σµβα (417)

Where we use our second condition, the antisymmetry of sigma on the first two indices.
Since the right hand side is just

RHS = λβµα − λβαµ + λµαβ − λµβα − λαβµ + λαµβ (418)

we have solved for the required form of sigma:

Σµβα =
1

2

(
λβµα − λβαµ + λµαβ − λµβα − λαβµ + λαµβ

)
(419)

Therefore, the symmetric form of the stress energy is (interchanging α and β to get the right
form):

Θαβ = Tαβ + ∂µΣµαβ (420)

= Tαβ +
1

2
∂µ
(
λαµβ − λαβµ + λµβα − λµαβ − λβαµ + λβµα

)
(421)

where
λµαβ =

∂L
∂ (∂µvα)

vβ (422)

This object is called the Belinfante tensor (see Weinberg, vol I, p. 316; ref to Belinfante,
Physica 6, 887 (1939)).

If we substitute this expression for Tαβ in the equation for Lorentz invariance we now
get zero automatically:

∂µλ
µαβ − ∂µλµβα −

(
Tαβ − T βα

)
= ∂µλ

µαβ − ∂µλµβα + ∂µΣµαβ − ∂µΣµβα (423)
= 0 (424)

What has happened to the conservation law? We replaced Tαβ by Θαβ and we still have
∂αΘαβ = 0 for translation invariance, but what about Lorentz invariance? The answer lies in
the remaining part of the calculation, namely, the coordinate transformations. We considered
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only the invariance of the Lagrangian density under Lorentz transformations of the fields,
but not under transformations of the coordinates. We can demand both. Therefore, we now
consider what happens when we let

δxβ = εβ νx
ν (425)

as we did for the scalar field.
The symmetry variation of the Lagrangian for this case is simply

δ∆L =
∂L
∂xα

δ∆x
α =

∂L
∂xα

εα βx
β

Now, quite generally, Lagrangian densities depend directly on the coordinates only in the
volume density, and it is not hard to show that the volume density is Lorentz invariant. Any
other dependence is through the fields using the chain rule

δ∆L ∼ ∂L
∂vα

∂vα

∂xµ
δxµ +

∂L
∂ (∂βvα)

∂µ∂βv
αδxµ (426)

=
∂L
∂vα

δvα +
∂L

∂ (∂βvα)
δ (∂βv

α) (427)

and these have already been set to zero. Therefore, ∂ L
∂xα

= 0 and the variation gives zero,
δ∆L = 0. Therefore

(∂µL) εµ βx
β = 0 (428)

We expand this expression and use the field equations

0 = ∂µLεµ βx
β (429)

=

(
∂L
∂vα

∂µv
α +

∂L
∂ (∂βvα)

∂µ∂βv
α

)
εµ νx

ν (430)

=

(
∂β

(
∂L

∂ (∂βvα)

)
∂µv

α +
∂L

∂ (∂βvα)
∂µ∂βv

α

)
εµ νx

ν (431)

=

(
∂α

(
∂L

∂ (∂αvν)
∂βvν

))
εβρx

ρ (432)

Next, let’s use the definition of the symmetric stress-energy tensor,

Θαβ = Tαβ + ∂µΣµαβ (433)

=
∂L

∂ (∂αvν)
∂βvν − Lηαβ + ∂µΣµαβ (434)

or
∂L

∂ (∂αvν)
∂βvν = Θαβ + Lηαβ − ∂µΣµαβ (435)
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to replace this term. Substituting, we find

0 =

(
∂α

(
∂L

∂ (∂αvν)
∂βvν

))
εβρx

ρ (436)

=
(
∂α
(
Θαβ + Lηαβ − ∂µΣµαβ

))
εβρx

ρ (437)
=

(
∂αΘαβ + ∂αLηαβ − ∂α∂µΣµαβ

)
εβρx

ρ (438)
=

(
∂αΘαβ + ∂αLηαβ

)
εβρx

ρ (439)
= ∂αΘαβεβρx

ρ + ∂α
(
Lεα ρx

ρ
)

(440)

But the second term vanishes:

∂α
(
Lεα ρx

ρ
)

= (∂αL) εα βx
β + Lεα β

∂xβ

∂xα
(441)

= Lεβ β = 0 (442)

so we are left with

0 =
(
∂αΘαβ

)
εβρx

ρ

= ∂α
(
Θαβεβρx

ρ
)
−
(
Θαβεβρ∂αx

ρ
)

= ∂α
(
Θαβεβρx

ρ
)
−Θαβεβα

Now, since Θαβ is symmetric by construction, the second term is zero, leaving

0 = ∂α
(
Θαβεβρx

ρ
)

= εβρ∂α
(
Θαβxρ

)
=

1

2
εβρ∂α

(
Θαβxρ −Θαρxβ

)
and therefore arrive at our conservation law:

Mαβρ = Θαβxρ −Θαρxβ (443)
∂αM

αβρ = 0 (444)

Finally, consider the possible conserved currents. If we integrate M0αβ as usual, we get

Jαβ =

∫
M0αβd3x (445)

=

∫ (
Θ0αxβ −Θ0βxα

)
d3x (446)

There are six independent components here, sinceM0αβ, and therefore Jαβ, is antisymmetric
under interchange of α and β. These correspond to the three rotations and three boosts of
the Lorentz transformations. The rotations are the spatial components, (i, j = 1, 2, 3),

J ij =

∫
M0ijd3x (447)

=

∫ (
Θ0ixj −Θ0jxi

)
d3x (448)
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Notice that these do not depend explicitly on the time coordinate and that the components
Θ0i of the stress-energy generate momentum. The expression is much like the usual r× p
form of angular momentum. The remaining independent charges are

J0i =

∫
M00id3x (449)

=

∫ (
Θ00xi −Θ0ix0

)
d3x (450)

These depend on energy and time, and generate boosts.
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2 Group theory
Nearly all of the central symmetries of modern physics are group symmetries, for simple
a reason. If we imagine a transformation of our fields or coordinates, we can look at lin-
ear versions of those transformations. Such linear transformations may be represented by
matrices, and therefore (as we shall see) even finite transformations may be given a matrix
representation. But matrix multiplication has an important property: associativity. We get
a group if we couple this property with three further simple observations: (1) we expect two
transformations to combine in such a way as to give another allowed transformation, (2)
the identity may always be regarded as a null transformation, and (3) any transformation
that we can do we can also undo. These four properties (associativity, closure, identity, and
inverses) are the defining properties of a group.

Define: A group is a pair G = {S, ◦} where S is a set and ◦ is an operation mapping pairs of
elements in S to elements in S (i.e., ◦ : S×S → S. This implies closure) and satisfying
the following conditions:

1. Existence of an identity: ∃ e ∈ S such that e ◦ a = a ◦ e = a, ∀a ∈ S.

2. Existence of inverses: ∀ a ∈ S, ∃ a−1 ∈ S such that a ◦ a−1 = a−1 ◦ a = e.

3. Associativity: ∀ a, b, c ∈ S, a ◦ (b ◦ c) = (a ◦ b) ◦ c = a ◦ b ◦ c

We consider several examples of groups.

1. The simplest group is the familiar boolean one with two elements S = {0, 1} where
the operation ◦ is addition modulo two. Then the “multiplication” table is simply

◦ 0 1
0 0 1
1 1 0

(451)

The element 0 is the identity, and each element is its own inverse. This is, in fact, the
only two element group, for suppose we pick any set with two elements, S = {a, b}.
The multiplication table is of the form

◦ a b
a
b

(452)

One of these must be the identity; without loss of generality we choose a = e. Then

◦ a b
a a b
b b

(453)
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Finally, since b must have an inverse, and its inverse cannot be a, we must fill in the
final spot with the identity, thereby making b its own inverse:

◦ a b
a a b
b b a

(454)

Comparing to the boolean table, we see that a simple renaming, a → 0, b → 1 repro-
duces the boolean group. Such a one-to-one mapping between groups that preserves
the group product is called an isomorphism.

2. Let G = {Z,+}, the integers under addition. For all integers a, b, c we have a+ b ∈ R
(closure); 0 + a = a+ 0 = a (identity); a+ (−a) = 0 (inverse); a+ (b+ c) = (a+ b) + c
(associativity). Therefore, G is a group. The integers also form a group under addition
mod p, where p is any integer (Recall that a = bmod p if there exists an integer n such
that a = b+ np).

3. Let G = {R,+}, the real numbers under addition. For all real numbers a, b, c we
have a + b ∈ R (closure); 0 + a = a + 0 = a (identity); a + (−a) = 0 (inverse);
a + (b+ c) = (a+ b) + c (associativity). Therefore, G is a group. Notice that the
rationals, Q, do not form a group under addition because they do not close under
addition:

π = 3 + .1 + .04 + .001 + .0005 + .00009 + . . .

Exercise: Find all groups (up to isomorphism) with three elements. Find all groups (up to
isomorphism) with four elements.

Of course, the integers form a much nicer object than a group. The form a complete
Archimedean field. But for our purposes, they form one of the easiest examples of yet
another object: a Lie group.

Define: A Lie group is a group which is also a manifold. Essentially, this means that a Lie
group is a group in which the elements can be labeled by a finite set of continuous
labels. Qualitatively, a manifold is a space that is smooth enough that if we look at
any sufficiently small region, it looks just like a small region of Rn; the dimension n is
fixed over the entire manifold. We will not go into the details of manifolds here, but
instead will look at enough examples to get across the general idea.

The real numbers form a Lie group because each element of R provides its own label! Since
only one label is required, R is a 1-dimensional Lie group. The way to think of R as a
manifold is to picture the real line. Some examples:

1. The vector space Rn under vector addition is an n-dim Lie group, since each element
of the group may be labeled by n real numbers.
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2. Let’s move to something more interesting. The set of non-degenerate linear transfor-
mations of a real, n-dimensional vector space form a Lie group. This one is important
enough to have its own name: GL(n;R), or more simply, GL(n) where the field (usually
R or C) is unambiguous. The GL stands for General Linear. The transformations may
be represented by n×nmatrices with nonzero determinant. Since for any A ∈ GL(n;R)
we have detA 6= 0, the matrix A is invertible. The identity is the identity matrix, and
it is not too hard to prove that matrix multiplication is always associative. Since each
A can be written in terms of n2 real numbers, GL(n) has dimension n2. GL(n) is an
example of a Lie group with more than one connected component. We can imagine
starting with the identity element and smoothly varying the parameters that define
the group elements, thereby sweeping out curves in the space of all group elements.
If such continuous variation can take us to every group element, we say the group is
connected. If there remain elements that cannot be connected to the identity by such
a continuous variation (actually a curve in the group manifold), then the group has
more than one component. GL(n) is of this form because as we vary the parameters
to move from element to element of the group, the determinant of those elements also
varies smoothly. But since the determinant of the identity is 1 and no element can
have determinant zero, we can never get to an element that has negative determinant.
The elements of GL(n) with negative determinant are related to those of positive de-
terminant by a discrete transformation: if we pick any element of GL(n) with negative
determinant, and multiply it by each element of GL(n) with positive determinant, we
get a new element of negative determinant. This shows that the two components of
GL(n) are in 1 to 1 correspondence. In odd dimensions, a suitable 1 to 1 mapping is
given by −1, which is called the parity transformation.

3. We will be concerned with Lie groups that have linear representations. This means
that each group element may be written as a matrix and the group multiplication is
correctly given by the usual form of matrix multiplication. Since GL(n) is the set of
all linear, invertible transformations in n-dimensions, all Lie groups with linear repre-
sentations must be subgroups of GL(n). Linear representations may be characterized
by the vector space that the transformations act on. This vector space is also called
a representation of the group. We now look at two principled ways of constructing
such subgroups. The simplest subgroup of GL(n) removes the second component to
give a connected Lie group. In fact, it is useful to factor out the determinant en-
tirely, because the operation of multiplying by a constant commutes with every other
transformation of the group. In this way, we arrive at a simple group, one in which
each transformation has nontrivial effect on some other transformations. For a general
matrix A ∈ GL(n) with positive determinant, let

A = (detA)
1
n Â (455)

Then det Â = 1. Since
det
(
ÂB̂
)

= det Â det B̂ = 1 (456)
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the set of all Â closes under matrix multiplication. We also have det Â−1 = 1, and
det 1 = 1, so the set of all Â forms a Lie group. This group is called the Special Linear
group, SL(n).

Frequently, the most useful way to characterize a group is by a set of objects that group trans-
formations leave invariant. In this way, we produce the orthogonal, unitary and symplectic
groups:

Theorem: Consider the subset of GL(n;R) that leaves a fixed matrix M invariant under a
similarity transformation:

H =
{
A|A ∈ GL(n), AMAt = M

}
(457)

Then H is also a Lie group.

Proof: First, H is closed, since if

AMAt = M (458)
BMBt = M (459)

then the product AB is also in H because

(AB)M(AB)t = (AB)M(BtAt) (460)
= A

(
BMBt

)
At (461)

= AMAt (462)
= M (463)

The identity is present because
IMI t = M (464)

and if A leaves M invariant then so does A−1. To see this, notice that (At)
−1

= (A−1)
t

because the transpose of
(A)−1A = I (465)

is
At
(
(A)−1)t = I (466)

Since it is easy to show (exercise!) that inverses are unique, this shows that
(
(A)−1)t must

be the inverse of At. Using this, we start with

AMAt = M (467)

and multiply on the left by A−1 and on the right by (At)
−1

:

A−1AMAt
(
At
)−1

= A−1M
(
At
)−1 (468)

M = A−1M
(
At
)−1 (469)

M = A−1M
(
A−1

)t (470)
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The last line is the statement that A−1 leaves M invariant, and is therefore in H. Finally,
we still have the associative matrix product, so H is a group, concluding our proof.

Now, fix a (nondegenerate) matrix M and consider the group that leaves M invariant.
Suppose M is asymmetrical, so it has both symmetric and antisymmetric parts:

M =
1

2

(
M +M t

)
+

1

2

(
M −M t

)
(471)

≡ Ms +Ma (472)

Then, for any A in H,
AMAt = M (473)

implies
A (Ms +Ma)A

t = (Ms +Ma) (474)

The transpose of this equation must also hold,

A
(
M t

s +M t
a

)
At =

(
M t

s +M t
a

)
(475)

A (Ms −Ma)A
t = (Ms −Ma) (476)

so adding and subtracting eqs.(474) and (476) gives two independent constraints on A :

AMsA
t = Ms (477)

AMaA
t = Ma (478)

Therefore, the largest subgroups Hs and Ha of G that we can form in this way are found by
demanding that M be either symmetric or antisymmetric.

If M is symmetric, then we can always choose a basis for the vector space on which the
transformations act such thatM is diagonal; indeed we can go further, for rescaling the basis
we can make every diagonal element into +1 or −1. Therefore, any symmetric M may be
put in the form

M
(p,q)
ij =



1
. . .

1
−1

. . .
−1


(479)

where there are p terms +1 and q terms−1.We can useM as a pseudo-metric; in components,
for any vector vi,

〈v, v〉 = Mijv
ivj =

p∑
i=1

(
vi
)2 −

p+q∑
i=p+1

(
vi
)2 (480)

Notice that this includes the O(3, 1) Lorentz metric of the previous section, as well as the
O(3) case of Euclidean 3-space. In general, the subgroup of GL(n) leaving Mp,q invariant is
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termed O(p, q), the pseudo-orthogonal group in n = p+ q dimensions. The signature of M
is s = p− q.

Now suppose M is antisymmetric. This case arises in classical Hamiltonian dynamics,
where we have canonically conjugate variables satisfying fundamental Poisson bracket rela-
tions.

{qi, qj}xπ = {pi, pj}xπ = 0 (481)
{pi, qj}xπ = − {qi, pj}xπ = δij (482)

If we define a single set of coordinates including both pi and qi,

ξa = (qi, pj) (483)

where if i, j = 1, 2, . . . , n then a = 1, 2, . . . , 2n, then the fundamental brackets may be written
in terms of an antisymmetric matrix Ωab as

{ξa, ξb} = Ωab (484)

where
Ωab =

(
0 −δij
δij 0

)
= −Ωba (485)

Since canonical transformations are precisely the ones that preserve the fundamental brack-
ets, we can define a group of canonical transformations which preserve Ωab. In general, the
subgroup of GL(n) preserving an antisymmetric matrix is called the symplectic group. We
have a similar result here as for the (pseudo-) orthogonal groups – we can always choose a
basis for the vector space that puts the invariant matrix Ωab in the form given in eq.(485).
From the form of eq.(485) we suspect, correctly, that the symplectic group is always even
dimensional (the determinant of an antisymmetric matrix in odd dimensions is always zero,
so such an invariant cannot be non-degenerate). The notation for the symplectic groups is
therefore Sp(2n).

For either the orthogonal or symplectic groups, we can consider the unit determinant
subgroups. Especially important are the resulting Special Orthogonal groups, SO(p, q).

We give one particular example that will be useful to illustrate Lie algebras in the next
section. The very simplest case of an orthogonal group is O(2), leaving

M =

(
1 0
0 1

)
(486)

invariant. Equivalently, O(2) leaves the Euclidean norm

〈x,x〉 = Mijx
ixj = x2 + y2 (487)

invariant. The form of O(2) transformations is the familiar set of rotation matrices,

A(θ) =

(
cos θ − sin θ
sin θ cos θ

)
(488)
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and we see that every group element is labeled by a continuous parameter θ lying in the
range θ ∈ [0, 2π). The group manifold is the set of all of the group elements regarded as
a geometric object. From the range of θ we see that there is one group element for every
point on a circle – the group manifold of O(2) is the circle. Note the inverse of A(θ) is just
A(−θ) and the identity is A(0). Note that all of the transformations of O(2) already have
unit determinant, so that SO(2) and O(2) are isomorphic.

2.1 Lie algebras

If we want to work with more complicated Lie groups, working directly with the transfor-
mation matrices becomes prohibitively difficult. Instead, most of the information we need
to know about the group is already present in the infinitesimal transformations. Unlike the
group multiplication, the combination of the infinitesimal transformations is usually fairly
simple. This is why, in the previous section, we worked with infinitesimal Lorentz transfor-
mations. Here we’ll start with a simpler case to develop some of the ideas further.

Let’s begin with the example of O(2). Consider those transformations that are close to
the identity. Since the identity is A(0), these will be the transformations A(ε) with ε << 1.
Expanding in a Taylor series, we keep only terms to first order:

A(ε) =

(
cos ε − sin ε
sin ε cos ε

)
≈
(

1 −ε
ε 1

)
(489)

= 1 + ε

(
0 −1
1 0

)
(490)

The only information here besides the identity is the matrix(
0 −1
1 0

)
(491)

but remarkably, this is enough to recover the whole group! For general Lie groups, we get
one generator for each continuous parameter labeling the group elements. The set of all
linear combinations of these generators is a vector space called the Lie algebra of the group.
We will give the full defining set of properties of a Lie algebra below.

Imagine iterating this infinitesimal group element many times. Applying A(ε) n times
rotates the plane by an angle nε :

A(nε) = (A(ε))n =

(
1 + ε

(
0 −1
1 0

))n
(492)

Expanding the power on the right using the binomial expansion,

A(nε) ≈
n∑
k=0

(
n

k

)(
0 −1
1 0

)k
εk1n−k (493)
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To make the equality rigorous, we must take the limit as ε → 0 and n → ∞, holding the
product nε = θ finite. Then:

A(θ) = lim
ε→0,nε→θ

n∑
k=0

(
n

k

)(
0 −1
1 0

)k
εk (494)

= lim
ε→0

n∑
k=0

n!

k! (n− k)!

(
0 −1
1 0

)k
εk (495)

= lim
ε→0

n∑
k=0

n (n− 1) · · · (n− k + 1)

k!
εk
(

0 −1
1 0

)k
(496)

= lim
ε→0

n∑
k=0

1
(
1− 1

n

)
· · ·
(
1− k−1

n

)
k!

(nε)k
(

0 −1
1 0

)k
(497)

=
∞∑
k=0

1

k!
θk
(

0 −1
1 0

)k
(498)

≡ exp

((
0 −1
1 0

)
θ

)
(499)

where in the last step we define the exponential of a matrix to be the power series in the
second line. Quite generally, since we know how to take powers of matrices, we can define
the exponential of any matrix, M, by its power series:

expM ≡
∞∑
k=0

1

k!
Mk (500)

Next, we check that the exponential form of A(θ) actually is the original class of trans-

formations. To do this we first examine powers of
(

0 −1
1 0

)
:

(
0 −1
1 0

)2

=

(
−1 0
0 −1

)
= −1 (501)(

0 −1
1 0

)3

= −
(

0 −1
1 0

)
(502)(

0 −1
1 0

)3

= 1 (503)

The even terms are plus or minus the identity, while the odd terms are always proportional

to the generator,
(

0 −1
1 0

)
. Therefore, we divide the power series into even and odd parts,

and remove the matrices from the sums:

A(θ) =
∞∑
k=0

1

k!

(
0 −1
1 0

)k
θk (504)
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=
∞∑
m=0

1

(2m)!

(
0 −1
1 0

)2m

θ2m +
∞∑
m=0

1

(2m+ 1)!

(
0 −1
1 0

)2m+1

θ2m+1 (505)

= 1

(
∞∑
m=0

(−1)m

(2m)!
θ2m

)
+

(
0 −1
1 0

) ∞∑
m=0

(−1)m

(2m+ 1)!
θ2m+1 (506)

= 1 cos θ +

(
0 −1
1 0

)
sin θ (507)

=

(
cos θ − sin θ
sin θ cos θ

)
(508)

The generator has given us the whole group back.
To begin to see the power of this technique, let’s look at O(3), or the subgroup of SO(3)

of elements with unit determinant. Since every element of O(3) satisfies

AtA = 1 (509)

we have

1 = det (1) (510)
= det

(
At
)

det (A) (511)

= (det (A))2 (512)

so either detA = 1 or detA = −1. Defining the parity transformation to be

P =

 −1
−1

−1

 (513)

then every element of O(3) is of the form A or PA, where A is in SO(3). Because P is a
discrete transformation and not a continuous set of transformations, O(3) and SO(3) have
the same Lie algebra.

The generators of O(3) (and SO(3)) may be found from the property of leaving the
matrix

gij =

 1
1

1

 (514)

invariant:
gijA

i
mA

j
n = gmn (515)

Just as in the Lorentz case in the previous chapter, this is equivalent to preserving the proper
length of vectors. Thus, the transformation

yi = Ai mx
m (516)
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is a rotation if it preserves the length-squared:

gijy
iyj = gijx

ixj (517)

Substituting, we get

gmnx
mxn = gij

(
Ai mx

m
) (
Aj nx

n
)

(518)
=

(
gijA

i
mA

j
n

)
xmxn (519)

Since xm is arbitrary, we can turn this into a relation between the transformations and the
metric, gmn, but we have to be careful with the symmetry since xmxn = xnxm. It isn’t a
problem here because both sets of coefficients are also symmetric:

gmn = gnm (520)
gijA

i
mA

j
n = gjiA

j
mA

i
n (521)

= gjiA
i

nA
j

m (522)
= gijA

i
nA

j
m (523)

Therefore, we can strip off the xs and write

gmn = gijA
i

mA
j

n (524)

This is the most convenient form of the definition of the group to use in finding the Lie
algebra. For future reference, we note that the inverse to gij is written as gij; it is also the
identity matrix.

As in the 2-dimensional case, we look at transformations close to the identity. Let

Ai j = δij + εi j (525)

where all components of εi m are small. Then

gmn = gij
(
δim + εi m

) (
δjn + εj n

)
(526)

=
(
gijδ

i
m + gijε

i
m

) (
δjn + εj n

)
(527)

=
(
gmj + gjiε

i
m

) (
δjn + εj n

)
(528)

= (gmj + εjm)
(
δjn + εj n

)
(529)

= gmjδ
j
n + εjmδ

j
n + gmjε

j
n + εjmε

j
n (530)

= gmn + εnm + εmn +O(ε2) (531)

Dropping the second order term and cancelling gmn on the left and right, we see that the
generators εmn must be antisymmetric:

εnm = −εmn (532)

We are dealing with 3 × 3 matrices here, but note the power of index notation! There is
actually nothing in the preceeding calculation that is specific to n = 3, and we could draw all
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the same conclusions up to this point for O(p, q)!). For the 3× 3 case, every antisymmetric
matrix is of the form

A(a, b, c) =

 0 a −b
−a 0 c
b −c 0

 (533)

= a

 0 1 0
−1 0 0
0 0 0

+ b

 0 0 −1
0 0 0
1 0 0

+ c

 0 0 0
0 0 1
0 −1 0

 (534)

and therefore a linear combination of the three generators

J1 =

 0 1 0
−1 0 0
0 0 0

 (535)

J2 =

 0 0 −1
0 0 0
1 0 0

 (536)

J3 =

 0 0 0
0 0 1
0 −1 0

 (537)

Notice that any three independent, antisymmetric matrices could serve as the generators.
We begin to see why the Lie algebra is defined as the entire vector space

v = v1J1 + v2J2 + v3J3 (538)

In fact, the Lie algebra has three defining properties.

Define: A Lie algebra is a finite dimensional vector space V together with a bilinear, anti-
symmetric (commutator) product satisfying

1. For all u, v ∈ V, the product [u, v] = −[v, u] = w is in V.

2. All u, v, w ∈ V satisfy the Jacobi identity

[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0 (539)

These properties may be expressed in terms of a basis. Let {Ja|a = 1, . . . , n} be a vector
basis for V. Then we may compute the commutators of the basis,

[Ja, Jb] = wab (540)

where for each a and each b, wab is some vector in V. We may expand each wab in the basis
as well,

wab = c c
ab Jc (541)
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for some constants c c
ab . The c c

ab = −c c
ba are called the Lie structure constants. The basis

then satisfies,
[Ja, Jb] = c c

ab Jc (542)

which is sufficient, using linearity, to determine the commutators of all elements of the
algebra:

[u, v] = [uaJa, v
bJb] (543)

= uavb[Ja, Jb] (544)
= uavbc c

ab Jc (545)
= wcJc (546)
= w (547)

Exercise: Show that the commutation relations of the three O(3) generators, Ji, given in
eq.(537) are given by

[Ji, Jj] = ε k
ij Jk (548)

where ε k
ij = gkmεijm, and εijm is the 3-dimensional version of the totally antisymmet-

ric Levi-Civita tensor,

ε123 = ε231 = ε312 = 1 (549)
ε132 = ε321 = ε213 = −1 (550)

with all other components vanishing. See our discussion of invariant tensors in the sec-
tion on special relativity for further properties of the Levi-Civita tensors. In particular,
you will need

εijkεimn = δjmδ
k
n − δjnδkm (551)

Notice that most of the calculations above for O(3) actually apply to any of the pseudo-
orthogonal groups O(p, q). In the general case, the form of the generators is still given by
eq.(532), with gmn replaced by M (p,q)

mn of eq.(479). Dropping the (p, q) label, we have

Mmn = Mij

(
δim + εi m

) (
δjn + εj n

)
(552)

= Mmn +Mniε
i

m +Mmjε
j

n (553)

leading to
εnm = Mniε

i
m = −εmn = Mmjε

j
n (554)

The doubly covariant generators are still antisymmetric. The only difference is that the
indices are lowered with Mmn instead of gmn. Another difference occurs when we compute
the Lie algebra because in n-dimensions we no longer have the convenient form, εijm, for
the Levi-Civita tensor. The Levi-Civita tensor in n-dimensions has n indices, and doesn’t
simplify the Lie algebra expressions. Instead, we choose the following set of antisymmetric
matrices as generators: [

ε(rs)
]
mn

= (δrmδ
s
n − δrnδsm) (555)
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The (rs) indices tell us which generator we are talking about, while the m and n indices
are the matrix components. To compute the Lie algebra, we need the mixed form of the
generators, [

ε(rs)
]m

n
= Mmk

[
ε(rs)

]
kn

= Mmkδrkδ
s
n −Mmkδrnδ

s
k (556)

= Mmrδsn −Mmsδrn (557)

We can now calculate[[
ε(uv)

]
,
[
ε(rs)

]]m
n

=
[
ε(uv)

]m
k

[
ε(rs)

]k
n
−
[
ε(rs)

]m
k

[
ε(uv)

]k
n

(558)

= (Mmuδvk −Mmvδuk )
(
Mkrδsn −Mksδrn

)
(559)

− (Mmrδsk −Mmsδrk)
(
Mkuδvn −Mkvδun

)
(560)

= MmuM vrδsn −MmuM vsδrn (561)
−MmvMurδsn +MmvMusδrn (562)
−MmrM suδvn +MmsM ruδvn (563)
+MmrM svδun −MmsM rvδun (564)

= M vrMmuδsn −M vsMmuδrn (565)
−MurMmvδsn +MusMmvδrn (566)
−M suMmrδvn +M ruMmsδvn (567)
+M svMmrδun −M rvMmsδun (568)

Rearranging to collect the terms as generators, and noting that each must have the free m
and n indices, we get[[

ε(uv)
]
,
[
ε(rs)

]]m
n

= M vr (Mmuδsn −Mmsδun) (569)
−M vs (Mmuδrn −Mmrδun) (570)
−Mur (Mmvδsn −Mmsδvn) (571)
+Mus (Mmvδrn −Mmrδvn) (572)

= M vr
[
ε(us)

]m
n
−M vs

[
ε(ur)

]m
n

(573)

−Mur
[
ε(vs)

]m
n

+Mus
[
ε(vr)

]m
n

(574)

Finally, we can drop the matrix indices. It is important that we can do this, because
it demonstrates that the Lie algebra is a relationship among the different generators that
doesn’t depend on whether the operators are written as matrices or not. The result, valid
for any O(p, q), is[

ε(uv), ε(rs)
]

= M vrε(us) −M vsε(ur) −Murε(vs) +Musε(vr) (575)

We will need this result when we study the Dirac matrices.

Exercies: Show that the O(p, q) Lie algebra in eq.(575) reduces to the O(3) Lie algebra in
eq.(548) when (p, q) = (3, 0). (Hint: go back to eq.(574) or eq.(575) and multiply the
whole equation by εuvwεrst. Notice that Mmn is just gmn and that Ji = 1

2
εijkε

(jk)).
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The properties of a Lie algebra guarantee that exponentiating the algebra gives a Lie
group. To see this, let’s work from the group side. We have group elements that depend on
continuous parameters, so we can expand g(a, b, . . . , c) near the identity in a Taylor series:

g(x1, . . . , xn) = 1 +
∂g

∂xa
xa +

1

2

∂2g

∂xaxb
xaxb + . . . (576)

≡ 1 + Jax
a +

1

2
Kabx

axb + . . . (577)

Now let’s look at the consequences of the properties of the group on the infinitesimal gener-
ators, Ja. First, there exists a group product, which must close:

g(xa1)g
(
xb2
)

= g(xa3) (578)
(1 + Jax

a
1 + . . .) (1 + Jax

a
2 + . . .) = 1 + Jax

a
3 + . . . (579)

1 + Jax
a
1 + Jax

a
2 + . . . = 1 + Jax

a
3 + . . . (580)

so that at linear order,
Jax

a
1 + Jax

a
2 = Jax

a
3 (581)

This requires the generators to combine linearly under addition and scalar multiplication.
Next, we require an identity operator. This just means that the zero vector lies in the space
of generators, since g(0, . . . , 0) = 1 = 1 + Ja0

a. For inverses, we have

g(xa1)g−1
(
xb2
)

= 1 (582)
(1 + Jax

a
1 + . . .) (1 + Jax

a
2 + . . .) = 1 (583)

1 + Jax
a
1 + Jax

a
2 = 1 (584)

so that xa2 = −xa1, guaranteeing an additive inverse in the space of generators. These prop-
erties together make the set {xaJa} a vector space.

Now we need the commutator product. For this, consider the (closed!) product of group
elements

g1g2g
−1
1 g−1

2 = g3 (585)

We need to compute this in a Taylor series to second order, so we need the inverse to second
order.

Exercise: Show to second order that the inverse of

g ≡ 1 + Jax
a +

1

2
Kabx

axb + . . . (586)

is
g−1 ≡ 1− Jbxb +

1

2
(JaJb + JbJa −Kab)x

axb + . . . (587)
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Now, expanding to second order in the Taylor series,

g3 = 1 + Jaz
a(x, y) +

1

2
Kabz

a(x, y)zb(x, y) (588)

=

(
1 + Jax

a +
1

2
Kabx

axb
)(

1 + Jb y
b +

1

2
Kbcy

byc
)

(589)

×
(

1− Jcxc +

(
JcJd −

1

2
Kcd

)
xcxd

)
(590)

×
(

1− Jdyd +

(
JdJe −

1

2
Kde

)
ydye

)
(591)

=

(
1 + Jbx

b + Jby
b + JaJbx

ayb +
1

2
Kbcy

byc +
1

2
Kabx

axb
)

(592)

×
(
1− Jdxd − Jdyd + JdJey

dye + JcJdx
cyd (593)

+JcJdx
cxd − 1

2
Kdey

dye − 1

2
Kcdx

cxd
)

(594)

= 1− Jdxd − Jdyd + JdJey
dye + JcJdx

cyd + JcJdx
cxd (595)

−1

2
Kdey

dye − 1

2
Kcdx

cxd +
(
Jbx

b + Jby
b
) (

1− Jdxd − Jdyd
)

(596)

+JaJbx
ayb +

1

2
Kbcy

byc +
1

2
Kabx

axb (597)

Collecting terms,

g3 = 1 + Jaz
a(x, y) + · · · (598)

= 1− Jdxd − Jdyd + Jbx
b + Jby

b (599)
+JdJey

dye + JcJdx
cyd + JcJdx

cxd − JbJdxbxd (600)
−JbJdybxd − JbJdxbyd − JbJdybyd + JaJbx

ayb (601)

+
1

2
Kbcy

byc +
1

2
Kabx

axb − 1

2
Kdey

dye − 1

2
Kcdx

cxd (602)

= 1 + JcJdx
cyd − JbJdybxd (603)

= 1 + JcJdx
cyd − JdJcxcyd (604)

= 1 + [Jc, Jd]x
cyd (605)

Equating the expansion of g3 to the collected terms we see that we must have za such that

[Jc, Jd]x
cyd = Jaz

a(x, y) (606)

Since xc and yd are arbitrary, za must be bilinear in them:

za = xcydc a
cd (607)

and we have derived the need for a commutator product for the Lie algebra,

[Jc, Jd] = c a
cd Ja (608)
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Finally, the Lie group is associative: if we have three group elements, g1, g2 and g3, then

g1 (g2g3) = (g1g2) g3 (609)

To first order, this simply implies associativity for the generators

Ja (JbJc) = (JaJb) Jc (610)

Now consider the Jacobi identity:

0 = [Ja, [Jb, Jc]] + [Jb, [Jc, Ja]] + [Jc, [Ja, Jb]] (611)
= [Ja, (JbJc − JcJb)] + [Jb, (JcJa − JaJc)] (612)

+[Jc, (JaJb − JbJa)] (613)
= Ja (JbJc)− Ja (JcJb)− (JbJc) Ja + (JcJb) Ja (614)

+Jb (JcJa)− Jb (JaJc)− (JcJa) Jb + (JaJc) Jb (615)
+Jc (JaJb)− Jc (JbJa)− (JaJb) Jc + (JbJa) Jc (616)

= Ja (JbJc)− (JaJb) Jc (617)
−Ja (JcJb) + (JaJc) Jb (618)
− (JbJc) Ja + Jb (JcJa) (619)
+ (JcJb) Ja − Jc (JbJa) (620)
−Jb (JaJc) + (JbJa) Jc (621)
+Jc (JaJb)− (JcJa) Jb (622)

From the final arrangement of the terms, we see that it is satisfied identically provided the
multiplication is associative.

Therefore, the definition of a Lie algebra is a necessary consequence of being built from
the infinitesimal generators of a Lie group. The conditions are also sufficient, though we
won’t give the proof here.

The correspondence between Lie groups and Lie algebras is not one to one, because in
general several Lie groups may share the same Lie algebra. However, groups with the same
Lie algebra are related in a simple way. Our example above of the relationship between O(3)
and SO(3) is typical – these two groups are related by a discrete symmetry. Since discrete
symmetries do not participate in the computation of infinitesimal generators, they do not
change the Lie algebra. The central result is this: for every Lie algebra there is a unique
maximal Lie group called the covering group such that every Lie group sharing the same
Lie algebra is the quotient of the covering group by a discrete symmetry group. This result
suggests that when examining a group symmetry of nature, we should always look at the
covering group in order to extract the greatest possible symmetry. Following this suggestion
for Euclidean 3-space and for Minkowski space leads us directly to the use of spinors.

In the next section, we discuss spinors in three ways. The first two make use of convenient
tricks that work in low dimensions (2, 3 and 4), and provide easy ways to handle rotations
and Lorentz transformations. The third treatment is begins with Dirac’s development of the
Dirac equation, which leads us to the introduction of Clifford algebras.
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2.2 Spinors and the Dirac equation

When we work with linear representations of Lie groups and Lie algebras, it is important to
keep track of the objects on which the operators act. These objects are always the elements
of a vector space. In the case of O(3), the vector space is Euclidean 3-space, while for Lorentz
transformations the vector space is spacetime. As we shall see in this section, the covering
groups of these same symmetries act on other, more abstract, complex vector spaces. The
elements of these complex vector spaces are called spinors.

2.2.1 Spinors for O(3)

Let’s start with O(3), the group which preserves the lengths, x2 = x2 + y2 + z2 = gijx
ixj of

Euclidean 3-vectors. We can encode this length as the determinant of a matrix,

X =

(
z x− iy

x+ iy −z

)
(623)

detX = −
(
x2 + y2 + z2

)
(624)

This fact is useful because matrices of this type are easy to characterize. Let

M =

(
α β
γ δ

)
(625)

be any matrix with complex entries and demand hermiticity, M = M † :

M = M † (626)(
α β
γ δ

)
=

(
α∗ γ∗

β∗ δ∗

)
(627)

Then α→ a is real, δ → d is real, and β = γ∗. Only γ = b+ ic remains arbitrary. If we also
require M to be traceless, then M reduces to

M =

(
a b− ic

b+ ic −a

)
(628)

just the same as X. Therefore, rotations may be characterized as the set of transformations
of X preserving the following properties of X :

1. detX

2. X† = X

3. tr (X) = 0

To find the set of such transformations, recall that matrices transform by a similarity trans-
formation

X → X ′ = AXA† (629)
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(Here we use the adjoint instead of the inverse because we imagine X as doubly covariant,
Xij. For the mixed form, X i

j we would write X → AXA−1). From this form, we have:

detX ′ = det
(
AXA†

)
(630)

= (detA) (detX)
(
detA†

)
(631)

so we demand

|detA|2 = 1 (632)
detA = eiϕ (633)

We can constrain this further, because if we write

A = eiϕ/2U (634)

then

X ′ = AXA† (635)
= eiϕ/2UXe−iϕ/2U † (636)
= UXU † (637)

where now
detU = 1 (638)

That is, without loss of generality, we can take the determinant to be one because an overall
phase has no effect on X.

Next, notice that hermiticity is automatic. Whenever X is hermitian we have

(X ′)
†

=
(
AXA†

)† (639)
= A††X†A† (640)
= AXA† (641)
= X ′ (642)

so X ′ is hermitian.
Finally, let’s impose the trace condition. Suppose tr(X) = 0. Then

tr(X ′) = tr(AXA†) (643)
= tr(A†AX) (644)

For the final expression to reduce to tr(X) for all X, we must have A†A = 1. Therefore, A† =
A−1 and the transformations must be unitary. Using the unit determinant unitary matrices,
U, we see that the group is SU(2). This shows that SU(2) can be used to write 3-dimensional
rotations. In fact, we will see that SU(2) includes two transformations corresponding to each
element of SO(3).
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The exponential of any anti-hermitian matrix is unitary matrix because if U = exp (iH)
with H† = H, then

U † = exp
(
−iH†

)
= exp (−iH) = U−1 (645)

Conversely, any unitary matrix may be written this way. Moreover, since

detA = etr(lnA) (646)

the transformation U = exp (iH) has unit determinant whenever H is traceless. Since every
traceless, hermitian matrix is a linear combination of the Pauli matrices,

σm =

((
1

1

)
,

(
−i

i

)
,

(
1
−1

))
(647)

we may write every element of SU(2) as the exponential

U(wm) = eiw
mσm (648)

where the three parameters wm are real and the Pauli matrices are mixed type tensors,
σm = [σm]a b , because U is a transformation matrix.

There is a more convenient way to collect the real parameters wm. Define a unit vector
n̂ so that

w =
ϕ

2
n̂ (649)

Then
U(ϕ, n̂) = exp

(
iϕ

2
n̂ · σ

)
(650)

is a rotation through an angle ϕ about the n̂ direction.

Exercise: Let n̂ = (0, 0, 1) and show that the relation between (x, y, z) and (x′, y′, z′) given
by

X ′ =

(
z′ x′ − iy′

x′ + iy′ −z′
)

= UXU † (651)

= exp

(
iϕ

2
n̂ · σ

)(
z x− iy

x+ iy −z

)
exp

(
−iϕ

2
n̂ · σ

)
(652)

is a rotation by ϕ about the z axis.

Exercise: By expanding the exponential in a power series and working out the powers of
n̂ · σ for a general unit vector n̂, prove the identity

exp

(
iϕ

2
n̂ · σ

)
= 1 cos

ϕ

2
+ in̂ · σ sin

ϕ

2
(653)

Also, show that U(2π, n̂) = −1 and U(4π, n̂) = 1 for any unit vector, n̂. From this,
show that U(2π, n̂) gives X ′ = X.
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Now let’s consider what vector space SU(2) acts on. We have used a similarity transfor-
mation on matrices to show how it acts on a 3-dimensional subspace of the 8-dimensional
space of 2×2 complex matrices. But more basically, SU(2) acts the vector space of complex,
two component spinors:

χ =

(
α
β

)
(654)

χ′ = Uχ (655)

Exercise: Using the result of the previous exercise,

exp

(
iϕ

2
n̂ · σ

)
= 1 cos

ϕ

2
+ in̂ · σ sin

ϕ

2
(656)

find the most general action of SU(2) on χ. Show that the periodicity of the mapping
is 4π, that is, that

U(4πm, n̂)χ = χ (657)

for all integers m, while
U(2πm, n̂)χ = −χ 6= χ (658)

for odd m.

The vector space of spinors χ is the simplest set of objects that Euclidean rotations act
on. These objects are familiar from quantum mechanics as the spin-up and spin-down states
of spin-1/2 fermions. It is interesting to observe that spin is a perfectly classical property
arising from symmetry. It was not necessary to discover quantum mechanics in order to
discover spin. Apparently, the reason that “classical spin” was not discovered first is that its
magnitude is microscopic. Indeed, with the advent of supersymmetry, there has been some
interest in classical supersymmetry – supersymmetric classical theories whose quantization
leads to now-familiar quantum field theories.

2.2.2 Spinors for the Lorentz group

Next, we extend this new insight to the Lorentz group. Recall that we defined Lorentz
transformations as those preserving the Minkowski line element,

s2 = t2 − (x2 + y2 + z2) (659)

or equivalently, those transformations leaving the Minkowski metric invariant. Once again,
we write a matrix that contains the invariant information in its determinant. Let

X =

(
t+ z x− iy
x+ iy t− z

)
(660)
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noting that X is now the most general hermitian 2 × 2 matrix, X† = X, without any
constraint on the trace. The determinant is now

detX = t2 − x2 − y2 − z2 = s2 (661)

and we only need to preserve two properties.
Let

X ′ = AXA† (662)
Then hermiticity is again automatic and all we need is |detA|2 = 1. As before, an overall
phase does not affect X, so we can choose detA = 1. There is no further constraint needed,
so Lorentz transformations is given by the special linear group in two complex dimensions,
SL(2, C). Let’s find the generators. First, it is easy to find a set of generators for the general
linear group, because every non-degenerate matrix is allowed. Expanding a general matrix
infinitesimally about the identity gives

G =

(
µ ν
ρ σ

)
= 1 +

(
α β
γ δ

)
(663)

= 1 +

(
a b
c d

)
+ i

(
e f
g h

)
(664)

for complex numbers α, β, γ, δ and real parameters a, . . . , h. Since the deviation from the
identity is small, the determinant will be close to one, hence nonzero. Since we recover the
whole group by exponentiation,

G = exp

(
α β
γ δ

)
(665)

the unit determinant is achieved by making the generators traceless, setting δ = −α. A
complete set of generators for SL(2, C) is therefore(

1
−1

)
,
(

1
)
,

(
1

)
(666)(

i
−i

)
,
(

i
)
,

(
i

)
(667)

Because any six independent linear combinations of these are an equivalently good basis,
let’s choose the set

Jm = iσm (668)
Km = σm (669)

which have the advantage of being hermitian and anti-hermitian, respectively.
When we exponentiate Jm and Km (with real parameters) to recover the various types of

Lorentz transformation, the anti-hermitian generators Jm give SU(2) as before. We already
know that these preserve lengths of spatial 3-vectors, so we see again that the 3-dimensional
rotations are part of the Lorentz group. Since the generators Km are hermitian, the corre-
sponding group elements are not unitary. The corresponding transformations are hyperbolic
rather than circular, corresponding to boosts.
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Exercise: Recalling the Taylor series

sinhλ =
∞∑
k=0

λ2k+1

(2k + 1)!
(670)

coshλ =
∞∑
k=0

λ2k

(2k)!
(671)

show that K1 =

(
1

1

)
generates a boost in spacetime.

The Lie algebra of SL(2, C) is now easy to calculate. Since the Pauli matrices multiply
as (exercise!)

σmσn = δmn1 + iεmnkσk (672)

their commutators are [σm, σn] = 2iεmnkσk, the Lie algebra is

[Jm, Jn] = [iσm, iσn] = −2iεmnkσk = −2εmnkJk (673)
[Jm, Kn] = [iσm, σn] = −2εmnkσk = −2εmnkKk (674)

[Km, Kn] = [σm, σn] = −2iεmnkσk = −2εmnkJk (675)

This is an important result. It shows that while the rotations form a subgroup of the Lorentz
group (because the Jm commutators close into themselves), the boosts do not – two boosts
applied in succession produce a rotation as well as a change of relative velocity. This is the
source of a noted correction to Thomas precession (see Jackson, pp. 556-560; indeed, see
Jackson’s chapters 11 and 12 for a good discussion of special relativity in a context with real
examples).

There is another convenient basis for the Lorentz Lie algebra. Consider the six generators

Lm =
1

2
(Jm +Km) (676)

Mm =
1

2
(Jm −Km) (677)

These satisfy

[Lm, Ln] =
1

4
[Jm +Km, Jn +Kn] (678)

=
1

4
(−2εmnkJk − 2εmnkKk − 2εmnkKk − 2εmnkJk) (679)

= −2εmnkLk (680)

[Lm,Mn] =
1

4
(−2εmnkJk + 2εmnkKk − 2εmnkKk + 2εmnkJk) (681)

= 0 (682)

[Mm,Mn] =
1

4
(−2εmnkJk + 2εmnkKk + 2εmnkKk − 2εmnkJk) (683)

= −2εmnkMk (684)
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showing that the Lorentz group actually decouples into two commuting copies of SU(2).
Extensive use of this fact is made in general relativity (see, eg., Penrose and Rindler, Wald).
In particular, we can use this decomposition of the Lie algebra sl(2, C) to introduce two sets
of 2-component spinors, called Weyl spinors,

χA, χ̄Ȧ (685)

with the first set transforming under the action of exp (umLm) and the second set under
exp (vmMm) . For our study of field theory, however, we will be more interested in a different
set of spinors – the 4-component Dirac spinors.

2.2.3 Dirac spinors and the Dirac equation

There is a systematic way to develop spinor representations of any pseudo-orthogonal group,
O(p, q). Dirac arrived at this representation when he sought a relativistic form for quantum
theory. We won’t look at the full historical rationale for Dirac’s approach, but will use a
similar construction. Dirac wanted to build a relativistic quantum theory, and recognizing
that relativity requires space and time variables to enter on the same footing, sought an
equation linear in both space and time derivatives:

i
∂ψ

∂t
=
(
−iαi∂i +mβ

)
ψ (686)

where the γµ and β are constant. A quadratic equation, the Klein-Gordon equation,

�φ = −m2φ (687)

had already been tried and discarded by Schrödinger because the second order equation
requires two initial conditions and the uncertainty principle allows us only one. To determine
the coefficients, Dirac demanded that the linear equation should imply the Klein-Gordon
equation. Acting on our version of Dirac’s equation with the same operator again,

−∂
2ψ

∂t2
=

(
−iαi∂i +mβ

) (
−iαi∂i +mβ

)
ψ (688)

=
(
−αiαj∂i∂j − imαiβ∂i − imβαi∂i +m2β2

)
ψ (689)

we reproduce the Klein-Gordon equation provided

−αiαj∂i∂j = −∇2 (690)
m
(
αiβ + βαi

)
∂i = 0 (691)

m2β2 = m2 (692)

or equivalently,

αiαj + αiαi = 2δij (693)
αiβ + βαi = 0 (694)

β2 = 1 (695)
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We can put these conditions into a more relativistic form by defining

γµ =
(
β, βαi

)
(696)

Then the constraints on γµ become

γiγj + γjγi = −2δij (697)
γiγ0 + γ0γi = 0 (698)(

γ0
)2

= 1 (699)

which may be neatly expressed as

{γµ, γν} ≡ γµγν + γνγµ = 2ηµν (700)

where the curly brackets denote the anti-commutator. This relationship is impossible to
achieve with vectors. To see this, note that we can always perform a Lorentz transformation
that brings γµ to one of the forms

γµ = (α, 0, 0, 0) (701)
γµ = (α, α, 0, 0) (702)
γµ = (0, α, 0, 0) (703)

depending on whether γµ is timelike, null or spacelike. Then, since ηµν is Lorentz invariant,
we have the possibilities:

{γµ, γν} =


α2

0
0

0

 (704)

{γµ, γν} =


α2 α2

α2 α2

0
0

 (705)

{γµ, γν} =


0

α2

0
0

 (706)

none of which equals ηµν . Therefore, γµ must be a more general kind of object. It is sufficient
to let γµ be a set of four, 4× 4 matrices, and it is not hard to show that this is the smallest
size matrix that works.

Exercise: Show that there do not exist four, 2× 2 matrices satisfying {γµ, γν} = 2ηµν
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Here is a convenient choice for the Dirac matrices, or gamma matrices :

γ0 =


1

1
−1

−1

 =

(
1
−1

)

γi =

(
0 σi

−σi 0

)
(707)

where the σi are the usual 2× 2 Pauli matrices.

Exercise: Show that these matrices satisfy {γµ, γν} = 2ηµν .

Substituting γµ into eq.(686), we have the Dirac equation,

(iγµ∂µ −m)ψ = 0 (708)
{γµ, γν} = 2ηµν (709)

This equation gives us more than we bargained for. Since the γµ are 4 × 4 Dirac matrices,
the object ψ that they act on must also be a 4-component vector. We now show that ψ is a
spinor by showing that they transform as a spinor representation of the Lorentz group.

Let’s do this for the general case of O(p, q) rather than just O(3, 1), since the development
is essentially the same in all cases. In the process, we will not only see that the object ψ is
a spinor, but also find the form for Lorentz transformations.

Let the O(p, q) metric be as in eq.(479), M (p,q)
ij = diag(1, . . . , 1,−1, . . . ,−1), and let its

inverse be M ij
(p,q). We first define n = p+ q distinct matrices by{

γi, γj
}

= 2M ij
(p,q)1 (710)

Notice that there are two matrices on the right side. The metric is just a set of coefficients
telling us whether the right side is zero or not for any given pair of gamma matrices. The
identity matrix occurs because the γi are matrices (with components [γi]

A
B) and therefore

their anticommutator must also be a matrix. Often the identity matrix is suppressed for
brevity. It is always possible to choose the gamma matrices so that (γi)

†
= M ii

(p,q) (γi) ,
making some hermitian and the rest anti-hermitian. Now, from these gamma matrices we
construct the commutator,

σij =
1

4

[
γi, γj

]
(711)

Exercise: Show that for spacetime, with (γ0)
†

= γ0 and (γi)
†

= −γi, σµν has the following
hermiticity relations: (

σ0i
)†

= σ0i (712)(
σij
)†

= −σij (713)

73



Next, we show that these commutators satisfy the Lie algebra of O(n). We first use the
anticommutator relation to rearrange the terms. Since the anticommutator relation gives
γjγi = −γiγj + 2M ij

(p,q) we can rewrite the commutator as

σij =
1

4

(
γiγj − γjγi

)
=

1

4

(
γiγj + γiγj − 2M ij

(p,q)

)
(714)

=
1

2

(
γiγj −M ij

(p,q)

)
(715)

Using this relation, the commutator of two sigmas is:[
σij, σkl

]
= −1

4

[
γiγj −M ij

(p,q), γ
kγl −Mkl

(p,q)

]
(716)

= −1

4

[
γiγj, γkγl

]
(717)

= −1

4
γiγjγkγl +

1

4
γkγlγiγj (718)

Now we just rearrange the order of gamma matrices in the second term until it matches the
first term;

γkγlγiγj = γk
(
−γiγl + 2M il

(p,q)

)
γj (719)

= −γkγiγlγj + 2M il
(p,q)γ

kγj (720)

= −γkγi
(
−γjγl + 2M jl

(p,q)

)
+ 2M il

(p,q)γ
kγj (721)

= γkγiγjγl − 2M jl
(p,q)γ

kγi + 2M il
(p,q)γ

kγj (722)

=
(
−γiγk + 2M ik

(p,q)

)
γjγl − 2M jl

(p,q)γ
kγi + 2M il

(p,q)γ
kγj (723)

= −γiγkγjγl + 2M ik
(p,q)γ

jγl − 2M jl
(p,q)γ

kγi + 2M il
(p,q)γ

kγj (724)

= −γi
(
−γjγk + 2M jk

(p,q)

)
γl + 2M ik

(p,q)γ
jγl (725)

−2M jl
(p,q)γ

kγi + 2M il
(p,q)γ

kγj (726)

= γiγjγkγl − 2M jk
(p,q)γ

iγl + 2M ik
(p,q)γ

jγl (727)

−2M jl
(p,q)γ

kγi + 2M il
(p,q)γ

kγj (728)

Finally, using

γiγj =
1

2

{
γi, γj

}
+

1

2

[
γi, γj

]
(729)

= M ij
(p,q) − 2σij (730)

we have [
σij, σkl

]
= −1

4
γiγjγkγl +

1

4
γiγjγkγl − 1

2

(
M jk

(p,q)γ
iγl (731)
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−M ik
(p,q)γ

jγl +M jl
(p,q)γ

kγi − M il
(p,q)γ

kγj
)

(732)

= −1

2
M jk

(p,q)

(
M il

(p,q) − 2σil
)

+
1

2
M ik

(p,q)

(
M jl

(p,q) − 2σjl
)

(733)

−1

2
M jl

(p,q)

(
Mki

(p,q) − 2σki
)

+
1

2
M il

(p,q)

(
Mkj

(p,q) − 2σkj
)

(734)

= −1

2

(
M jk

(p,q)M
il
(p,q) −M ik

(p,q)M
jl
(p,q)

)
(735)

−1

2

(
M jl

(p,q)M
ki
(p,q) −M il

(p,q)M
kj
(p,q)

)
(736)

+M jk
(p,q)σ

il −M ik
(p,q)σ

jl +M jl
(p,q)σ

ki −M il
(p,q)σ

kj (737)

The first four terms cancel, leaving the o(p, q) algebra:[
σij, σkl

]
= M jk

(p,q)σ
il −M ik

(p,q)σ
jl +M jl

(p,q)σ
ki −M il

(p,q)σ
kj (738)

This shows us why Dirac’s wave function ψ is a spinor. Using infinitesimal, real parameters,
εrs, can use σrs to generate an infinitesimal Lorentz transformation,

ΛA
B = δA B +

1

2
εrs [σrs]A B (739)

which act on spinors according to

[ψ′]
A

= ΛA
B [ψ]B (740)

We assume that εrs = −εsr, so the factor of 1
2
avoids double counting.

To see that ψ is really a spinor, we use them to construct vectors. Let the spinor space
have a hermitian metric, hAB, so that we can form inner products of spinors

〈χ, ψ〉 =
[
χ†
]A
hAB [ψ]B (741)

We require hAB to be invariant under Lorentz transformations, in the sense that[
Λ†
] A

C
hABΛB

D = hCD (742)

For infinitesimal transformations, this means that

hCD =

(
δ A
C +

1

2
εrs

[
(σrs)†

] A

C

)
hAB

(
δB D +

1

2
εuv [σuv]B D

)
(743)

hCD = hCD +
1

2
εrshCB [σrs]B D +

1

2
εrs

[
(σrs)†

] A

C
hAD (744)

0 = hCB [σrs]B D +
[
(σrs)†

] A

C
hAD (745)

Now we can build the n-dimensional object

vi =
[
ψ†
]B
hBC

[
γi
]C

D
[ψ]D (746)

75



Now suppose we transform [ψ]D according to eq.(740 ). Then[
ψ′†
]A

=
[
ψ†
]B [

Λ†
] A

B
(747)

so vi changes to

[v′]
i

=
[
ψ′†
]B
hBC

[
γi
]C

D
[ψ′]

D (748)

=
[
ψ†
]A [

Λ†
] B

A
hBC

[
γi
]C

D
ΛD

E [ψ]E (749)

For an infinitesimal transformation the matrix product is

Λ†hγiΛ =
[
Λ†
] B

A
hBC

[
γi
]C

D
ΛD

E (750)

=

(
δBA +

1

2
εrs

[
(σrs)†

] B

A

)
hBC

[
γi
]C

D
(751)

×
(
δD E +

1

2
εuv [σuv]D E

)
(752)

= hAC
[
γi
]C

E
+

1

2
εuvhAC

[
γi
]C

D
[σuv]D E (753)

−1

2
εrs

[
(σrs)†

] B

A
hBC

[
γi
]C

E
(754)

Writing
[v′]

i
= [v]i + [δv]i (755)

and using the Lorentz invariance of hAB, eq.(745 ), we see that the change in vi is given by

[δv]i =
1

2

[
ψ†
]A
hABεrs

([
γi
]B

D
[σrs]D E − [σrs]B C

[
γi
]C

E

)
[ψ]E (756)

=
1

2

[
ψ†
]A
hABεrs

[
γi, σrs

]B
E

[ψ]E (757)

Therefore, we compute the commutator,

[
γi, σrs

]
=

[
γi,

1

2

(
γrγs −M rs

(p,q)

)]
(758)

=
1

2

[
γi, γrγs

]
(759)

=
1

2

(
γiγrγs − γrγsγi

)
(760)

=
1

2

(
γiγrγs + γrγiγs − 2M is

(p,q)γ
r
)

(761)

= M ir
(p,q)γ

s −M is
(p,q)γ

r (762)
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Substituting into δvi we have

[δv]i =
1

2

[
ψ†
]A
hABεrs

[
γi, σrs

]B
E

[ψ]E (763)

=
1

2

[
ψ†
]A
hABεrs

(
M ir

(p,q) [γs]B E −M
is
(p,q) [γr]B E

)
[ψ]E (764)

=
1

2
M ir

(p,q)εrs
[
ψ†
]A
hAB [γs]B E [ψ]E (765)

−1

2
M is

(p,q)εrs
[
ψ†
]A
hAB [γr]B E [ψ]E (766)

=
1

2

(
M ir

(p,q)εrsv
s −M is

(p,q)εrsv
r
)

(767)

= εi sv
s (768)

But εi s is just an arbitrary antisymmetric matrix, εis, with one index raised using the
O(p, q) metric, M is

(p,q), and is therefore an infinitesimal Lorentz transformation.
Now we see why ψ is a spinor. If we think of vi as a bi-spinor,

[v]i →
[
viγi
]A

B
(769)

then we can write the infinitesimal transformation laws as

[δψ]A =
1

2
εuv [σuv]A B [δψ]B (770)[

viγ
i
]A

B
=

1

2
εrs
[
viγ

i
]B

D
[σrs]D E −

1

2
εrs [σrs]B C

[
viγ

i
]C

E
(771)

This means that if we rotate ψ by an angle ϕ
2
, the same transformation will rotate vi by ϕ.

This is the characteristic property of a spinor.
How many components does ψA have in general? We can find out by finding the minimum

size for the gamma matrices, and we can do this by finding out how many independent
matrices we can build from the gamma matrices. We can always remove symmetric parts of
products of gamma matrices, but the antisymmetric parts remain independent. Let

Γij...k = γ[iγj . . . γk] (772)

where the bracket on the indices means to take the antisymmetric part. If there are n distinct
γi, there will be

(
n
m

)
different matrices Γi1...im havingm indices. Each of these is independent,

for all m, so we have
∑n

m=0

(
n
m

)
= 2n independent matrices constructible from the γi. The

linear combinations of these 2n matrices form the Clifford algebra associated with O(p, q).
The minimum dimension having 2n independent matrices is 2n/2 (or 2(n+1)/2 if n is odd) since
a 2n/2 × 2n/2 matrix has 2n components. It is not too difficult to show that a satisfactory
set of matrices of this dimension always exists. Therefore, spinors in n dimensions will have
2n/2 components (n even), and this agrees with the the 4-component spinors found by Dirac.
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We still need to know what the metric hAB is for the Dirac case. It must satisfy the
invariance condition of eq.(745), which in 4 dimensions reduces to

0 = hσ0i +
(
σ0i
)†
h = hσ0i + σ0ih (773)

0 = hσij +
(
σij
)†
h = hσij − σijh (774)

These relations are satisfied if we define the metric to be

hAB ≡


1

1
−1

−1

 (775)

The choice of hAB as the metric is fixed by its rotational invariance under the σµν which we
easily check as follows.If we momentarily ignore index positions, we see that hAB has the
same form as γ0, and we can use the properties of γ0 to compute its effects. Thus for the 0i
components,

hσ0i + σ0ih ∼ γ0σ0i + σ0iγ0 (776)

=
1

4

(
γ0γ0γi − γ0γiγ0 + γ0γiγ0 − γiγ0γ0

)
(777)

=
1

4

(
γi + γiγ0γ0 − γiγ0γ0 − γi

)
(778)

= 0 (779)

while for the ij components,

hσij − σijh ∼ γ0σij − σijγ0 (780)

=
1

4

(
γ0γiγj − γ0γjγi − γiγjγ0 + γjγiγ0

)
(781)

=
1

2

(
γ0γiγj − γ0γjγi − γ0γiγj + γ0γjγi

)
(782)

= 0 (783)

Therefore, Dirac spinors have the Lorentz-invariant inner product

〈ψ, ψ〉 =
[
ψ†
]A
hABψ

B (784)

It is convenient to define ψ̄ ≡ ψ†h, with components

ψ̄B =
[
ψ†
]A
hAB (785)

Then we may write the inner product simply as

〈ψ, ψ〉 = ψ̄ψ (786)
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The simplicity of using γ0 to compute inner products has led some authors of older field
theory texts to actually write γ0 for h, as in ψ̄ψ = ψ†γ0ψ, but the difference between a
metric and a transformation is important Indeed, the index structure is clearly wrong in the
latter expression – we would have. ψ†γ0ψ =

[
ψ†
]A

[γ0]
A

B [ψ]B!
Returning to our original goal, we now have the Dirac equation

(iγµ∂µ +m)ψ = 0 (787)
{γµ, γν} = 2ηµν (788)

This is the field equation for a spin-1
2
field. Since we have an invariant inner product, we

can write an invariant action as

S =

∫
d4x ψ̄ (iγµ∂µ −m)ψ (789)

The action is to be varied with respect to ψ and ψ̄ independently

0 = δS =

∫
d4x

(
δψ̄ (iγµ∂µ −m)ψ + ψ̄ (iγµ∂µ −m) δψ

)
(790)

The ψ̄ variation immediately yields the Dirac equation,

(iγµ∂µ −m)ψ = 0 (791)

while the δψ required integration by parts:

0 =

∫
d4x ψ̄ (iγµ∂µδψ −mδψ) (792)

=

∫
d4x

(
−i∂µψ̄γµδψ − ψ̄m

)
δψ (793)

Thus
i∂µψ̄γ

µ +mψ̄ = 0 (794)

which is sometimes written as
ψ̄
(
iγµ
←−
∂ µ +m

)
= 0 (795)

2.2.4 Some further properties of the gamma matrices

In four dimensions, there are 16 independent matrices that we can construct from the Dirac
matrices. We have already encountered eleven of them:

1, γµ, σµν (796)

The remaining five are most readily expressed in terms of

γ5 ≡ iγ0γ1γ2γ3 (797)
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Exercise: Prove that γ5 is hermitian.

Exercise: Prove that {γ5, γ
µ} = 0.

Exercise: Prove that γ5γ5 = 1.

Then the remaining five matrices may be taken as

γ5, γ5γ
µ (798)

Any 4 × 4 matrix can be expressed as linear combination of these 16 matrices. We will
need several other properties of these matrices. First, if we contract the product of pair of
gammas, we get 4 :

γµγµ = ηµνγ
µγν =

1

2
ηµν {γµ, γν} = ηµνη

µν = 4 (799)

We need various traces. For any product of an odd number of gamma matrices we have

tr (γµ1γµ2γµ2k+1) = tr
(
(γ5)2 γµ1γµ2γµ2k+1

)
(800)

= (−1)2k+1 tr (γ5γ
µ1γµ2γµ2k+1γ5) (801)

using the fact that γ5 commutes with any of the γµ. Now, using the cyclic property of the
trace

tr (A . . . BC) = tr (CA . . . B) (802)

we cycle γ5 back to the front:

tr (γµ1γµ2γµ2k+1) = (−1)2k+1 tr (γ5γ
µ1γµ2γµ2k+1γ5) (803)

= (−1)2k+1 tr (γ5γ5γ
µ1γµ2γµ2k+1) (804)

= − tr (γµ1γµ2γµ2k+1) (805)
= 0 (806)

Thus, the trace of the product of any odd number of gamma matrices vanishes.
Traces of even numbers are trickier. For two:

tr (γµγν) = tr (−γνγµ + 2ηµν1) (807)
= −tr (γνγµ) + 2ηµνtr 1 (808)

or, since tr1 = 4,
tr (γµγν) = 4ηµν (809)

Exercise: Prove that

tr
(
γαγβγµγν

)
= 4

(
ηαβηµν − ηαµηβν + ηανηβµ

)
(810)

Exercise: Prove that
γµγαγµ = −2γα (811)

and
γµγαγβγµ = 4ηαβ (812)
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2.2.5 Casimir Operators

For any Lie algebra, G, with generators Ga and commutators

[Ga, Gb] = c c
ab Gc (813)

we can consider composite operators found by multiplying together two or more generators,

G1G2, G3G9G17, . . . (814)

and taking linear combinations,

A = αG1G2 + βG3G9G17 + . . . (815)

The set of all such linear combinations of products is called the free algebra of G. Among the
elements of the free algebra are a very few special cases called Casmir operators, which have
the special property of commuting with all of the generators. For example; the generators
Ji of O(3) may be combined into the combination

R = δijJiJj =
∑

(Ji)
2 (816)

We can compute

[Ji, R] =
[
Ji,
∑

(Jj)
2
]

(817)

= Jj [Ji, Jj] + [Ji, Jj] Jj (818)
= JjεijkJk + εijkJkJj (819)
= εijk (JjJk + JkJj) (820)
= 0 (821)

where, in the last step, we used the fact that εijk is antisymmetric on jk, while the expression
JjJk + JkJk is explicitly symmetric. R is therefore a Casimir operator for O(3). Notice that
since R commutes with all of the generators, it must also commute with all elements of O(3)
(Exercise!!). For this reason, Casimir operators become extremely important in quantum
physics. Because the symmetries of our system are group symmetries, the set of all Casimir
operators gives us a list of the conserved quantities. Often, elements of a Lie group take
us from one set of fields to a physically equivalent set. Since the Casimir operators are left
invariant, we can use eigenvalues of the Casimir operators to classify the possible distinct
physical states of the system.

Let’s look at the Casimir operators that are most imporant for particle physics – those of
the Poincaré group. The Poincaré group is the set of transformations leaving the infinitesimal
line element

ds2 = c2dt2 − dx2 − dy2 − dz2 (822)

invariant. It clearly includes Lorentz transformations,

[dx′]
α

= Λα
βdx

β (823)
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but now also includes translations:

[x′]
α

= xα + aα (824)
⇒ [dx′]

α
= dxβ (825)

Since there are 4 translations and 6 Lorentz transformations, there are a total of 10 Poincaré
symmetries. There are several ways to write a set of generators for these transformations.
One common one is to let

Mα
β = xα∂β − xβ∂α

Pα = ∂α (826)

Then it is easy to show that[
Mα

β,M
µ
ν

]
= [xα∂β − xβ∂α, xµ∂ν − xν∂µ]

= xα∂β (xµ∂ν − xν∂µ)− xβ∂α (xµ∂ν − xν∂µ)

−xµ∂ν (xα∂β − xβ∂α) + xν∂
µ (xα∂β − xβ∂α)

= xαδµβ∂ν − x
αηβν∂

µ − xβηαµ∂ν + xβδ
α
ν ∂

µ

−xµδαν ∂β + xµηνβ∂
α + xνη

µα∂β − xνδµβ∂
α

= δµβM
α
ν − ηβνMαµ − ηαµMβν + δανM

µ
β (827)

To compute these, we imagine the derivatives acting on a function to the right of the commu-
tator,

[
Mα

β,M
µ
ν

]
f(x). Then all of the derivatives of f cancel when we antisymmetrize.

With suitable adjustments of the index positions, we see the result above is equivalent to
the Lorentz (o(3, 1)) case of eq.(575). Two similar but shorter calculations show that[

Mα
β, Pν

]
= ηνβP

α − δανPβ (828)
[Pα, Pβ] = 0 (829)

Eqs.(827-829) comprise the Lie algebra of the Poincaré group.

Exercise: Prove eq.(828) and eq.(829) using eqs.(826).

Now we can write the Casimir operators of the Poincaré group. There are two:

P 2 = ηαβPαPβ

W 2 = ηαβW
αW β (830)

where
W µ =

1

2
εµναβPνMαβ (831)

and εµναβ is the spacetime Levi-Civita tensor. To see what these correspond to, recall
from our discussion of Noether currents that the conservation of 4-momentum is associated
with translation invariance, and Pα is the generator of translations. In fact, Pα = i∂α,
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the Hermitian form of the translation generator, is the usual energy-momentum operator
of quantum mechanics. We directly interpret eigenvectors of Pα as energy and momentum.
Thus, we expect that eigenvalues of P 2 will be the mass, pαpα = m2.

Similarly, W 2 is built from the rotation generators. To see this, notice that we expect the
momentum, pα, to be a timelike vector. This means that there exists a frame of reference in
which pα = (mc, 0, 0, 0) . In this frame, Wα becomes

W µ =
1

2
εµναβPνMαβ (832)

=
1

2
mcεµ0αβMαβ (833)

Therefore, W 0 = 0, and for the spatial components,

W k =
1

2
mcεk0ijMij (834)

= mcJk (835)

Since m is separately conserved, this shows that the magnitude of the angular momentum
J2 is also conserved.

Exercise: Using the Lie algebra of the Poincaré group, eqs.(827-829), prove that P 2 and
W 2 commute with Mαβ and Pα. (Warning! The proof for W 2 is a bit tricky!) Notice
that the proof requires only the Lie algebra relations for the Poincaré group, and not
the specific representation of the operators given in eqs.(826).

Since the Casimir operators of the Poincaré group correspond to mass and spin, we will be
able to classify states of quantum fields by mass and spin. We will extend this list when we
introduce additional symmetry groups.
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3 Quantization of scalar fields
We have introduced several distinct types of fields, with actions that give their field equations.
These include scalar fields,

S =
1

2

∫ (
∂αϕ∂αϕ−m2ϕ2

)
d4x (836)

and complex scalar fields,

S =
1

2

∫ (
∂αϕ∗∂αϕ−m2ϕ∗ϕ

)
d4x (837)

These are often called charged scalar fields because they have a nontrivial global U(1) sym-
metry that allows them to couple to electromagnetic fields. Scalar fields have spin 0 and
mass m.

The next possible value ofW 2 ∼ J2 is spin-1
2
, which is possessed by spinors. Dirac spinors

satisfy the Dirac equation, which follows from the action

S =

∫
d4x ψ̄ (iγµ∂µ −m)ψ (838)

Once again, the mass is m. For higher spin, we have the zero mass, spin-1 electromagnetic
field, with action

S =

∫
d4x

(
1

4
FαβFαβ + JαAα

)
(839)

Electromagnetic theory has an important generalization in the Yang-Mills field, FA
αβ where

the additional index corresponds to an SU(n) symmetry. We could continue with the spin-3
2

Rarita-Schwinger field and the spin-2 metric field, gαβ of general relativity. The latter follows
the Einstein-Hilbert action,

S =

∫
d4x

√
− det (gαβ)gαβRµ

αµβ (840)

where Rµ
αµβ is the Riemann curvature tensor computed from gαβ and its first and second

derivatives. However, in this chapter we will be plenty busy quantizing the simplest examples:
scalar, charged scalar, and Dirac fields.

We need the Hamiltonian formulation of field theory to do this properly, and that will
require a bit of functional differentiation. It’s actually kind of fun.

3.1 Functional differentiation

What distinguishes a functional such as the action S[x(t)] from a function f(x(t)), is that
f(x(t) is a number for each value of t, whereas the value of S[x(t)] cannot be computed
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without knowing the entire function x(t). Thus, functionals are nonlocal. If we think of
functions and functionals as maps, a compound function is the composition of two maps

f : R→ R (841)
x : R→ R (842)

giving a third map
f ◦ x : R→ R (843)

A functional, by contrast, maps an entire function space into R,

S : F → R (844)
F = {x|x : R→ R} (845)

In this section we develop the functional derivative, that is, the generalization of differenti-
ation to functionals.

We would like the functional derivative to formalize finding the extremum of an action
integral, so it makes sense to review the variation of an action. The usual argument is that
we replace x(t) by x(t) + h(t) in the functional S[x(t)], then demand that to first order in
h(t),

δS ≡ S[x+ h]− S[x] = 0 (846)

We want to replace this statement by the demand that at the extremum, the first functional
derivative of S[x] vanishes,

δS[x(t)]

δx(t)
= 0 (847)

Now, suppose S is given by

S[x(t)] =

∫
L(x(t), ẋ(t))dt (848)

Then replacing x by x+ h and subtracting S gives

δS ≡
∫
L(x+ h, ẋ+ ḣ)dt−

∫
L(x, ẋ)dt (849)

=

∫ (
L(x, ẋ) +

∂L(x, ẋ)

∂x
h+

∂L(x, ẋ)

∂ẋ
ḣ

)
dt−

∫
L(x, ẋ)dt (850)

=

∫ (
∂L(x, ẋ)

∂x
− d

dt

∂L(x, ẋ)

∂ẋ

)
h(t) dt (851)

Setting δx = h(t) we may write this as

δS =

∫ (
∂L(x, ẋ)

∂x
− d

dt′
∂L(x, ẋ)

∂ẋ

)
δx(t′) dt′ (852)

Now write

δS =
δS

δx(t)
δx(t) =

(∫ (
∂L(x, ẋ)

∂x
− d

dt′
∂L(x, ẋ)

∂ẋ

)
δx(t′)

δx(t)
dt′
)
δx(t) (853)
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or simply
δS

δx(t)
=

∫ (
∂L(x, ẋ)

∂x
− d

dt′
∂L(x, ẋ)

∂ẋ

)
δx(t′)

δx(t)
dt′ (854)

We might write this much by just using the chain rule. What we need is to evaluate the
basic functional derivative,

δx(t′)

δx(t)
(855)

To see what this might be, consider the analogous derivative for a countable number of
degrees of freedom. Beginning with

∂qj

∂qi
= δji (856)

we notice that when we sum over the i index holding j fixed, we have∑
i

∂qj

∂qi
=
∑
j

δji = 1 (857)

since j = i for only one value of j. We demand the continuous version of this relationship.
The sum over independent coordinates becomes an integral,

∑
i →

∫
dt′, so we demand∫

δx(t′)

δx(t)
dt′ = 1 (858)

This will be true provided we use a Dirac delta function for the derivative:

δx(t′)

δx(t)
= δ(t′ − t) (859)

Substituting this expression into eq.(854) gives the desired result for δS
δx(t)

:

δS

δx(t)
=

∫ (
∂L(x, ẋ)

∂x
− d

dt′
∂L(x, ẋ)

∂ẋ

)
δ(t′ − t) dt′ (860)

=
∂L(x, ẋ)

∂x
− d

dt

∂L(x, ẋ)

∂ẋ
(861)

We thank C. Torre for the elegant idea of using a Dirac delta function to extract the equation
of motion. The motivational comments and formal developments below, with any inherent
flaws, are ours.

Notice how the Dirac delta function enters this calculation. When finding the extrema
of S as before, we reach a point where we demand

0 = δS =

∫ (
∂L(x, ẋ)

∂x
− d

dt

∂L(x, ẋ)

∂ẋ

)
h(t) dt (862)

for every function h(t). To complete the argument, we imagine h(t) of smaller and smaller
compact support near a point at time t0. The result of this limiting process is to conclude
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that the integrand must vanish at t0. Since this limiting argument holds for any choice of t0,
we must have

∂L(x, ẋ)

∂x
− d

dt

∂L(x, ẋ)

∂ẋ
= 0 (863)

everywhere. The Dirac delta function simply streamlines this limiting process; indeed, the
Dirac delta is defined by just such a limiting procedure.

Let’s summarize by making the procedure rigorous. Given a functional of the form

f [x(t)] =

∫
g (x(t′), ẋ(t′), . . .) dt′ (864)

we consider a sequence of 1-paramater variations of f given by replacing x(t′) by

xn(ε, t′) = x(t′) + εhn(t, t′) (865)

where the sequence of functions hn satisfies

lim
n→∞

hn(t, t′) = δ(t− t′) (866)

Since we may vary the path by any function h(x), each of these functions εhn is an allowed
variation. Then the functional derivative is defined by

δf [x(t)]

δx(t)
≡ lim

n→∞

d

dε
f [xn(ε, t′)]

∣∣∣∣
ε=0

(867)

The derivative with respect to ε accomplishes the usual variation of the action. Taking a
derivative and setting ε = 0 is just a clever way to select the linear part of the variation. Then
we take the limit of a carefully chosen sequence of variations hn to extract the variational
coefficient from the integral.

To see explicitly that this works, we compute:

δf [x(t)]

δx(t)
≡ lim

n→∞

d

dε
f [xn(ε, t′)]

∣∣∣∣
ε=0

(868)

≡ lim
n→∞

∫
dg (ε, x(t′), ẋ(t′), . . .)

dε

∣∣∣∣
ε=0

(869)

= lim
n→∞

∫
dg(x(t′) + εhn(t, t′), ẋ(t′) + εḣn(t, t′), . . .)

dε

∣∣∣∣∣
ε=0

(870)

= lim
n→∞

∫ (
∂g

∂x
hn(t, t′) +

∂g

∂ẋ(t′)

dhn(t, t′)

dt′
+ . . .

)
dt′ (871)

=

∫
lim
n→∞

hn(t, t′)

(
∂g

∂x
− d

dt′
∂g

∂ẋ
+ . . .

)
dt′ (872)

=

∫ (
∂g

∂x
− d

dt′
∂g

∂ẋ
+ . . .

)
δ(t− t′)dt′ (873)

=
∂g

∂x
− d

dt

∂g

∂ẋ
+ . . . (874)

87



A convenient shorthand notation for this procedure is

δf [x(t)]

δx(t)
=

δ

δx(t)

∫
g (x(t′), ẋ(t′), . . .) dt′ (875)

=

∫
δg

δx

δx(t′)

δx(t)
dt′ (876)

=

∫
δg

δx(t′)
δ(t− t′)dt′ (877)

=
∂g

∂x
− d

dt

∂g

∂ẋ
+ . . . (878)

The method can doubtless be extended to more general forms of functional f.
One advantage of treating variations in this more formal way is that we can equally well

apply the technique to classical field theory.

3.1.1 Field equations as functional derivatives

We can vary field actions in the same way, and the results make sense directly. Consider
varying the scalar field action:

S =
1

2

∫ (
∂αϕ∂αϕ−m2ϕ2

)
d4x (879)

with respect to the field ϕ. Setting the functional derivative of S to zero, we have

0 =
δS[ϕ]

δϕ(x)
(880)

=
1

2

δ

δϕ(x)

∫ (
∂αϕ∂αϕ−m2ϕ2

)
d4x′ (881)

=

∫ (
∂αϕ

∂

∂x′α
δϕ(x′)

δϕ(x)
−m2ϕ

δϕ(x′)

δϕ(x)

)
d4x′ (882)

=

∫ (
−∂α∂αϕ−m2ϕ

) δϕ(x′)

δϕ( x)
d4x′ (883)

=

∫ (
−∂α∂αϕ−m2ϕ

)
δ3(x′ − x)d4x′ (884)

= −�ϕ−m2ϕ (885)

and we have the field equation.

Exercise: Find the field equation for the complex scalar field by taking the functional
derivative of its action, eq.(837).

Exercise: Find the field equation for the Dirac field by taking the functional derivative of
its action, eq.(838).
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Exercise: Find the Maxwell equations by taking the functional derivative of its action,
eq.(839).

With this new tool at our disposal, we turn to quantization.

3.2 Quantization of the Klein-Gordon (scalar) field

To begin quantization, we require the Hamiltonian formulation of scalar field theory. Begin-
ning with the Lagrangian,

L =
1

2

∫ (
∂αϕ∂αϕ−m2ϕ2

)
d3x (886)

we define the conjugate momentum density to ϕ as the functional derivative of the Lagrangian
with respect to the function ϕ :

π ≡ δL

δ (∂0ϕ)
(887)

=
δ

δ (∂0ϕ)

1

2

∫ (
∂αϕ∂αϕ−m2ϕ2

)
d3x′ (888)

=

∫ (
∂0ϕ

)
δ3(x′ − x)d3x′ (889)

= ∂0ϕ(x) (890)

Notice that we treat ϕ(x) and its derivatives as independent. In terms of the momentum
density, the action and Lagrangian density are

S =
1

2

∫ (
π2 −∇ϕ · ϕ−m2ϕ2

)
d4x (891)

L =
1

2

(
π2 −∇ϕ · ∇ϕ−m2ϕ2

)
(892)

For the infinite number of field degrees of freedom (labeled by the spatial coordinates x),
the expression for the Hamiltonian becomes

H =
∑

piq̇
i − L (893)

⇒ H =

∫
π(x)ϕ̇(x)d3x− L (894)

so that

H =

∫
π(x)ϕ̇(x)d3x− 1

2

∫ (
∂αϕ∂αϕ−m2ϕ2

)
d3x (895)

=
1

2

∫ (
π2 +∇ϕ · ϕ+m2ϕ2

)
d3x (896)
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We can define the Hamiltonian density,

H =
1

2

(
π2 +∇ϕ · ∇ϕ+m2ϕ2

)
(897)

Hamilton’s equations can also be expressed in terms of densities. We replace Hamilton’s
equations,

q̇i =
∂H

∂pi
(898)

ṗi = −∂H
∂qi

(899)

with their functional derivative generalizations:

ϕ̇(x) =
δH

δπ(x)
(900)

π̇(x) = − δH

δϕ(x)
(901)

and check that our procedure reproduces the correct field equation by taking the indicated
derivatives. For ϕ,

ϕ̇(x) =
δH

δπi(x)
(902)

=
1

2

δ

δπi(x)

∫ (
π2 +∇ϕ · ∇ϕ+m2ϕ2

)
d3x′ (903)

=
1

2

∫ (
2π(x′)

δπ(x′)

δπi(x)

)
d3x′ (904)

=

∫
π(x′)δ3(x′ − x)d3x′ (905)

= π(x) (906)

while for π,

π̇(x) = − δH

δϕ(x)
(907)

= −1

2

δ

δϕ(x)

∫ (
π2 +∇ϕ · ∇ϕ+m2ϕ2

)
d3x′ (908)

= −
∫ (
∇ϕ · ∇δϕ(x′)

δϕ(x)
+m2ϕ

δϕ(x′)

δϕ(x)

)
d3x′ (909)

=

∫ (
∇2ϕ · δϕ(x′)

δϕ(x)
−m2ϕ

δϕ(x′)

δϕ(x)

)
d3x′ (910)

=

∫ (
∇2ϕδ3(x′ − x)−m2ϕδ3(x′ − x)

)
d3x′ (911)

= ∇2ϕ−m2ϕ (912)
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But π̇ = ∂0π = ∂0∂
0ϕ so

�ϕ = −m2ϕ (913)

and we recover the Klein-Gordon field equation.
We move toward quantization by writing the field equations in terms of functional Poisson

brackets. Let

{f(ϕ, π), g(ϕ, π)} ≡
∫ (

δf

δπ(x)

δg

δϕ(x)
− δf

δϕ(x)

δg

δπ(x)

)
d3x (914)

where we replaced the sum over all pi and qi by an integral over x. The bracket is evaluated
at a constant time. Then we have

{π(x′), ϕ(x′′)} =

∫ (
δπ(x′)

δπ(x)

δϕ(x′′)

δϕ(x)
− δπ(x′)

δϕ(x)

δϕ(x′′)

δπ(x)

)
d3x (915)

=

∫
δ3(x′ − x)δ3(x′′ − x)d3x (916)

= δ3(x′′ − x′) (917)

while
{π(x′), π(x′′)} = {ϕ(x′), ϕ(x′′)} = 0

Hamilton’s equations work out correctly:

ϕ̇(x) = {H(ϕ, π), ϕ(x′)} (918)

=

∫ (
δH(ϕ, π)

δπ(x)

δϕ(x′)

δϕ(x)
− δH

δϕ(x)

δϕ(x′)

δπ(x)

)
d3x (919)

=

∫
δH(ϕ, π)

δπ(x)
δ3(x− x′)d3x (920)

=
δH(ϕ(x), π(x))

δπ(x)
(921)

and

π̇(x) = {H(ϕ, π), π(x′)} (922)

=

∫ (
δH(ϕ, π)

δπ(x)

δπ(x′)

δϕ(x)
− δH

δϕ(x)

δπ(x′)

δπ(x)

)
d3x (923)

= −
∫
δH(ϕ, π)

δϕ(x)
δ3(x− x′)d3x (924)

= −δH(ϕ(x), π(x))

δϕ(x)
(925)

Now we quantize, canonically. The field and its conjugate momentum become operators
and the fundamental Poisson brackets become commutators:

{π(x′), ϕ(x′′)} = δ3(x′′ − x′)⇒ [π̂(x′), ϕ̂(x′′)] = iδ3(x′′ − x′) (926)
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(where h = 1) while
[ϕ̂(x′), ϕ̂(x′′)] = [π̂(x′), π̂( x′′)] = 0

These are the fundamental commutation relations of the quantum field theory. Because the
commutator of the field operators π̂(x) and ϕ̂(x) are evaluated at the same value of t, these
are called equal time commutation relations. More explicitly,

[π̂(x′, t), ϕ̂(x′′, t)] = iδ3(x′′ − x′)

[ϕ̂(x′, t), ϕ̂(x′′, t)] = [π̂(x′, t), π̂(x′′, t)] = 0

This completes the canonical quantization. The trick, of course, is to find some solutions
that have the required quantized properties.

3.2.1 Solution for the free quantized Klein-Gordon field

Having written commutation relations for the field, we still have the problem of finding
solutions and interpreting them. To begin, we look at solutions the classical theory. The
field equation

�ϕ = −m
2

h2
ϕ (927)

(where we have replaced h, but retain c = 1) is not hard to solve. Consider plane waves,

ϕ(x, t) = Ae
i

h
(pαxα)

+ A†e
− i

h
(pαxα) (928)

= Ae
i

h
(Et−p·x)

+ A†e
− i

h
(Et−p·x) (929)

Substituting into the field equation we have

A

(
i

h

)2

pαp
α exp

i

h
(pαx

α) = −m
2

h2
A exp

i

h
(pαx

α) (930)

so we need the usual mass-energy-momentum relation:

pαp
α = m2 (931)

We can solve this for the energy,

E+ =
√
p2 +m2 (932)

E− = −
√

p2 +m2 (933)

then construct the general solution by Fourier superposition. To keep the result manifestly
relativistic, we use a Dirac delta function to impose pαpα = m2. We also insert a unit step
function, Θ(E), to insure positivity of the energy. This insertion may seem a bit ad hoc, and
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it is – we will save discussion of the negative energy solutions and antiparticles for the last
section of this chapter. Then,

ϕ(x, t) =
1

(2π)3/2

∫ √
2E
(
a(E,p)e

i

h
(pαxα)

+ a†(E,p)e
− i

h
(pαxα)

)
(934)

×δ
(
pαp

α −m2
)

Θ(E)h−4d4p (935)

where A =
√

2Ea(E,p) is the arbitrary complex amplitude of each wave mode and 1

(2π)3/2
is

the conventional normalization for Fourier integrals.
Recall that for a function f(x) with zeros at xi, i = 1, 2, . . . , n, δ(f) gives a contribution

at each zero:

δ(f) =
n∑
i=1

1

|f ′(xi)|
δ(x− xi) (936)

so the quadratic delta function can be written as

δ
(
pαp

α −m2
)

= δ
(
E2 − p2 −m2

)
(937)

=
1

2|E|
δ
(
E −

√
p2 +m2

)
(938)

+
1

2|E|
δ
(
E +

√
p2 +m2

)
(939)

Exercise: Prove eq.(936).

Exercise: Argue that Θ(E) is Lorentz invariant.

The integral for the solution ϕ(x, t) becomes

ϕ(x, t) =
1

(2π)3/2

∫ √
2E
{(
ae

i
~ (pαxα) + a†e−

i
~ (pαxα)

)
(940)

× 1

2|E|
δ
(
E −

√
p2 +m2

)
(941)

+
(
ae

i
~ (pαxα) + a†e−

i
~ (pαxα)

)
(942)

× 1

2|E|
δ
(
E +

√
p2 +m2

)}
Θ(E)~−4d4p (943)

=
1

(2π)3/2

∫ (
ae

i
~ (pαxα) + a†e−

i
~ (pαxα)

)
(944)

× 1√
2|E|

δ
(
E −

√
p2 +m2

)
~−4d4p (945)

Define

kµ = (ω,k) (946)
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k =
p

~
(947)

ω =
1

~
√
p2 +m2 =

√
k2 +

(m
~

)2

(948)

Then
ϕ(x, t) =

1

(2π)3/2

∫
d3k√

2ω

(
a(k)ei(ωt−k·x) + a†(k)e−i(ωt−k·x)

)
(949)

This is the general classical solution for the Klein-Gordon field. Notice that since ω = ω(k),
the amplitudes a and a† depend only on k.

To check that our solution satisfies the Klein-Gordon equation, we need only apply
the wave operator to the right side. This pulls down an overall factor of (ikµ)(ikµ) =

− 1
~2 (E2 − p2) = −m2

~2 . Since this is constant, it comes out of the integral, giving −m2

~2 ϕ as
required.

Now we need to quantize the classical solution. Since we know the commutation relations
that ϕ and π satisfy when they become operators, it is useful to invert the Fourier integrals to
solve for the coefficients in terms of the fields. To this end, multiply ϕ(x, t) by 1

(2π)3/2
d3xeik

′·x

and integrate. It will prove sufficient to evaluate the expression at t = 0. On the left this
gives the Fourier transform of the field,

LHS =
1

(2π)3/2

∫
ϕ(x, 0)eik

′·xd3x

while the right hand side becomes

RHS =
1

(2π)3

∫
d3k√

2ω

(
a(k)ei(k

′−k)·x + a†(k)ei(k
′+k)·x

)
d3x (950)

=

∫
d3k√

2ω

(
a(k)δ3 (k′ − k) + a†(k)δ3 (k′ + k)

)
(951)

=
1√
2ω

(
a(k′) + a†(−k′)

)
(952)

We also need the conjugate momentum,

π(x, t) = ∂0ϕ(x, t) (953)

=
i

(2π)3/2

∫ √
ω

2
d3k

(
a(k)ei(ωt−k·x) − a†(k)e−i(ωt−k·x)

)
(954)

Once again taking the Fourier transform, 1

(2π)3/2

∫
π(x, 0)eik

′·xd3x, of the momentum density,
we find it equal to

RHSπ =
i

(2π)3

∫ √
ω′

2
d3k

(
a(k)ei(k

′−k)·x − a†(k)ei(k
′+k)·x

)
d3x (955)
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= i

∫ √
ω′

2
d3k

(
a(k)δ3 (k′ − k)− a†(k)δ3 (k′ + k)

)
(956)

= i

√
ω′

2

(
a(k′)− a†(−k′)

)
(957)

We have the results,

a(k′) + a†(−k′) =

√
2ω′

(2π)3/2

∫
ϕ(x, 0)eik

′·xd3x (958)

a(k′)− a†(−k′) =
−i

(2π)3/2

√
2

ω′

∫
π(x, 0)eik

′·xd3x

These results combine to solve for the amplitudes. Adding gives a(k′) :

a(k′) =

√
2ω′

2 (2π)3/2

∫ (
ϕ(x, 0)− i

ω′
π(x, 0)

)
eik
′·xd3x (959)

while subtracting then changing the sign of k′ gives the adjoint:

a†(k′) =

√
2ω′

2 (2π)3/2

∫ (
ϕ(x, 0) +

i

ω′
π(x, 0)

)
e−ik

′·xd3x (960)

This gives the amplitudes in terms of the field and its conjugate momentum. So far, this
result is classical.

Next, we check the consequences of quantization for the amplitudes. Clearly, once ϕ and
π become operators, the amplitudes do too. From the commutation relations for ϕ and π
we can compute those for a and a†.[

â(k), â†(k′)
]

=
ω′

2 (2π)3

∫ ∫
eik·xe−ik

′·x′d3x d3x′ (961)

×
[
ϕ̂(x)− i

ω
π̂(x), ϕ̂(x′) +

i

ω
π̂(x′)

]
(962)

We need [
ϕ̂(x)− i

ω
π̂(x), ϕ̂(x′) +

i

ω
π̂(x′)

]
= −2i

ω
[π̂(x), ϕ̂(x′)] (963)

=
2

ω
δ3(x− x′) (964)

Therefore, [
â(k), â†(k′)

]
=

√
ωω′

2 (2π)3

∫ ∫
eik·xe−ik

′·x′d3x d3x′
2

ω
δ3(x− x′) (965)

=
1

(2π)3

√
ω′

ω

∫
ei(k−k

′)·xd3x (966)

= δ3 (k− k′) (967)

Notice that the delta function makes ω = ω′.
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Exercise: Show that [â(k), â(k′)] = 0.

Exercise: Show that
[
â†(k), â†(k′)

]
= 0.

Finally, we summarize by the field and momentum density operators in terms of the mode
amplitude operators:

ϕ̂(x, t) =
1

(2π)3/2

∫
d3k√

2ω

(
â(k)ei(ωt−k·x) + â†(k)e−i(ωt−k·x)

)
(968)

π̂(x, t) =
i

(2π)3/2

∫ √
ω

2
d3k

(
â(k)ei(ωt−k·x) − â†(k)e−i(ωt−k·x)

)
(969)

Next, we turn to a study of states. To begin, we require the Hamiltonian operator, which
requires a bit of calculation.

3.2.2 Calculation of the Hamiltonian operator

This is our first typical quantum field theory calculation. They’re a bit to keep track of, but
not really that hard. Our goal is to compute the expression for the Hamiltonian operator

Ĥ =
h

2

∫ (
π̂2 +∇ϕ̂ · ϕ̂+m2ϕ̂2

)
d3x (970)

in terms of the mode operators. Because the techniques involved are used frequently in field
theory calculations, we include all the gory details.

Let’s consider one term at a time. For the first,

Iπ =
1

2

∫
π̂2d3x (971)

= − 1

2 (2π)3

∫ (∫ √
ω

2
d3k

(
â(k)ei(ωt−k·x) − â†(k)e−i(ωt−k·x)

))
(972)

×

(∫ √
ω′

2
d3k′

(
â(k′)ei(ω

′t−k′·x) − â†(k′)e−i(ω′t−k′·x)
))

d3x (973)

=
−1

4 (2π)3

∫ ∫ ∫ √
ωω′d3kd3k′d3x (974)

×
(
â(k)ei(ωt−k·x) − â†(k)e−i(ωt−k·x)

)
(975)

×
(
â(k′)ei(ω

′t−k′·x) − â†(k′)e−i(ω′t−k′·x)
)

(976)

=
−1

4 (2π)3

∫ ∫ ∫ √
ωω′d3kd3k′d3x

(
â(k)â(k′)ei((ω+ω′)t−(k+k′)·x) (977)

−â(k)â†(k′)ei((ω−ω
′)t−(k−k′)·x) (978)

−â†(k)â(k′)e−i((ω−ω
′)t−(k−k′)·x) (979)
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+ â†(k)â†(k′)e−i((ω+ω′)t−(k+k′)·x)
)

(980)

=
−1

4

∫ ∫ ∫ √
ωω′d3kd3k′

(
â(k)â(k′)δ3 (k + k′) ei(ω+ω′)t (981)

−â(k)â†(k′)δ3 (k− k′) ei(ω−ω
′)t (982)

−â†(k)â(k′)δ3 (k− k′) e−i(ω−ω
′)t (983)

+ â†(k)â†(k′)δ3 (k + k′) e−i(ω+ω′)t
)

(984)

Now perform the integral over d3x, using the fact that the Fourier waves give Dirac delta
functions:

1

(2π)3

∫
d3x eik·x = δ3(k) (985)

Then

1

2

∫
π̂2d3x = −1

4

∫ ∫ √
ωω′d3kd3k′

(
â(k)â(k′)δ3 (k + k′) ei(ω+ω′)t (986)

−â(k)â†(k′)δ3 (k− k′) ei(ω−ω
′)t (987)

−â†(k)â(k′)δ3 (k− k′) e−i(ω−ω
′)t (988)

+ â†(k)â†(k′)δ3 (k + k′) e−i(ω+ω′)t
)

(989)

Now, integrate over d3k′, using the Dirac deltas. This replaces each occurrence of k′ with
either +k or −k, but always replaces ω′ with ω.

1

2

∫
π̂2d3x = −1

4

∫
ωd3k

(
â(k)â(−k)e2iωt − â(k)â†(k) (990)

−â†(k)â(k) + â†(k)â†(−k)e−2iωt
)

(991)

Let’s press on to the remaining terms. The second term is

I∇ϕ =
1

2

∫
∇ϕ̂ · ∇ϕ̂d3x (992)

=
1

4 (2π)3

∫ ∫ ∫
1√
ωω′

d3kd3k′d3x (−ik) · (−ik′) (993)

×
(
â(k)ei(ωt−k·x) − â†(k)e−i(ωt−k·x)

)
(994)

×
(
â(k′)ei(ω

′t−k′·x) − â†(k′)e−i(ω′t−k′·x)
)

(995)

As before, the d3x integrals of the four terms give four Dirac delta functions and the d3k′

integrals become trivial. The result is

I∇ϕ = −1

4

∫
k · k
ω

d3k
(
−â(k)â(−k)e2iωt − â(k)â†(k) (996)

−â†(k)â(k)− â†(k)â†(−k)e−2iωt
)

(997)
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It is not hard to see the pattern that is emerging. The k·k
ω

term will combine nicely with the
ω = ω2

ω
from the π̂2 integral and a corresponding m2 term from the final integral to give a

cancellation. The crucial thing is to keep track of the signs.
The third and final term is

1

2

∫
m2ϕ̂2d3x =

1

2

m2

(2π)3

∫ ∫ ∫
d3k√

2ω

d3k′√
2ω′

d3x (998)

×
(
â(k)ei(ωt−k·x) + â†(k)e−i(ωt−k·x)

)
(999)

×
(
â(k′)ei(ω

′t−k′·x) + â†(k′)e−i(ω
′t−k′·x)

)
(1000)

=
m2

4

∫
d3k

ω

(
â(k)â(−k)e2iωt + â(k)â†(k) (1001)

+â†(k)â(k) + â†(k)â†(−k)e−2iωt
)

(1002)

Now we can combine all three terms:

Ĥ =
h

2

∫
: π̂2 +∇ϕ̂ · ∇ϕ̂+m2ϕ̂2 : d3x (1003)

= −h
4

∫
ωd3k

(
â(k)â(−k)e2iωt − â(k)â†(k) (1004)

−â†(k)â(k) + â†(k)â†(−k)e−2iωt
)

(1005)

−h
4

∫
k · k
ω

d3k
(
−â(k)â(−k)e2iωt − â(k)â†(k) (1006)

−â†(k)â(k)− â†(k)â†(−k)e−2iωt
)

(1007)

+
m2

4

∫
d3k

ω

(
â(k)â(−k)e2iωt + â(k)â†(k) (1008)

+â†(k)â(k) + â†(k)â†(−k)e−2iωt
)

(1009)

= −h
4

∫
d3k

ω

((
ω2 − k · k−m2

)
â(k)â(−k)e2iωt (1010)

+
(
−ω2 − k · k−m2

) (
â(k)â†(k) + â†(k)â(k)

)
(1011)

+
(
ω2 − k · k−m2

)
â†(k)â†(−k)e−2iωt

)
(1012)

=
h

2

∫
d3k

(
â(k)â†(k) + â†(k)â(k)

)
ω (1013)

=

∫
d3k

(
â†(k)â(k) +

1

2

)
hω (1014)

Therefore, all of this boils down to simply

Ĥ =

∫
d3k

(
â†(k)â(k) +

1

2

)
hω (1015)

when written in terms of the mode amplitudes â and â†. This result makes good sense –
it is just the energy operator for the quantum simple harmonic oscillator, summed over all
modes.
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3.2.3 Our first infinity

The form of the Hamiltonian found above displays an obvious problem – the second term,

1

2

∫
ωd3k (1016)

diverges! While the constant “ground state energy” of the harmonic oscillator, 1
2
hω, causes

no probem in quantum mechanics, the presence of such an energy term for each mode of
quantum field theory leads to an infinite energy for the vacuum state. Fortunately, a simple
trick allows us to eliminate this divergence throughout our calculations. To see how it works,
notice that anytime we have a product of two or more fields at the same point, we develop
some terms of the general form

ϕ̂(x)ϕ̂(x) ∼ â(ω,k)â†(ω,k) + . . . (1017)

which have â†(ω,k) on the right. When such products act on the vacuum state, the â†(ω,k)
gives a nonvanishing contribution, and if we sum over all wave vectors we get a divergence.
The solution is simply to impose a rule that changes the order of the creation and annihilation
operators. This is called normal ordering, and is denoted by enclosing the product in
colons. Thus, we define the Hamiltonian to be the normal ordered product

Ĥ =
h

2

∫
:
(
π̂2 +∇ϕ̂ · ϕ̂+m2ϕ̂2

)
: d3x (1018)

=
h

2

∫
d3k :

(
â(k)â†(k) + â†(k)â(k)

)
: ω (1019)

=

∫
d3k â†(k)â(k) hω (1020)

This expression gives zero for the vacuum state, and is finite for all states with a finite
number of particles. While this procedure may seem a bit ad hoc, recall that the ordering
of operators in any quantum expression is one thing that cannot be determined from the
classical framework using canonical quantization. It is therefore reasonable to use whatever
ordering convention gives the most sensible results.

3.2.4 States of the Klein-Gordon field

The similarity between the field Hamiltonian and the harmonic oscillator makes it easy to
interpret this result. We begin the observation that the expectation values of Ĥ are bounded
below. This follows because for any normalized state |α〉 we have

〈α| Ĥ |α〉 = 〈α|
∫
ω :

(
â†(k)â(k) +

1

2

)
: d3k |α〉 (1021)

=

∫
ω d3k 〈α| â†(k)â(k) |α〉 (1022)
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But if we let |β〉 = â(k) |α〉 , then 〈β| = 〈α| â†(k), so

〈α| Ĥ |α〉 =

∫
ω d3k 〈α| â†(k)â(k) |α〉 (1023)

=

∫
ω d3k 〈β|β〉 (1024)

> 0 (1025)

since the integrand is positive definite. However, we can show that the action of â(k) lowers
the eigenvalues of Ĥ. For consider the commutator[

Ĥ, â(k)
]

=

[∫
ω′ :

(
â†(k′)â(ω′,k′) +

1

2

)
: d3k′, â(k)

]
(1026)

=

∫
ω′
[
â†(k′), â(k)

]
â(k′)d3k′ (1027)

= −
∫
ω′δ3 (k− k′) â(k′)d3k′ (1028)

= −ωâ(k) (1029)

Therefore, if |α〉 is an eigenstate of Ĥ with Ĥ |α〉 = α |α〉 then so is â(k) |α〉 because

Ĥ (â(k) |α〉) =
[
Ĥ, â(k)

]
|α〉+ â(k)Ĥ |α〉 (1030)

= −ωâ(k) |α〉+ â(k)α |α〉 (1031)
= (α− ω) (â(k) |α〉) (1032)

Moreover, the eigenvalue of the new eigenstate is lower than α. Since the eigenvalues are
bounded below, there must exist a state such that

â(k) |0〉 = 0 (1033)

for all values of k. The state |0〉 is called the vacuum state and the operators â(k) are called
annihilation operators. From the vacuum state, we can construct the entire spectrum of
eigenstates of the Hamiltonian. First, notice that the vacuum state is a minimal eigenstate
of Ĥ:

Ĥ |0〉 =

∫
ω′ :

(
â†(k′)â(k′) +

1

2

)
: |0〉 d3k′

=

∫
ω′â†(k′)â(k′) |0〉 d3k′

= 0

Now, we act on the vacuum state with â†(k) to produce new eigenstates.

Exercise: Prove that |k〉 = â†(k) |0〉 is an eigenstate of Ĥ.
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We can build infinitely many states in two ways. First, just like the harmonic oscillator states,
we can apply the creation operator â†(k) as many times as we like. Such a state contains
multiple particles with energy ω. Second, we can apply creation operators of different k:

|k′,k〉 = â†(k′)â†(k) |0〉 = â†(k)â†(k′) |0〉 (1034)

This state contains two particles, with energies ω and ω′.
As with the harmonic oscillator, we can introduce a number operator to measure the

number of quanta in a given state. The number operator is just the sum over all modes of
the number operator for a given mode:

N̂ =

∫
:
(
â†(k)â(k)

)
: d3k

=

∫
â†(k)â(k)d3k

Exercise: By applying N̂ , compute the number of particles in the state

|k′,k〉 = â†(k′)â†(k) |0〉 (1035)

Notice that creation and annihilation operators for different modes all commute with
one another, e.g., [

â†(k′), â(k)
]

= 0 (1036)

when k′ 6= k.

3.2.5 Poincaré transformations of Klein-Gordon fields

Now let’s examine the Lorentz transformation and translation properties of scalar fields. For
this we need to construct quantum operators which generate the required transformations.
Since the translations are the simplest, we begin with them.

We have observed that the spacetime translation generators forming a basis for the Lie
algebra of translations (and part of the basis of the Poincaré Lie algebra) resemble the energy
and momentum operators of quantum mechanics. Moreover, Noether’s theorem tells us that
energy and momentum are conserved as a result of translation symmetry of the action. We
now need to bring these insights into the quantum realm.

From our discussion in Chapter 1, using the Klein-Gordon Lagrangian density from
eq.(892), we have the conserved stress-energy tensor,

T µν =
∂L

∂ (∂µφ)
∂νφ− Lηµν (1037)

= ∂µϕ∂νϕ− 1

2
ηµν
(
π2 −∇ϕ · ∇ϕ−m2ϕ2

)
(1038)

which leads to the conserved charges,

P µ =

∫
T µ0d3x (1039)
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and the natural extension of this observation is to simply replace the products of fields in
T µ0 with normal-ordered field operators. We therefore write

P̂ µ =

∫
: T̂ µ0 : d3x (1040)

First, for the time component,

P̂ 0 =

∫
: T̂ 00 : d3x (1041)

=

∫
: ∂0ϕ̂∂0ϕ̂− 1

2
η00
(
π̂2 −∇ϕ̂ · ϕ̂−m2ϕ̂2

)
: d3x (1042)

=
1

2

∫
: π̂2 +∇ϕ̂ · ∇ϕ̂+m2ϕ̂2 : d3x (1043)

= Ĥ (1044)

This is promising!
Now let’s try the momentum:

P̂ i =

∫
: T̂ i0 : d3x (1045)

=

∫
: ∂iϕ̂∂0ϕ̂− 1

2
ηi0
(
π̂2 −∇ϕ̂ · ϕ̂−m2ϕ̂2

)
: d3x (1046)

=

∫
: ∂iϕ̂ π̂ : d3x (1047)

Exercise: By substituting the field operators, eq.(968) and eq.(969), into the integral for
P̂ i, show that

P̂ i =
1

2

∫
ki
{
−â(k)â(−k)e2iωt + â(k)â†(k) (1048)

+â†(k)â(k)− â†(k)â†(−k)e−2iωt
}
d3k (1049)

The calculation is similar to the computation of the Hamiltonian operator above, except
there is only one term to consider.

We can simplify this result for P̂ i using a parity argument. Consider the effect of parity on
the first integral. Since the volume form together with the limits is invariant under k→ −k,∫ ∞

−∞

∫ ∞
−∞

∫ ∞
−∞

d3k →
∫ −∞
∞

∫ −∞
∞

∫ −∞
∞

(−1)3 d3k =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

d3k (1050)

and ω (−k) = ω (k) , we have

I1 =
1

2

∫
d3k ki â(k)â(−k)e2iωt (1051)
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=
1

2

∫
d3k (−ki) â(−k)â(k)e2iωt (1052)

= −1

2

∫
d3k ki â(k)â(−k)e2iωt (1053)

= −I1 (1054)

and therefore I1 = 0. The final term in the same way, so the momentum operator reduces to

P̂ i =

∫
: ∂iϕ̂ π̂ : d3x (1055)

=
1

2

∫
ki:
(
â(k)â†(k) + â†(k)â(k)

)
: d3k (1056)

=

∫
ki â(k)â†(k)d3k (1057)

Once again, this makes sense; moreover, they are suitable for translation generators since
they all commute.

In a similar way, we can compute the operators M̂αβ, and show that the commutation
relations of the full set reproduce the Poincaré Lie algebra,[

M̂αβ, M̂µν
]

= ηβµM̂αν − ηβνM̂αµ − ηαµM̂βν − ηανM̂βµ (1058)[
M̂αβ, P̂ µ

]
= ηµαP̂ β − ηµβP̂α (1059)[

P̂α, P̂ β
]

= 0 (1060)

The notable accomplishment here is that we have shown that even after quantization, the
symmetry algebra not only survives, but can be built from the quantum field operators.
This is far from obvious, because the commutation relations for the field operators are
simply imposed by the rules of canonical quantization and have nothing to do, a priori, with
the commutators of the symmetry algebra. One consequence, as noted above, is that the
Casimir operators of the Poincaré algebra may be used to label quantum states.

3.3 Quantization of the complex scalar field

The complex scalar field provides a slight generalization of the real scalar field. As before
we begin with the Lagrangian,

L =

∫ (
∂αϕ∗∂αϕ−m2ϕ∗ϕ

)
d3x (1061)

We define the conjugate momentum densities to ϕ and ϕ∗ as the functional derivatives L
with respect to ϕ and ϕ∗ :

π ≡ δL

δ (∂0ϕ)
= ∂0ϕ∗(x) (1062)
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and similarly

π∗ ≡ δL

δ (∂0ϕ∗)
= ∂0ϕ(x) (1063)

The action and Lagrangian density, written in terms of these momenta, are therefore

S =

∫ (
ππ∗ −∇ϕ∗ · ϕ−m2ϕ∗ϕ

)
d4x (1064)

L = ππ∗ −∇ϕ∗ · ∇ϕ−m2ϕ∗ϕ (1065)

The Hamiltonian is

H =

∫
(πϕ̇+ π∗ϕ̇∗) d3x− L (1066)

=

∫
(ππ∗ + π∗π)−

(
ππ∗ − ∇ϕ∗ · ∇ϕ−m2ϕ∗ϕ

)
d3x (1067)

=

∫ (
π∗π +∇ϕ∗ · ∇ϕ+m2ϕ∗ϕ

)
d3x (1068)

Hamilton’s equations are:

ϕ̇(x) =
δH

δπ(x)
(1069)

π̇(x) = − δH

δϕ(x)
(1070)

ϕ̇∗(x) =
δH

δπ∗(x)
(1071)

π̇∗(x) = − δH

δϕ∗(x)
(1072)

Exercise: Prove that Hamilton’s equations reproduce the field equations for ϕ and ϕ∗.

Now write the field equations in terms of functional Poisson brackets, which, for func-
tionals f = f [ϕ, π, ϕ∗, π∗] and g = g [ϕ, π, ϕ∗, π∗] are now given by

{f, g} ≡
∫
d3x

(
δf

δπ(x)

δg

δϕ(x)
+

δf

δπ∗(x)

δg

δϕ∗(x)
(1073)

− δf

δϕ(x)

δg

δπ(x)
− δf

δϕ∗(x)

δg

δπ∗(x)

)
(1074)

The result is the same:

{π(x′), ϕ(x′′)} =

∫ (
δπ(x′)

δπ(x)

δϕ(x′′)

δϕ(x)
+ 0 (1075)

− δπ(x′)

δϕ(x)

δϕ(x′′)

δπ(x)
− 0

)
d3x (1076)
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=

∫
δ3(x′ − x)δ3(x′′ − x)d3x (1077)

= δ3(x′′ − x′) (1078)
{π∗(x′), ϕ∗(x′′)} = δ3(x′′ − x′) (1079)

with all other brackets vanishing.

Exercise: Check that Hamilton’s equations

ϕ̇(x) = {H (ϕ, π, ϕ∗, π∗) , ϕ(x′)}
ϕ̇∗(x) = {H (ϕ, π, ϕ∗, π∗) , ϕ∗(x′)}
π̇(x) = {H (ϕ, π, ϕ∗, π∗) , π(x′)}
π̇∗(x) = {H (ϕ, π, ϕ∗, π∗) , π∗(x′)}

work out correctly.

Now we quantize, replacing fields by operators and Poisson brackets by equal-time com-
mutators:

[π̂(x′, t), ϕ̂(x′′, t)] = iδ3(x′′ − x′) (1080)
[π̂∗(x′, t), ϕ̂∗(x′′, t)] = iδ3(x′′ − x′) (1081)

with all other pairs commuting. Now we seek solutions satisfying these quantization relations.

3.3.1 Solution for the free quantized complex scalar field

The solution proceeds as before, starting with solutions for the classical theory. The field
equations

�ϕ = −m
2

h2
ϕ (1082)

�ϕ∗ = −m
2

h2
ϕ∗ (1083)

are complex conjugates of each other. The only difference from the real case is that we no
longer restrict to real plane waves. This leaves the amplitudes independent:

ϕ(x, t) = Ae
i

h
(Et−p·x)

+B†e
− i

h
(Et−p·x) (1084)

Substituting into the field equation we have

�ϕ =

(
i

h

)2

pαp
αAe

i

h
(Et−p·x)

+

(
− i
h

)2

pαp
αB†e

− i

h
(Et−p·x) (1085)

= − 1

h2
pαp

αϕ(x, t) (1086)
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so again,
pαp

α = m2 (1087)

We can solve this for the energy,

E+ =
√

p2 +m2 (1088)

E− = −
√
p2 +m2 (1089)

The general Fourier superposition is

ϕ(x, t) =
1

(2π)3/2

∫ √
2E
(
a(E,p)e

i

h
(pαxα)

+ b†(E,p)e
− i

h
(pαxα)

)
(1090)

×δ
(
pαp

α −m2
)

Θ(E)~−4d4p (1091)

=
1

(2π)3/2

∫
d3k√

2ω

(
a(k)ei(ωt−k·x) + b†(k)e−i(ωt−k·x)

)
(1092)

The conjugate field and momenta are

ϕ∗(x, t) =
1

(2π)3/2

∫
d3k√

2ω

(
b(k)ei(ωt−k·x) + a†(k)e−i(ωt−k·x)

)
(1093)

π(x, t) =
i

(2π)3/2

∫ √
ω

2
d3k

(
b(k)ei(ωt−k·x) − a†(k)e−i(ωt−k·x)

)
(1094)

π∗(x, t) =
i

(2π)3/2

∫ √
ω

2
d3k

(
a(k)ei(ωt−k·x) − b†(k)e−i(ωt−k·x)

)
(1095)

We need to invert these Fourier integrals to solve for a(k), b(k), a†(k) and b†(k).

Exercise: By taking inverse Fourier integrals, show that

a(k) =
1

(2π)3/2

√
ω

2

∫
d3x

(
ϕ(x, 0)− i

ω
π∗(x, 0)

)
eik·x (1096)

b(k) =
1

(2π)3/2

√
ω

2

∫
d3x

(
ϕ∗(x, 0)− i

ω
π(x, 0)

)
eik·x (1097)

It follows immediately from this exercise that the conjugate mode amplitudes are given
by

a∗(k) =
1

(2π)3/2

√
ω

2

∫
d3x

(
ϕ∗(x, 0) +

i

ω
π(x, 0)

)
e−ik·x (1098)

b∗(k) =
1

(2π)3/2

√
ω

2

∫
d3x

(
ϕ(x, 0) +

i

ω
π∗(x, 0)

)
e−ik·x (1099)

We can now move to study the quantum operators. When the fields become operators the
complex conjugates above become adjoints (for example, a∗(k)→ a†(k)). We next find the
commutation relations that hold among the four operators â(k), b̂(k), â†(k) and b̂†(k).
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Exercise: From the commutation relations for the fields and conjugate momenta, eqs.(1080)
and (1081), show that [

â(k), â†(k′)
]

= δ3 (k− k′) (1100)[
b̂(k), b̂†(k′)

]
= δ3 (k− k′) (1101)

Exercise: From the commutation relations for the fields and conjugate momenta, eqs.(1080)
and (1081), show that [

â(k), b̂(k′)
]

= 0 (1102)[
â(k), b̂†(k′)

]
= 0 (1103)

As for the Klein-Gordon field, we could go on to construct the Poincaré currents, writing
the energy, momentum and angular momentum in terms of the creation and anihilation
operators. These emerge much as before. However, for the charged scalar field, there is an
additional symmetry. The transformation

ϕ(x, t) → eiαϕ(x, t) (1104)
ϕ∗(x, t) → e−iαϕ∗(x, t) (1105)

leaves the action
S =

∫ (
∂αϕ∗∂αϕ−m2ϕ∗ϕ

)
d4x (1106)

invariant. Therefore, there is an additional Noether current. In this case, the variation of
the Lagrangian

L =

∫ (
∂αϕ∗∂αϕ−m2ϕ∗ϕ

)
d3x (1107)

is also zero, so from eq.(287) the current is simply

Jµ ≡ ∂L
∂ (∂µφA)

∆A (1108)

where
φA → φA + ∆A(φB, x) (1109)

defines ∆A. For an infinitesimal phase change, the fields change by

ϕ → ϕ+ iαϕ (1110)
ϕ∗ → ϕ∗ − iαϕ∗ (1111)

so the current is

Jα ≡ ∂L
∂ (∂µφ)

∆ϕ+
∂L

∂ (∂µφ∗)
∆ϕ∗ (1112)

= (∂αϕ∗) iαϕ− (∂αϕ) iαϕ∗ (1113)
= iα ((∂αϕ∗)ϕ− (∂αϕ)ϕ∗) (1114)
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We are guaranteed that the divergence of Jµ must vanish and can easily check using the field
equations:

∂αJ
α = iα∂α ((∂αϕ∗)ϕ− (∂αϕ)ϕ∗) (1115)

= iα ((∂α∂
αϕ∗)ϕ− (∂αϕ) ∂αϕ

∗ + (∂αϕ∗) ∂αϕ− (∂α∂
αϕ)ϕ∗) (1116)

= −iα
(
m2ϕ∗ϕ−m2ϕϕ∗

)
(1117)

= 0 (1118)

In general, when new fields are introduced to make a global symmetry into a local symme-
try, the new fields produce interactions between the original, symmetric fields. The strength
of this interaction is governed by the Noether currents of the symmetry. In the present case,
when this U(1) (phase) invariance is gauged to produce an interaction, the new field that
is introduced is the photon field, and it is this current Jα that carries the electric charge.
Therefore, writing e for α, we see that

Jα = (ρ,J) = e (i (ϕ̇∗ϕ− ϕ̇ϕ∗) , i (ϕϕ∗ − ϕ∗Oϕ)) (1119)

Substituting the operator expressions for the fields, we find that the conserved charge is
given by

Q =

∫
J0d3x (1120)

= ie

∫
N (π̂ϕ̂− π̂∗ϕ̂∗) d3x (1121)

= ie
i

2 (2π)3

∫ ∫ ∫ √
ω

ω′
d3kd3k′d3xN

(
b̂(k)â(k′)ei((ω+ω′)t−(k+k)·x) (1122)

−â†(k)â(k′)e−i((ω−ω
′)t−(k−k′)·x) + b̂(k)b̂†(k′)ei((ω−ω

′)t−(k−k′)·x) (1123)
−â†(k)b̂†(k′)e−i((ω+ω′)t−(k+k)·x) − (a↔ b)) (1124)

= −e
2

∫ ∫ √
ω

ω′
d3kd3k′N

(
b̂(k)â(k′)δ3 (k + k) ei(ω+ω′)t (1125)

−â†(k)â(k′)δ3 (k− k) e−i(ω−ω
′)t + b̂(k)b̂†(k′)δ3 (k− k) ei(ω−ω

′)t (1126)
−â†(k)b̂†(k′)δ3 (k + k) e−i(ω+ω′)t − (a↔ b)) (1127)

= −e
2

∫
d3kN

(
b̂(k)â(−k)e2iωt − â†(k)â(k) + b̂(k)b̂†(k) (1128)

−â†(k)b̂†(−k)e−2iωt − â(k)b̂(−k)e2iωt + b̂(k)b̂†(k) (1129)

−â†(k)â(k) + b̂†(k)â†(−k)e−2iωt
)

(1130)

= −e
2

∫
d3k

(
b̂(k)â(−k)e2iωt − â(k)b̂(−k)e2iωt (1131)

−2â†(k)â(k) + 2b̂†(k)b̂(k) (1132)

+ b̂†(k)â†(−k)e−2iωt − â†(k)b̂†(−k)e−2iωt
)

(1133)
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Since the first and last pairs of terms cancels, this reduces to simply

Q = e

∫
d3k

(
â†(k)â(k)− b̂†(k)b̂(k)

)
(1134)

= e

∫
d3k

(
N̂a(k)− N̂b(k)

)
(1135)

where the operators N̂a(k) and N̂b(k) are the number operators for particles of types a and
b, respectively. Notice that these particles have opposite charge.

It proves to be of some importance that the charge e appears as the phase of the U(1)
symmetry transformation. This means that complex conjugation has the effect of changing
the signs of all charges. This charge conjugation symmetry is one of the central discrete
symmetries associated with the Lorentz group, and it plays a role when we consider the
meaning of antiparticles later in this chapter. Notice, in particular, in the solution for the
complex scalar field, eq.(1092), that the phase of the antiparticle is just reversed from the
phase for the particle.

3.4 Scalar multiplets

Suppose we have n scalar fields, ϕi, i = 1, . . . , n governed by the action

S =
1

2

∫ ∑(
∂αϕi∂αϕ

i −m2ϕiϕi
)
d4x (1136)

The quantization is similar to the previous cases. We find the conjugate momenta,

πi =
δL

δϕ̇i
= ϕ̇i (1137)

and the Hamiltonian is

H =
1

2

∫ (
πiπi + Oϕi · Oϕi +m2ϕiϕi

)
d3x (1138)

The fundamental commutation relations are[
π̂i(x, t), ϕ̂j(x′, t)

]
= iδijδ3 (x− x′) (1139)

with all others vanishing. These lead to creation and annihilation operators as before,[
âi(k), âj†(k′)

]
= δijδ3 (k− k′) (1140)

and a number operator for each field,

N̂(k) = âi†(k)âi(k) (1141)
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The interesting feature of this case is the presence of a more general symmetry. The
action S is left invariant by orthogonal rotations of the fields into one another. Thus, if Oi

j

is an orthogonal transformation, we can define new fields

ϕi′ = Oi
jϕ

i (1142)

It is easy to see that the action is unchanged by such a transformation. For each infinitesimal
generator of a rotation,

[
ε(rs)

]ij
= 1

2
(δirδ

j
s − δisδjr) , there is a conserved Noether current found

from the infinitesimal transformation,

ϕi → ϕi +
[
ε(rs)

]ij
ϕj (1143)

Since the Lagrangian is invariant, the current is

Jα(rs) ≡
∂L

∂ (∂αφi)
∆(rs)ϕ

i (1144)

= ∂αϕi
[
ε(rs)

]ij
ϕj (1145)

= ϕr∂αϕs − ϕs∂αϕr (1146)

We are guaranteed that the divergence of Jµ vanishes when the field equations are satisfied.

3.5 Antiparticles

Until this section we have dodged the issue of the negative energy solutions to scalar field
theories by inserting a step function, Θ(E), in the Fourier series for the solution. Now let’s
consider these in more detail. We’ll see that the negative energy states may be interpreted
as antiparticles. While the discussion applies to all fields we consider, it is simplest to look
at the real scalar field. The same considerations apply to the complex and multiplet fields.

To begin, let’s look at sources for an interacting scalar field. For example, consider a
term in the particle action that couples a scalar field to a spinor field. One possible action is

S =
1

2

∫
d4x

(
∂αφ∂αφ−m2φ2 − 2φψ̄ψ

)
(1147)

The field equation for φ is therefore

�φ+m2φ = −J (1148)

where
J = ψ̄ψ (1149)

In this simple case, the spinor field provides a source for the scalar field. For our purposes
it is sufficient to consider solutions to equations of the general form given in eq.(1148).

To solve eq.(1148), we use Green’s theorem. For a complete treatment of the method,
see e.g., Jackson or Arfken. Simply put, if we can first solve(

�+m2
)
G (x, x′) = −δ4 (x− x′) (1150)
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for a function G (x, x′) satisfying the relevant boundary conditions, then equation (1148) has
the solution

φ(x) =

∫
d4x′G (x, x′) J(x′) (1151)

for the same boundary conditions when the source is J(x). To see this, just apply the Klein-
Gordon operator to φ(x):(

�+m2
)
φ(x) =

(
�+m2

) ∫
d4x′G (x, x′) J(x′) (1152)

Since (�+m2) depends on x and the integral is over x′, we may bring the operator inside
the integral: (

�+m2
)
φ(x) =

∫
d4x′

(
�+m2

)
G (x, x′) J(x′) (1153)

= −
∫
d4x′δ4 (x− x′) J(x′) (1154)

= −J(x) (1155)

The reason the technique is useful is because a solution to eq.(1150) may be built from
solutions to the homogeneous equation.

To find the Green function, G (x, x′) , explicitly when the boundary conditions are at
infinity, we again use a Fourier series. Write

G (x, x′) =
1

(2π)4

∫
d4kG(k)e−ikα(xα−x′α) (1156)

δ4 (x− x′) =
1

(2π)4

∫
d4ke−ikα(xα−x′α) (1157)

Then, cancelling the factor of (2π)4 ,(
�+m2

) ∫
d4kG(k)e−ikα(xα−x′α) = −

∫
d4ke−ikα(xα−x′α) (1158)∫

d4kG(k)
(
−kαkα +m2

)
e−ikα(xα−x′α) = −

∫
d4ke−ikα(xα−x′α) (1159)

so that
G(k) =

1

kαkα −m2
(1160)

Inverting the Fourier transform gives the Green function:

G (x, x′) =
1

(2π)4

∫
d4k

1(
(k0)2 − k2 −m2

)e−ikα(xα−x′α) (1161)

The interesting feature here is the divergence in the denominator. To compute it we resort
to a contour integral and the residue theorem.
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The poles are given by factoring the divergent factor as

1

(k0)2 − k2 −m2
=

1

2k0

(
1

k0 −
√
k2 +m2

+
1

k0 +
√
k2 +m2

)
(1162)

The poles lie on the real axis in the complex k0 plane, but we can displace the poles slightly
by replacing k0 → k0 + iε or k0 → k0 − iε. The direction we push the pole depends on the
boundary conditions we want to impose. Let’s consider the possibilities. For each of the
two simple poles we have two choices, so there are four possible contributions to the Green
function. We compute them in turn. The first pole occurs when

k0 = +
√
k2 +m2 (1163)

Displacing this point leads to two cases:

k0 = +
√
k2 +m2 + iε (1164)

k0 = +
√
k2 +m2 − iε (1165)

The first choice gives the Green function

G+E,+t (x, x′) =
1

(2π)4

∫
d4k

2k0

e−i(k0(t−t′)−k·(x−x′))

k0 −
√
k2 +m2 − iε

(1166)

=
1

(2π)4

∫
d3keik·(x−x

′)

∫
dk0

2k0

e−ik
0(t−t′)

k0 −
√
k2 +m2 − iε

(1167)

=
1

(2π)4

∫
d3k

∫
dk0

2k0

e−i(k
0(t−t′)−k·(x−x′))

k0 −
√
k2 +m2 − iε

(1168)

To close the k0 contour, we add a half-circle and let its radius tend to infinity. When t > t′,
we must add this half circle in the upper half plane, while for t < t′ we must close in the
lower half plane. Since the pole is in the upper half plane, the integral for t < t′ gives zero,
while for t > t′ we have

H (x, x′) = lim
ε→0

1

(2π)4

∫
d3keik·(x−x

′)

∮
upper 1

2
−plane

dk0

2k0

e−ik
0(t−t′)

k0 −
√
k2 +m2 − iε

(1169)

=
2πi

(2π)4

∫
d3k

2
√
k2 +m2

eik·(x−x
′)−i
√
k2+m2(t−t′) (1170)

=
iπ

(2π)4

∫
dϕ

∫
sin θdθ

∫
dk
eik|x−x

′| cos θ−i
√
k2+m2(t−t′)

√
k2 +m2

(1171)

=
2π2i

(2π)4

∫
d (cos θ)

∫
k2dk

eik|x−x
′| cos θ−i

√
k2+m2(t−t′)

√
k2 +m2

(1172)

=
2π2i

(2π)4

∫
k2dk

e−i
√
k2+m2(t−t′)
√
k2 +m2

(
eik|x−x

′| − e−ik|x−x′|
)

ik |x− x′|
(1173)
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=
i

(2π)2 |x− x′|

∫ ∞
0

dk
k sin k |x− x′|√

k2 +m2
e−i
√
k2+m2(t−t′) (1174)

=
im

(2π)2 |x− x′|

∫ ∞
0

dz
z sin zm |x− x′|√

z2 + 1
e−im

√
z2+1(t−t′) (1175)

=
im2

(2π)2 r

∫ ∞
0

dz
z sin zr√

1 + z2
e−im

√
z2+1(t−t′) (1176)

Let’s put off the final integral for now. The important part for the moment is the time
dependence, which we may write using a unit step function:

G+E,+t(x, x
′) = Θ (t− t′)HI (x, x′) (1177)

For the second displacement, the upper contour (for t > t′) gives zero contribution while
for t < t′ we compute

H2 (x, x′) =
1

(2π)4

∫
d4k

2k0

1

k0 −
√
k2 +m2

e−i(k0(t−t′)−k·(x−x′)) (1178)

= lim
ε→0

1

(2π)4

∫
d3keik·(x−x

′)

∮
upper 1

2
−plane

dk0

2k0

eik
0(t′−t)

k0 −
√
k2 +m2 + iε

(1179)

=
2πi

(2π)4

∫
d3k

2
√
k2 +m2

eik·(x−x
′)e−i

√
k2+m2(t−t′) (1180)

= HI (x, x′) (1181)

so that
G+E,−t(x, x

′) = Θ (t′ − t)HI (x, x′) (1182)

For the second pole, at k0 = −
√
k2 +m2, we again have two possible displacements,

k0 = −
√
k2 +m2 + iε (1183)

k0 = −
√
k2 +m2 − iε (1184)

Choosing the first,

G−E,+t (x, x′) = lim
ε→0

1

(2π)4

∫
d4k

2k0

e−i(k
0(t−t′)−k·(x−x′))

k0 +
√
k2 +m2 − iε

has the pole in the upper half plane, so

G−E,+t (x, x′) = Θ (t− t′) −2πi

(2π)4

∫
d3k

2
√
k2 +m2

ei(
√
k2+m2(t−t′)+k·(x−x′))

= Θ (t− t′)HII (x, x′)

Finally, pushing the pole to the lower half plane gives

G−E,−t (x, x′) = Θ (t′ − t)HII (x, x′)
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Collecting these results,

G+E,+t(x, x
′) = Θ (t− t′)HI (x, x′) (1185)

G+E,−t(x, x
′) = Θ (t′ − t)HI (x, x′) (1186)

G−E,+t (x, x′) = Θ (t− t′)HII (x, x′) (1187)
G−E,−t (x, x′) = Θ (t′ − t)HII (x, x′) (1188)

The +E and −E subscripts indicate whether the solution describes a positive or negative
energy solution. As we show below, the +t and −t subscripts indicate whether solutions
progress causally toward the future or toward the past.

The full Green function is a sum of one of the HI terms with one of the HII terms.
Classically, we would choose the Green function to be

G(x, x′) = G+E,+t(x, x
′) +G−E,+t (x, x′) (1189)

because then the solution is given by

φ(t,x) =

∫
d4x′G (x, x′) J(x′) (1190)

=

∫ ∞
−∞

dt′Θ (t− t′)
∫
d3x′ (HI (x, x′) +HII (x, x′)) J(t′,x′) (1191)

=

∫ t

−∞
dt′
∫
d3x′ (HI (x, x′) +HII (x, x′)) J(t′,x′) (1192)

The limits on the time integral show that the field at time t is determined only by sources
J(t′,x′) evaluated for times t′ earlier than t. This is our minimal expectation for causal-
ity. However, Feynman has shown that using any of the Green functions is consistent with
causality, and proposes pairing G1(x, x′) with G4(x, x′). Indeed, the Feynman choice is ac-
tually more consistent with causality as we now understand it. Causality, in essence, is the
preservation of the spacetime light cone. No physical propagation that begins in the future-
pointing light cone may exceed the speed of light – it must remain in the future-pointing light
cone. We call such motion futurelike. Correspondingly, we are justified in asserting that any
propagation beginning in a direction inside the past-pointing light cone must remain within
this past-pointing light cone. Motion into the past light cone we’ll call pastlike. A similar pro-
hibition applies for causal tachyons – particles whose motion remains in spacelike directions.
The symmetry of the situation suggests that it is reasonable to consider both directions of
time propagation equally. Doing so leads us to a clearer understanding of antiparticles.

Therefore, we will choose the Green function in the form which associates positive energy
solutions with futurelike motion in time and negative energy solutions to pastlike motion,

G(x, x′) = G+E,+t(x, x
′) +G−E,−t (x, x′) (1193)

leading to fields of the form

φ(t,x) =

∫ t

−∞
dt′
∫
d3x′HI (x, x′) J(t′,x′) +

∫ ∞
t

dt′HII (x, x′) J(t′,x′) (1194)
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As a result of this choice, φ(t,x) can depend on events in both its forward and backward
light cones. The benefit of this choice is that it gives a clear physical meaning to the negative
energy solutions, for the following reason. Suppose a particle travels backward in time, from
point A(t2, x2) to point B(t1,x1) with t1 < t2. Then an observer moving forward in time will
experience the particle first at t1 and later at t2 and the particle will appear to move in the
opposite direction, from x1 to x2. Moreover, if the particle carries negative energy from A to
B, the observer sees the negative energy arrive at B, then depart later from A. This means
that the energy at B decreases and the energy at A increases, so to the futurelike observer
a positive amount of energy has moved from B to A. The same argument applies to electric
or other charges. If a negative charge moves backward in time from A to B, the forward
moving observer sees a positive charge leave B then arrive at A.

To summarize: fix a set of coordinates on spacetime, (t,x) where the sign of t distinguishes
the two halves of the light cone, “future” and “past”. Now consider a futurelike observer, that
is, moving in such a way that the time coordinate t associated with their position increases.
To this observer, particles moving into the future light cone will have positive energy E,
momentum p, and may have a charge q. When this same futurelike observer observes the
same type of particle travelling into the past light cone, (with decreasing time t, positive
energy E, momentum p, and charge q in its own pastlike frame of reference), the particle
appears to the futurelike observer to move in the direction of increasing t, have energy −E,
momentum −p, and charge −q.

We can turn this around in order to interpret negative energy states. If our futurelike
observer watches a particle of negative energy moving into the past light cone, they will
interpret it as a particle of positive energy moving into the future. In this way, we find a place
for negative energy states. Let’s make this precise using the discrete Lorentz transformations.

In our discussion of discrete Lorentz transformations, we defined chronicity, Θ, as follows:

Θ : t→ −t (1195)
Θ : x→ x (1196)
Θ : E → −E (1197)
Θ : p→ p (1198)
Θ : q → q (1199)

We also need the actions of charge conjugation,

C : t→ t (1200)
C : x→ x (1201)
C : E → E (1202)
C : p→ p (1203)
C : q → −q (1204)

which we implement by complex conjugation, and parity

P : t→ t (1205)

115



P : x→ −x (1206)
P : E → E (1207)
P : p→ −p (1208)
P : q → q (1209)

The effect of combining all three operations at once is then

CPΘ : t→ −t (1210)
CPΘ : x→ −x (1211)
CPΘ : E → −E (1212)
CPΘ : p→ −p (1213)
CPΘ : q → −q (1214)

The action on the phase of a field is

CPΘ :
i

h
(Et− p · x)→ (−i)

h
((−E) (−t)− (−p) · (−x)) = − i

h
(Et− p · x) (1215)

Therefore, if we always choose our field expansions to include ϕ† symmetrically with ϕ, the
field theory will be CPΘ-invariant. This combined action of discrete transformations gives
us the picture we want. By simply changing the sign , we turn the phase a particle of 4-
momentum pµ = (E,p) and charge q into the phase of a particle 4-momentum pµ = (−E,−p)
and charge −q travelling backward in time in a parity flipped space.

Now our interpretation of the negative energy states is clear. By choosing the Green
function to be

G(x, x′) = G+E,+t(x, x
′) +G−E,−t (x, x′) (1216)

and the field expansion to be

ϕ(x, t) =
1

(2π)3/2

∫
d3k√

2ω

(
a(k)ei(ωt−k·x) + a†(k)e−i(ωt−k·x)

)
(1217)

we always associate the negative energy solutions with pastlike motion. The appearance of
such a pastlike particle (with energy −E, momentum p and charge q) to a futurelike observer
is the CPΘ transform of the field, i.e., a futurelike particle of energy +E, momentum −p
and charge −q.

Define: Suppose a given variety of particle exists in futurelike states described by phys-
ical field φ+ (E,p, q . . .) , and also in pastlike states described by φ− (−E,p, q . . .)
having negative energy. Then φ+ (E,p, q . . .) has an antiparticle state defined as
CPΘφ− (−E,p, q . . .) .

Since
CPΘφ− (−E,p, q . . .) = CPΘφ− (E,−p,−q . . .) (1218)
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antiparticle states are positive energy and futurelike. It is easy to see that all other quantum
numbers are reversed, because a pastlike particle carrying any quantum charge g into the
past will be experienced by a futurelike observer as carrying a charge −g into the future.

We require field theories to be symmetric with respect to particles and antiparticles, so
that for field operators

CPΘϕ̂ (t,x) (CPΘ)−1 = ϕ̂ (t,x) (1219)

Since the conjugate momentum

π̂(x, t) =
∂

∂t
ϕ̂(x, t) (1220)

satisfies

CPΘπ̂(x, t) (CPΘ)−1 = CPΘ

(
∂

∂t
ϕ̂ (t,x)

)
(CPΘ)−1 (1221)

= − ∂

∂t
ϕ̂ (t,x) (1222)

= −π̂(x, t) (1223)

we find that the effect of CPΘ on a (k) = ϕ̂(x)− i
ω
π̂(x) is

CPΘa (k) (CPΘ)−1 = CPΘ

(
ϕ̂(x)− i

ω
π̂(x)

)
(CPΘ)−1 (1224)

= ϕ̂(x)− (−i)
(−ω)

(−π̂(x)) (1225)

= ϕ̂(x) +
i

ω
π̂(x) (1226)

= a† (k) (1227)

Moreover, we have

CPΘi (ωt− k · x) (CPΘ)−1 = −i ((−ω) (−t)− (−k) · (−x)) (1228)
= −i (ωt− k · x) (1229)

so that the action of CPΘ on a plane wave is

CPΘ
(
a(E,p)e

i

h
(pαxα)

)
(CPΘ)−1 = a†(E,p)e

− i

h
(pαxα) (1230)

Therefore, the full expansion for ϕ̂(t,x) will be symmetric under CPΘ if it is an equal linear
combination of terms

ϕ̂(t,x) ∼ a(E,p)e
i

h
(pαxα)

+ a†(E,p)e
− i

h
(pαxα) (1231)

This form agrees with eq.(1217) for ϕ̂(t,x). But eq.(1217) was found by setting

ϕ(x, t) =
1

(2π)3/2

∫ √
2E
(
a(E,p)e

i

h
(pαxα)

+ a†(E,p)e
− i

h
(pαxα)

)
(1232)

×δ
(
pαp

α −m2
)

Θ(E)h−4d4p (1233)
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where we included the positive energy step function. The present calculation justifies our
earlier step.

Our choice of boundary conditions leads us to ask what boundary conditions the other
possible Green functions represent. A moment’s reflection on the expression

G(x, x′) = G+E,−t(x, x
′) +G−E,+t (x, x′) (1234)

suggest that this is the proper Green function for an observer travelling backward in time.
For such an observer, an antiparticle (also moving backward in time) would be assigned
positive energy, hence the G+E,−t(x, x

′) term. To the same observer a matter particle would
be a negative energy state travelling in the positive time direction.

3.6 Chronicity, time reversal and the Schrödinger equation

The relationship of chronicity and time reversal to quantum mechanics is also interesting.
Consistent with energy in Newtonian mechanics, the action of time reversal is always taken
to leave the Hamiltonian invariant. By contrast, the chronicity reverses the sign of the
energy. We now consider the effect of these transformations on solutions of the Schrödinger
equation.

Suppose a state ψ solves the Schrödinger equation,

ih
∂ψ

∂t
= Ĥψ (1235)

We want to know when a transformed state Tψ is also a solution, where T is either time
reversal or chronicity. In either case we have

ih
∂ (Tψ)

∂t
= Ĥ (Tψ) (1236)

A sufficient condition for this to be the case is found by acting on the equation with T−1

and inserting appropriate identities:

T−1ih
∂ (Tψ)

∂t
= T−1Ĥ (Tψ) (1237)(

T−1ihT
)(

T−1 ∂

∂t
T

)
ψ =

(
T−1ĤT

)
ψ (1238)

Now, for both time reversal and chronicity, T−1 ∂
∂t
T = − ∂

∂t
. Therefore the transformed state

Tψ is a solution if

−
(
T−1iT

)
h
∂

∂t
= T−1ĤT (1239)

Time reversal and chronicity take advantage of the two simple ways to solve this equation.
For time reversal, is accomplished by making the operator anti-unitary,

T iT −1 = −i (1240)
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while chronicity is unitary but changes the sign of the Hamiltonian,

ΘĤΘ−1 = −Ĥ (1241)

This is the reason that chronicity is not suitable for quantum mechanics : since quantum
mechanics includes neither antiparticles nor pastlike particles, negative energy states cannot
be reinterpreted as futurelike, positive energy states. Then, the presence of both positive
and negative energy states of the same quantum system leads to runaway production of ever
more negative energy states. As noted previously, the failure of energy and momentum to
form a 4-vector under time reversal is not a problem in a non-relativistic theory.

With both pastlike and futurelike particles present symmetrically, we may consistently
regard all negative energy states with futurelike positive energy states, so there will be
no runaway solutions. Another way to think about this is to consider interactions. The
interaction of a futurelike particle with a pastlike particle always occurs as if the futurelike
particle were encountering a positive energy antiparticle. Nor can futurelike particles gain
arbitrary energy by creating negative energy states, because the only negative energy states
are pastlike. Futurelike particles can only produce pastlike particles under special conditions
such as particle-antiparticle annihilation.

One further consequence of using chronicity is that, being hermitian, it is a quantum
observable. Since T 2 = 1, there will be two eigenvalues. We conjecture that these will
correspond to antiparticle number, with particles assigned the eigenvalue +1 and their an-
tiparticles the eigenvalue −1. Of course, it is arbitrary which is called the particle, but the
two states are distinguishable. This assignment is equivalent to assigning plus one to fu-
turelike observers and minus one to pastlike observers, which accounts for our observations
revealing only the +1 eigenvalue and only the one pair of Green functions.
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4 Quantization of the Dirac field

4.1 Hamiltonian formulation

Now we turn to the quantization of the Dirac field. The action is

S =

∫
d4x ψ̄ (iγµ∂µ −m)ψ (1242)

The conjugate momentum to ψ is the spinor field

πA =
δL

δ (∂0ψA)
= iψ̄γ0

= i
[
ψ†
]B
hBC

[
γ0
]C

A
(1243)

We can also write this as
πγ0 = iψ̄ (1244)

Undaunted by the peculiar lack of a time derivative in the momentum, we press on with
the Hamiltonian:

H =

∫
d3x iψ̄γ0∂0ψ −

∫
d3xψ̄ (iγµ∂µ −m)ψ

=

∫
d3x

(
iψ̄γ0∂0ψ − iψ̄γ0∂0ψ − iψ̄γi∂iψ +mψ̄ψ

)
=

∫
d3x

(
−iψ̄γi∂iψ +mψ̄ψ

)
=

∫
d3x iψ̄

(
−γi∂iψ − imψ

)
=

∫
d3x πγ0

(
−γi∂i − im

)
ψ

= i

∫
d3x πγ0

(
iγi∂i −m

)
ψ (1245)

Once again, we are struck by the absence of time derivatives in the energy. This is somewhat
illusory, since we may rewrite H using the field equation as

H = i

∫
d3x πγ0

(
iγi∂i −m

)
ψ

=

∫
d3x πγ0

(
γ0∂0

)
ψ

=

∫
d3x π∂0ψ (1246)

As we show below, only the first form of the Hamiltionian is suitable for deriving the field
equations, since we used the field equations to write this simplified form. However, eq.(1246)
is useful for computing the operator form of the Hamiltonian from solutions.
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We can check the field equation using either form of H. Thus, we have

∂0ψ = {H,ψ}

=

∫
d3x′

(
δH(x)

δπ(x′)

δψ(x)

δψ(x′)
− δH(x)

δψ(x′)

δψ(x)

δπ(x′)

)
= i

∫
d3x′ γ0

(
iγi∂i −m

)
ψ(x′) δ3(x− x′)

= iγ0
(
iγi∂i −m

)
ψ(x) (1247)

Multiplying by iγ0 this becomes

iγ0∂0ψ = −
(
iγi∂i −m

)
ψ(x) (1248)

(iγα∂α −m)ψ(x) = 0 (1249)

Notice that, had we used eq.(1246) for the Hamiltonian, we find only an identity:

∂0ψ =

∫
d3x′

(
δH(x)

δπ(x′)

δψ(x)

δψ(x′)
− δH(x)

δψ(x′)

δψ(x)

δπ(x′)

)
(1250)

=

∫
d3x′ (∂0ψ(x′)) δ3(x− x′) (1251)

= ∂0ψ(x) (1252)

As already noted, the identity occurs because we have already used the field equation to
write the Hamiltonian in the simplified form.

For the momentum we find the conjugate field equation:

∂0π = {H, π} (1253)

=

∫
d3x′

(
δH(x)

δπ(x′)

δπ(x)

δψ(x′)
− δH(x)

δψ(x′)

δπ(x)

δπ(x′)

)
(1254)

=

∫
d3x′

(
−δH(x)

δψ(x′)

δπ(x)

δπ(x′)

)
(1255)

=

∫
d3x′

(
−
(
i
(
−i∂iπγ0γi − πγ0m

))
δ3(x− x′)

)
(1256)

= i
(
i∂iπγ

0γi + πγ0m
)

(1257)

≡ iπ(x)γ0
(
iγi
←−
∂ i +m

)
(1258)

where the arrow to the left over the derivative is standard notation indicating that the
derivative acts to the left on π. This lets us write the final result more compactly. Replacing
πγ0 = iψ̄ and inserting γ0γ0 = 1 on the left, we find:

∂0πγ
0γ0 = −ψ̄

(
iγi
←−
∂ i +m

)
(1259)

i∂0ψ̄γ
0 = −ψ̄

(
iγi
←−
∂ i +m

)
(1260)
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and therefore gathering terms

i∂0ψ̄γ
0 + ψ̄

(
iγi
←−
∂ i +m

)
= 0 (1261)

ψ̄
(
iγα
←−
∂ α +m

)
= 0 (1262)

thereby arriving at the conjugate Dirac equation. Once again, if we use H as given in
eq.(1246), we find only an identity.

Finally, we write the fundamental Poisson brackets,{
πA(x, t), ψB(x′, t)

}
PB

= δBAδ
3 (x− x′) (1263)

Before we can proceed, we need to solve the classical Dirac equation.

4.2 Solution to the free classical Dirac equation

As with the scalar field, we can solve using a Fourier integral. First consider a single value
of the momentum. Then we can write two plane wave solutions with fixed, positive energy
4-momentum pα in the form

ψ(x, t) = u(pα)e−ipαx
α

+ v(pα)eipαx
α

(1264)

where u(pα) and v(pα) are spinors, pα = (E, pi)and pα = (E, pi) = (E,−pi). Substituting,

0 = (iγα∂α −m)ψ(x, t) (1265)
= (iγα∂α −m)

(
u(pα)e−ipαx

α

+ v(pα)eipαx
α)

(1266)
= (γαpα −m)u(pα)e−ipαx

α − (γαpα +m) v(pα)eipαx
α

(1267)

we find the pair of equations

(γαpα −m)u(pα) = 0 (1268)
(γαpα +m) v(pα) = 0 (1269)

for the u(pα) and v(pα) modes, respectively.
We’ll begin by writing out the equation using the Dirac matrices as given in eqs.(707),

γ0 =

(
1
−1

)
, γi =

(
0 σi

−σi 0

)
(1270)

and solve first for u(pα) . If we set

[u(pα)]A =

(
α(pα)
β(pα)

)
(1271)
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where A = 1, 2, 3, 4, then we get the matrix equation

0 = (γαpα −m)w(pα) (1272)

=

(
E −m σipi
−σipi −E −m

)(
α(pα)
β(pα)

)
(1273)

which gives the set of 2× 2 equations

(E −m)α(pα) + σipiβ(pα) = 0 (1274)
−σipiα(pα)− (E +m) β(pα) = 0 (1275)

Since E > 0, the quantity E +m is nonzero so the second equation may be solved for β(pα)
and substituted into the first:

β(pα) = −
(

σipi
E +m

)
α(pα) (1276)

(E −m)α(pα) = σipi

(
σipi
E +m

)
α(pα) (1277)(

E2 − p2 −m2
)
α(pα) = 0 (1278)

where we use (σipi)
2

= (−pi)(−pi) = p2 in the last line. This just gives the usual relativistic
expression relating mass, energy and momentum, with positive energy solution

E =
√
p2 +m2 (1279)

This determines the energy; now we need the eigenstates. These must satisfy

β(pα) = −
(

σipi
E +m

)
α(pα) (1280)

0 = E2 − p2 −m2 (1281)

with no further constraint on α(pα). We are free to choose any convenient independent
2-spinors for α(pα). Therefore, let

α1(pα) =

(
1
0

)
;α2(pα) =

(
0
1

)
(1282)

For α1(pα), (remembering that pi = −pi) we must have

β1(pα) = −
(

σipi
E +m

)
α1(pα) (1283)

=
1

E +m

(
pz px − ipy

px + ipy −pz
)(

1
0

)
(1284)

=
1

E +m

(
pz

px + ipy

)
(1285)
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while for α2(pα) we find

β2(pα) = −
(

σipi
E +m

)
α2(pα) (1286)

=
1

E +m

(
pz px − ipy

px + ipy −pz
)(

0
1

)
(1287)

=
1

E +m

(
px − ipy
−pz

)
(1288)

These relations define two independent, normalized, positive energy solutions, which we
denote by ua(pα):

[u1(pα)]A =

√
E +m

2m


1
0
pz

E+m
px+ipy

E+m

 (1289)

[u2(pα)]A =

√
E +m

2m


0
1

px−ipy
E+m
−pz
E+m

 (1290)

Exercise: Show that u1(pα) and u2(pα) are orthonormal, where the inner product of two
spinors is given by

〈χ, ψ〉 ≡ χ†hψ (1291)

with h given by eq.(775). Notice that this inner product is Lorentz invariant, so our
spinor basis remains orthonormal in every frame of reference.

For the second set of mode amplitudes, we solve

0 = (γαpα +m) v(pα) (1292)

=

(
E +m σipi
−σipi −E +m

)(
α(pα)
β(pα)

)
(1293)

for α(pα) first instead:

α(pα) = − σipi
E +m

β(pα) (1294)

Once again this leads to E2 − p2 −m2 = 0, so that E =
√

p2 +m2. There are again two
solutions. Since β(pα) is arbitrary and α(pα) is given by eq.(1294), we choose

β1(pα) =

(
1
0

)
; β2(pα) =

(
0
1

)
(1295)
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leading to two more independent, normalized solutions, va(pα),

[v1(pα)]A =

√
m+ E

2m


pz

E+m
px+ipy

E+m

1
0

 (1296)

[v2(pα)]A =

√
m+ E

2m


px−ipy
E+m
−pz
E+m

0
1

 (1297)

The entire set of four spinors, ua(pα), va(p
α), is a complete, pseudo-orthonormal basis.

Exercise: Check that v1(pα) and v2(pα) satisfy

〈va(pα), vb(p
α)〉 = −δab (1298)

〈ua(pα), vb(p
α)〉 = 0 (1299)

Exercise: Prove the completeness relation,

2∑
a=1

(
[ua(p

α)]A [ūa(p
α)]B − [va(p

α)]A [v̄a(p
α)]B

)
= δAB (1300)

where A,B = 1, . . . , 4 index the components of the basis spinors.

Using this basis, we now have a complete solution to the free Dirac equation. Using Θ(E)
to enforce positive energy condition, we have

ψ(x, t) =
1

(2π)3/2

4∑
Σ=1

∫
d4kδ

(
E2 − p2 −m2

)
Θ(E)

(
aΣ(pα)wΣ(pα)e

− i

h
pαxα (1301)

+ c†A(pα)w†Σ(pα)e
i

h
pαxα

)
(1302)

=
2∑
i=1

∫
d3k

√
ω

m

(
bi(k)ui(k)e−i(ωt−k·x) + d†i (k)vi(k)ei(ωt−k·x)

)
(1303)

where we introduce the conventional normalization for the Fourier amplitudes, ai(k) =√
2
m
ω bi(k) and c†i (k) =

√
2
m
ω d†i (k) and set ω = +

√
k2 +m2 as before. Before turning to

quantization, let’s consider the spin.
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4.3 The spin of spinors

The basis spinors (ua(p
α), va(p

α)) may be thought of as eigenvectors of the operator pαγα.
For ua(pα) we have:

0 = (γαpα −m)ua(p
α)

0 = (γαpα +m) va(p
α)

and therefore

γαpαua(p
α) = mua(p

α) (1304)
γαpαva(p

α) = −mva(pα) (1305)

This means we can construct projection operators that single out the ua(pα)- and va(pα)-type
spinors. If we write

P+ =
1

2

(
1 +

1

m
γαpα

)
(1306)

then

P 2
+ =

1

4

(
1 +

1

m
γαpα

)(
1 +

1

m
γβpβ

)
=

1

4

(
1 +

2

m
γαpα +

1

m2
γαpαγ

βpβ

)
=

1

4

(
1 +

2

m
γαpα +

1

m2
p2

)
= P+ (1307)

Clearly, we have

P+ua(p
α) = ua(p

α)

P+va(p
α) = 0

P+ =
2∑

a=1

ua(p
α)ūa(p

α) (1308)

Similarly, we define

P− =
1

2

(
1− 1

m
γαpα

)
(1309)

satisfying

P−ua(p
α) = 0

P−va(p
α) = va(p

α)

P− =
2∑

a=1

va(p
α)v̄a(p

α) (1310)
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These projections span the spinor space since P+ + P− = 1.
Next, we seek a pair of operators which distinguishes between u1 and u2 and between v1

and v2. Since ua and va are pseudo-orthonormal, we can simply write

[Π+]A B = u1 ⊗ ū1 − v2 ⊗ v̄2 = [u1]A
[
γ0
]
BC

[
u†1

]C
− [v2]A

[
γ0
]
BC

[
v†2

]C
(1311)

In the rest frame of the particle, where the 4-momentum is given by

pα = (mc, 0) (1312)

we have

u1 (pα) = (1, 0, 0, 0)

u2 (pα) = (0, 1, 0, 0)

v1 (pα) = (0, 0, 1, 0)

v2 (pα) = (0, 0, 0, 1) (1313)

so that

[Π+]A B =


1

0
0

1

 (1314)

This combination is easy to construct from the gamma matrices. With

γ0 =

(
1
−1

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
1

1

)
(1315)

we note that

γ3γ5 =

(
σ3 0
0 −σ3

)
=


1
−1

−1
1

 (1316)

We see that all of the basis vectors, eq.(1313), are eigenvectors of γ3γ5 :

γ3γ5u1 = u1 (1317)
γ3γ5u2 = −u2 (1318)
γ3γ5v1 = −v1 (1319)
γ3γ5v2 = v2 (1320)

Therefore, we have two projection operators,

Π+ =
1

2

(
1 + γ3γ5

)
=

1

2
(1 + nαγ

αγ5) (1321)

Π− =
1

2

(
1− γ3γ5

)
=

1

2
(1− nαγαγ5) (1322)
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where nα = (0, 0, 0, 1) . Notice that nα is spacelike, with n2 = −1, and that pαnα = 0.
Now, we generalize these new projections by writing

Π+ =
1

2
(1 + sµγ

µγ5) (1323)

Π− =
1

2
(1− sµγµγ5) (1324)

where sµ is any 4-vector. These are still projection operators provided sµsνηµν = s2 = −1,
since then we have

Π2
+ =

1

4
(1 + sµγ

µγ5) (1 + sνγ
νγ5) (1325)

=
1

4
(1 + 2sµγ

µγ5 + sµγ
µγ5sνγ

νγ5) (1326)

=
1

4
(1 + 2sµγ

µγ5 − sµsνγµγνγ5γ5) (1327)

=
1

4
(1 + 2sµγ

µγ5 − sµsνηµν) (1328)

= Π+ (1329)

and similarly for Π−. In addition, we can make these projections commute with P+ and P−
. Consider

[Π+, P+] =

[
1

2
(1 + sµγ

µγ5) ,
1

2

(
1 +

1

m
γαpα

)]
(1330)

=
1

4

(
1 + sµγ

µγ5 +
1

m
γαpα +

1

m
sµpαγ

µγ5γ
α

)
(1331)

−1

4

(
1 +

1

m
γαpα + sµγ

µγ5 +
1

m
pαsµγ

αγµγ5

)
(1332)

= − 1

4m
(sµpαγ

µγαγ5 + pαsµγ
αγµγ5) (1333)

= − 1

4m
sµpα (γµγα + γαγµ) γ5 (1334)

= − 1

2m
sµpαη

µαγ5 (1335)

This will vanish if sα and pα are orthogonal, sαpα = 0. Since, P+P− = 0 and Π+Π− = 0, the
set of projection operators,

{P+, P−,Π+,Π−} (1336)

is fully commuting and therefore simultaneously diagonalizable. Moreover, they are inde-
pendent. To see this, consider the products

{P+Π+, P+Π−, P−Π+, P−Π−} (1337)

128



These are mutually orthogonal, i.e., (P+Π+) (P+Π−) = P+P+Π+Π− = 0 and so on. Each
combination projects into a 1-dimensional subspace of the spinor space since

tr (P+Π+) =
1

4
tr

(
1 + sµγ

µγ5 +
1

m
γαpα +

1

m
sµpαγ

µγ5γ
α

)
(1338)

=
1

4
(4 + 0 + 0 + 0) (1339)

= 1 (1340)

and similarly
tr (P+Π−) = tr (P−Π+) = tr (P−Π−) = 1 (1341)

Moreover, they span the space as we see from the completeness relation:

P+Π+ + P+Π− + P−Π+ + P−Π− = P+ (Π+ + Π−) + P− (Π+ + Π−) (1342)
= P+ + P− (1343)
= 1 (1344)

We interpret all of this as follows. The vector sα is the 4-dimensional generalization of
the spin vector, si, and in the rest frame, u and v are eigenvectors of the z-component of
spin. We are free to choose u and v to be eigenvectors of any 3-vector si, and therefore
eigenspinors of the corresponding Π+(sα),Π−(sα). As a result, we can label the spinors by
their 4-momentum and their spin vectors,

ua
(
pα, sβ

)
(1345)

va
(
pα, sβ

)
(1346)

In the rest frame, with sα = (0, 0, 0, 1) = (0, ni) ≡ nα, we have:

Π+ = u1

(
pα, nβ

)
ū1

(
pα, nβ

)
− v2

(
pα, nβ

)
v̄2

(
pα, nβ

)
(1347)

Π− = u2

(
pα, nβ

)
ū2

(
pα, nβ

)
− v1

(
pα, nβ

)
v̄1

(
pα, nβ

)
(1348)

and since both sides transform in the same way under Lorentz transformations, we have

Π+ = u1

(
pα, sβ

)
ū1

(
pα, nβ

)
− v2

(
pα, sβ

)
v̄2

(
pα, sβ

)
(1349)

Π− = u2

(
pα, sβ

)
ū2

(
pα, sβ

)
− v1

(
pα, sβ

)
v̄1

(
pα, sβ

)
(1350)

in any frame of reference and for any choice of spin direction.
Using these expressions for the spin projection operators together with the corresponding

expressions, eqs.(1308) and (1310), for the energy, we can rewrite the outer products of the
completeness relation, eq.(1300), as

P+Π+ = u1

(
pα, sβ

)
ū1

(
pα, sβ

)
(1351)

=
1

2

(
1 +

1

m
γαpα

)
1

2
(1 + sµγ

µγ5) (1352)

129



P+Π− = u2

(
pα, sβ

)
ū2

(
pα, sβ

)
(1353)

=
1

2

(
1 +

1

m
γαpα

)
1

2
(1− sµγµγ5) (1354)

= u1

(
pα,−sβ

)
ū1

(
pα,−sβ

)
(1355)

P−Π− = −v1

(
pα, sβ

)
v̄1

(
pα, sβ

)
(1356)

=
1

2

(
1− 1

m
γαpα

)
1

2
(1− sµγµγ5) (1357)

P−Π+ = −v1

(
pα, sβ

)
v̄1

(
pα, sβ

)
(1358)

=
1

2

(
1− 1

m
γαpα

)
1

2
(1 + sµγ

µγ5) (1359)

= −v1

(
pα,−sβ

)
v̄1

(
pα,−sβ

)
(1360)

These identities will be useful for calculating scattering amplitudes.

4.4 Quantization of the Dirac field

The fundamental commutator of the spinor field follows from the fundamental Poisson brack-
ets, eq.(1263) as [

π̂A(x, t), ψ̂B(x′, t)
]

= iδBAδ
3 (x− x′) (1361)

and we can immediately turn to our examination of the commutation relations of the mode
amplitudes. The classical solution is

ψ(x, t) =
1

(2π)3/2

2∑
a=1

∫
d3k

√
m

ω

(
ba(k)ua(k)e−i(ωt−k·x) (1362)

+ d†a(k)va(k)ei(ωt−k·x)
)

(1363)

ψ†(x, t) =
1

(2π)3/2

2∑
a=1

∫
d3k

√
m

ω

(
b†a(k)u†a(k)ei(ωt−k·x) (1364)

+ da(k)v†a(k)e−i(ωt−k·x)
)

(1365)

π(x, t) =
i

(2π)3/2

2∑
a=1

∫
d3k

√
m

ω

(
b†a(k)ūa(k)e−i(ωt−k·x) (1366)

+ d†a(k)v̄a(k)ei(ωt−k·x)
)
γ0 (1367)

and we may solve for the amplitudes as usual. Notice that our writing d†i (k) instead of
di(k) in the expansion of ψ, while perfectly allowable, has no justification at this point. It
is purely a matter of definition. However, when we look at the commutation relations of the
corresponding operators, this part of the field operator ψ̂ should create an antiparticle, and
therefore is most appropriately called d†i (k). This is consistent with CPΘ symmetry of the
field.
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Setting t = t′ = 0, we first invert the Fourier transform:

ψ̃(k) ≡ 1

(2π)3/2

∫
ψ(x, 0)e−ik·xd3x (1368)

=
1

(2π)3

2∑
j=1

∫ ∫
d3xd3k′

√
m

ω′

(
bj( k′)uj(k

′)ei(k
′−k)·x (1369)

+ d†j(k
′)vj(k

′)e−i(k
′+k)·x

)
(1370)

=
2∑
j=1

∫
d3k′

√
m

ω′
(
bi(k

′)ui(k
′)δ3 (k′ − k) (1371)

+ d†j(k
′)vj(k

′)δ3 (k′ + k)
)

(1372)

=
2∑
j=1

√
m

ω

(
bj(k)uj(k) + d†j(−k)vj(−k)

)
(1373)

We immediately find

ψ̃†(k) ≡ 1

(2π)3/2

∫
ψ†(x, 0)eik·xd3x (1374)

=
2∑
j=1

√
m

ω

(
b†j(k)u†j(k) + dj(−k)v†j(−k)

)
(1375)

so that

π̃(k) = iψ̃†(k)hγ0 (1376)

=
i

(2π)3/2

∫
ψ†(x, 0)hγ0eik·xd3x (1377)

= i
2∑
j=1

√
ω

m

(
b†j(k)u†j(k)hγ0 + dj(−k)v†j(−k)hγ0

)
(1378)

Now, we would like to use the spinor inner product to isolate bi and di. However, since
ψ̃(k) involves vj(−k) instead of vj(k), we need a modified form of the orthonormality relation.
From the form of our solution for vj(k), we immediately see that

v1(−k) =

√
m+ ω

2m


−kz
ω+m

−kx+iky

ω+m

1
0

 = −γ0v1(k) (1379)

v2(−k) =

√
m+ ω

2m


−kx−iky

ω+m
kz

ω+m

0
1

 = −γ0v2(k) (1380)
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We also need
v̄i(−k) = v†i (−k)h =

(
−γ0vi(k)

)†
h = −v†i (k)γ0h (1381)

as well as two more identities to reach our goal.

Exercise: Show that
u†jB (k)

[
γ0
]B

A
uAi (k) =

ω

m
δij (1382)

and
v†jB (k)

[
γ0
]B

A
vAi (k) =

ω

m
δij (1383)

where u†jB =
[
u†j

]A
hAB and v†jB (k) =

[
v†j

]A
hAB (k) .

Continuing, we may write the Fourier transforms as

ψ̃(k) =
2∑
j=1

√
m

ω

(
bj(k)uj(k)− d†j(−k)γ0vj(k)

)
(1384)

π̃(k) = i
2∑
j=1

√
m

ω

(
b†j(k)u†j(k)hγ0 − dj(−k)v†j(k)h

)
(1385)

where we used γ0hγ0 = h. As a result,

ūi (k) γ0ψ̃(k) =
2∑
j=1

√
m

ω

(
bj(k)ūi(k)γ0uj(k) (1386)

− d†j(−k)ūi(k)vj(k)
)

(1387)

=
2∑
j=1

√
m

ω
bj(k)ūi (k) γ0uj(k) (1388)

=

√
ω

m
bi(k) (1389)

and similarly

v̄i (k) ψ̃(k) =
2∑
j=1

√
m

ω
(bj(k)v̄i (k)uj(k) (1390)

− d†j(−k)v̄i (k) γ0vj(k)
)

(1391)

= −
2∑
j=1

√
m

ω
d†j(−k)v̄i (k) γ0vj(k) (1392)

= −
√
ω

m
d†j(−k) (1393)
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while for the momentum,

π̃(k)ui (k) = i

2∑
j=1

√
m

ω

(
b†j(k)u†j(k)hγ0ui (k) (1394)

− dj(−k)v†j(k)hui (k)
)

(1395)

= i

2∑
j=1

√
m

ω
b†j(k)u†j(k)hγ0ui (k) (1396)

= i

√
ω

m
b†i (k) (1397)

and

π̃(k)γ0vi (k) = i
2∑
j=1

√
m

ω

(
b†j(k)u†j(k)hγ0γ0vi (k) (1398)

− dj(−k)v†j(k)hγ0vi (k)
)

(1399)

= −i
2∑
j=1

√
m

ω

(
dj(−k)v†j(k)hγ0vi (k)

)
(1400)

= −i
√
ω

m
dj(−k) (1401)

Noting that

ψ̃(k) ≡ 1

(2π)3/2

∫
ψ(x, 0)e−ik·xd3x

ψ̃†(k) =
1

(2π)3/2

∫
ψ†(x, 0)eik·xd3x

we collect terms and replace the mode amplitudes by operators:

b̂i(k) =

√
m

ω

1

(2π)3/2

∫
ūi (k) γ0ψ(x, 0)e−ik·xd3x (1402)

d̂†j(k) = −
√
m

ω

1

(2π)3/2

∫
v̄i (−k)ψ(x, 0)eik·xd3x (1403)

=

√
m

ω

1

(2π)3/2

∫
v̄i (k) γ0ψ(x, 0)eik·xd3x (1404)

b̂†i (k) =

√
m

ω

1

(2π)3/2

∫
ψ†(x, 0)hγ0ui (k) eik·xd3x (1405)
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d̂j(k) = −
√
m

ω

1

(2π)3/2

∫
ψ†(x, 0)hvi (−k) e−ik·xd3x (1406)

=

√
m

ω

1

(2π)3/2

∫
ψ†(x, 0)hγ0vi(k)e−ik·xd3x (1407)

Next we want to find the commutation relations satisfied by these mode amplitudes. For
this it is convenient to rewrite the fundamental commutator,[

π̂A(x, t), ψ̂B(x′, t)
]

= iδBAδ
3 (x− x′) (1408)

in terms of ψ̂ and ψ̂†. Replacing π̂A(x, t) by iψ̂†(x, t)hγ0 we have

i

[[
ψ̂†(x, t)

]C
hCD

[
γ0
]D

A
,
[
ψ̂(x′, t)

]B]
= iδBAδ

3 (x− x′)

i

[[
ψ̂†(x, t)

]
D
,
[
ψ̂(x′, t)

]B] [
γ0
]D

A
= iδBAδ

3 (x− x′)[[
ψ̂†(x, t)

]
C
,
[
ψ̂(x′, t)

]B]
=

[
γ0
]B

C
δ3 (x− x′)

or simply [
ψ̂†(x, t)h, ψ̂(x′, t)

]
= γ0δ3 (x− x′) (1409)

We are now in a position to compute the commutators of the mode operators

4.4.1 Anticommutation

Now consider the b̂a(k′), b̂†b(k) and d̂†i (k), d̂j(k
′) commutators:[

b̂a(k
′), b̂†b(k)

]
=

m

(2π)3 ω

∫ ∫
d3xd3x′eik·x−ik

′·x′ūaC (k′)
[
γ0
]C

D

×
[
ψD(x′, 0),

(
ψ†(x, 0)h

)
A

] [
γ0
]A

B
[ub (k)]B

= − m

(2π)3 ω

∫ ∫
d3xd3x′eik·x−ik

′·x′

×ūaC (k′)
[
γ0
]C

D

[
γ0
]D

A

[
γ0
]A

B
[ub (k)]B δ3 (x− x′)

= − m

(2π)3 ω

∫
d3xei(k−k

′)·xūaC (k′)
[
γ0
]C

B
[ub (k)]B

= −m
ω

1

(2π)3

∫
d3x

ω

m
δabe

i(k−k′)·x

= −δ3 (k− k′) δab
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and [
d̂a(k), d̂†b(k

′)
]

=
m

ω

1

(2π)3

∫ ∫
d3xd3x′e−ik·x+ik′·x′ [γ0

]D
E
vEa (k′)

×
[[
ψ†
]C

(x′, 0)hCD, ψ
B(x, 0)

]
v̄bA (k)

[
γ0
]A

B

=
m

ω

1

(2π)3

∫ ∫
d3xd3x′e−ik·x+ik′·x′ [γ0

]D
E
vEa (k′)

×
[
γ0
]B

D
δ3 (x− x′) v̄bA (k)

[
γ0
]A

B

=
m

ω

1

(2π)3

∫ ∫
d3xd3x′e−ik·x+ik′·x′ v̄bA (k) γ0va(k

′)δ3 (x− x′)

=
m

ω
δ3 (k− k′) v̄bA (k)

[
γ0
]A

E
vEb (k′)

= δabδ
3 (k− k′)

This is just the relationship we expect for d̂a(k) – the mode amplitudes d̂a(k) and d̂†a(k) act
as annihilation and creation operators, respectively. However, commutator[

b̂a(k), b̂†b(k
′)
]

= −δ3 (k− k′) δab

has the wrong sign, with b̂a(k) rather than b̂†b(k) acting like the creation operator. However,
b̂a(k) multiplies e−i(ωt−k·x) while d̂†a(k) multiplies the CPΘ conjugate of e−i(ωt−k·x). This is
consistent with our identification of these modes as particles and antiparticles, respectively.
As we shall see, this pairing of particle creation with antiparticle annihilation, and vice
versa, is necessary for other reasons as well. The identification we have chosen is necessary
for conservation of charge (How could the action ψ have the potential to either create an
electron or create a positron, since these have opposite electrical charges?). In addition,
particle-antiparticle annihilation would not work correctly – every interaction that created
a particle would have to annihilate a particle. We do not observe this. What went wrong?

We have very little freedom for introducing a sign here. In particular, the bilinear form
v†iγ

0vj is governed by the Lorentz invariance properties of the spinor products. An overall
sign on the field or the momentum would change the sign of thed̂a(k) commutator as well
as the b̂a(k) commutator, thereby merely displacing the problem. Moreover, since b̂a(k) and
b̂†b(k) enter the commutator together, a relative sign in the definition of b̂a(k) is cancelled by
a corresponding sign from b̂†b(k). The only place a sign enters in a way that we could change
the outcome is in our use of the antisymmetry of the commutator. If this “bracket” of
conjugate variables were symmetric instead of antisymmetric, the proper relationship would
be restored. But recall that this bracket was imposed by fiat – it is simply a rule that says
we should take Poisson brackets to field commutators to arrive at the quantum field theory
from the classical field theory.

Of course, we know that using anticommutators for fermionic fields is the right answer
– essentially all of the rigid strucuture of the world, from the discretely stacked energy
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levels of nucleons in the nucleus and electrons in atoms to the endstates of stars as white
dwarfs and neutron stars, relies on the Pauli exclusion principle. This principle states that
no two fermions can occupy the same state and it is enforced mathematically by requiring
fermion fields to anticommute. Here, we see the principle emerge from field theory as a
condition of chronicity invariance. Below, we will see that the same conclusion follows from
a consideration of energy.

Returning to the previous calculations, we see that nothing goes awry if we replace the
canonical quantization rule with a sign change to an anticommutator in the case of fermions.
The fundamental anticommutation relations for the Dirac field are then:{

π̂A(x, t), ψ̂B(x′, t)
}
≡ π̂A(x, t)ψ̂B(x′, t) + ψ̂B(x′, t)π̂A(x, t) (1410)

= iδBAδ
3 (x− x′) (1411)

with the consequence {
b̂†i (k), b̂j(k

′)
}

= δijδ
3 (k− k′){

d̂†i (k), d̂i(k
′)
}

= δijδ
3 (k− k′)

All other anticommutators vanish.

4.4.2 The Dirac Hamiltonian

Next, consider the Hamiltonian. We wish to express it as a quantum operator in terms of
the creation and annihilation operators. It is now convenient to use the simplified form of
the Dirac Hamiltonian, eq.(1246):

H = i

∫
d3x πγ0

(
iγi∂i −m

)
ψ =

∫
d3x π∂0ψ (1412)

so that
Ĥ = i

∫
d3x πγ0

(
iγi∂i −m

)
ψ =

∫
d3x π∂0ψ (1413)

We begin by substituting the field operator expansions,

ψ̂(x, t) =
1

(2π)3/2

2∑
i=1

∫
d3k

√
m

ω

(
b̂i(k)ui(k)e−i(ωt−k·x) (1414)

+ d̂†i (k)vi(k)ei(ωt−k·x)
)

(1415)

ψ̂†(x, t) =
1

(2π)3/2

2∑
i=1

∫
d3k

√
m

ω

(
b̂†i (k)u†i (k)ei(ωt−k·x) (1416)

+ d̂i(k)v†i (k)e−i(ωt−k·x)
)

(1417)
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π̂(x, t) = iψ†(x, t)hγ0

=
i

(2π)3/2

2∑
i=1

∫
d3k

√
m

ω

(
d̂i(k)v†i (k)hγ0e−i(ωt−k·x) (1418)

+ b̂†i (k)u†i (k)hγ0ei(ωt−k·x)
)

(1419)

into the integral for the Hamiltonian,

Ĥ =

∫
d3x : π̂∂0ψ̂ : (1420)

=
i

(2π)3

2∑
a=1

2∑
b=1

∫
d3x

∫
d3k

∫
d3k′

m√
ωω′

:
(
d̂a(k)v†a(k)hγ0e−i(ωt−k·x)

+ b̂†a(k)u†a(k)hγ0ei(ωt−k·x)
)

×
(
−iω′bb̂(k′)ub(k′)e−i(ω

′t−k′·x)

+iω′ d̂†b(k
′)vb(k

′)ei(ω
′t−k′·x)

)
: (1421)

Collecting terms we have

Ĥ =
i

(2π)3

2∑
a=1

2∑
b=1

∫
d3x

∫
d3k

∫
d3k′

iω′m√
ωω′

× :
(
−d̂a(k)b̂b(k

′)v†a(k)hγ0ub(k
′)e−i(ω+ω′)t+i(k+k′)·x

−b̂†a(k)b̂b(k
′)u†a(k)hγ0ub(k

′)ei(ω−ω
′)t−i(k−k′)·x

+d̂a(k)d̂†b(k
′)v†a(k)hγ0vb(k

′)e−i(ω−ω
′)t+i(k−k′)·x

+ b̂†a(k)d̂†b(k
′)u†a(k)hγ0vb(k

′)ei(ω+ω′)t−i(k+k′)·x
)

: (1422)

Now, integrating over d3x, we produce Dirac delta functions:

Ĥ =
2∑

a=1

2∑
b=1

∫
d3k

∫
d3k′

ω′m√
ωω′

× :
(
d̂a(k)bb(k

′)v†a(k)hγ0ub(k
′)δ3 (k + k′) e−2iωt

+b†a(k)bb(k
′)u†a(k)hγ0ub(k

′)δ3 (k− k′)

−d̂a(k)d̂†b(k
′)v†a(k)hγ0vb(k

′)δ3 (k− k′)

− b†a(k)d̂†b(k
′)u†a(k)hγ0vb(k

′)δ3 (k + k′) e2iωt
)

: (1423)

which immediately integrate to give

Ĥ = m

2∑
a=1

2∑
b=1

∫
d3k
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× :
(
d̂a(k)b̂b(−k)v†a(k)hγ0ub(−k)e−2iωt

+b̂†a(k)b̂b(k)u†a(k)hγ0ub(k)

−d̂a(k)d̂†b(k)v†a(k)hγ0vb(k)

− b̂†a(k)d̂†b(−k)u†a(k)hγ0vb(−k)e2iωt
)

: (1424)

Finally, we replace the inner products using

va(−k) = −γ0va(k) (1425)
ua(−k) = γ0ua(k) (1426)

thereby arriving at

Ĥ = m

2∑
a=1

2∑
b=1

∫
d3k

× :
(
d̂a(k)b̂b(−k)v†a(k)hub(k)e−2iωt

+b̂†a(k)b̂b(k)u†a(k)hγ0ub(k)

−d̂a(k)d̂†b(k)v†a(k)hγ0vb(k)

+ b̂†a(k)d̂†b(−k)u†a(k)hvb(k)e2iωt
)

:

= m
2∑

a=1

2∑
b=1

∫
d3k :

(
b̂†a(k)b̂b(k)

ω

m
δab − d̂a(k)d̂†b(k)

ω

m
δab

)
:

=
2∑

a=1

∫
d3k ω :

(
b̂†a(k)b̂a(k)− d̂a(k)d̂†a(k)

)
: (1427)

This would be a troubling result if it weren’t for the anticommutation relations. If we
simply used the normal ordering procedure, the second term would be negative and the
energy indefinite. However,{

d̂†a(k), d̂b(k
′)
}

= d̂†a(k)d̂b(k
′) + d̂b(k

′)d̂†a(k) = δabδ
3 (k− k′) (1428)

so the normal ordering prescription is taken to mean

: d̂b(k
′)d̂†a(k) := −d̂†a(k)d̂b(k

′) (1429)

We then can write the normal ordered Hamiltonian operator as

Ĥ =
2∑

a=1

∫
d3k ω

(
b̂†a(k)b̂a(k) + d̂†a(k)d̂a(k)

)
(1430)

This convention preserves the anticommutativity, while still eliminating the infinite delta
function contribution to the vacuum energy.
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4.5 Symmetries of the Dirac field

We’d now like to find the conserved currents of the Dirac field. There are two kinds – the
spacetime symmetries, including Lorentz transformations and translations, and a U(1) phase
symmetry. We’ll discuss the spacetime symmetries first. We put off our study of the phase
symmetry to the next chapter, where it leads us systematically to Quantum Electrodynamics:
QED.

4.5.1 Translations

Under a translation, xα → xα + aα, the Dirac field changes by

ψ (xα)→ ψ (xα + aα) = ψ (xα) +
∂ψ (xα)

∂xβ
aβ (1431)

so we identify ∆ of eq.() as
∆ = (∂βψ) aβ (1432)

The four conserved currents form the stress-energy tensor, given by eq.():

Tαβ =
δL

δ (∂αψ)
∂βψ − Lηµβ (1433)

= iψ̄γα∂βψ − ηαβψ̄ (iγµ∂µ −m)ψ (1434)
= iψ̄γα∂βψ (1435)

since the Lagrangian density vanishes when the field equation is satisfied. For the conserved
charges, we therefore find that the conserved energy is the Hamiltonian,

P 0 = i

∫
d3xψ̄γ0∂0ψ (1436)

= i

∫
d3xψ̄γ0∂0ψ (1437)

= H (1438)

while the conserved momentum is

P i = −i :

∫
d3xψ̄γ0∂iψ : (1439)

=
2∑

a=1

2∑
b=1

∫
d3k

mk′i

ω
(1440)

×
(
b̂†a(k)b̂b(k)u†a(k)hγ0ub(k) (1441)

−b̂†a(k)d̂†b(−k)u†a(k)hγ0e2iωtvb(−k) (1442)
+d̂a(k)b̂b(−k)v†a(k)hγ0e−2iωtub(−k) (1443)
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− : d̂a(k)d̂†b(k) : v†a(k)hγ0vb(k)
)

(1444)

=
2∑

a=1

∫
d3k k′i

(
b̂†a(k)b̂a(k) − : d̂a(k)d̂†a(k) :

)
(1445)

=
2∑

a=1

∫
d3k k′i

(
b̂†a(k)b̂a(k) + d̂†a(k)d̂a(k)

)
(1446)

This is just what we expect.

5 Gauging the Dirac action
The action for the Dirac equation is

S =

∫
d4x ψ̄ (iγµ∂µ −m)ψ (1447)

and we note that in addition to the Poincaré symmetry, it has a global phase symmetry.
That is, if we replace

ψ → ψeiη (1448)
ψ̄ → ψ̄e−iη (1449)

for any constant phase η, the action S remains unchanged. This leads immediately to a
conserved current. For an infinitesimal phase change,

∆ = ψ (1 + iη)− ψ = iηψ (1450)
∆̄ = ψ̄ (1 + iη)− ψ̄ = −iηψ̄ (1451)

so

Jα ≡ ∂L
∂ (∂αψ)

(iηψ) (1452)

= − ηψ̄γαψ (1453)

In terms of creation and annihilation operators the conserved charge is thererfore

Q =

∫
J0d3x = − η

∫
d3x : ψ̄γ0ψ : (1454)

= − η
2∑

a=1

2∑
b=1

∫
d3k

m

ω

(
: b†a(k)u†a(k)hγ0bb(k)ub(k) (1455)

+b†a(k)u†a(k)e2iωthγ0d†b(−k)vb(−k) (1456)
+da(k)v†a(k)e−2iωthγ0bb(−k)ub(−k) (1457)
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+ da(k)v†a(k)hγ0d†b(k)vb(k) :
)

(1458)

= − η
2∑

a=1

∫
d3k

(
b†a(k)ba(k)+ : da(k)d†a(k) :

)
(1459)

= − η

2∑
a=1

∫
d3k

(
b†a(k)ba(k)− d†a(k)da(k)

)
(1460)

Therefore, the total conserved charge Q is proportional to the difference between the number
of particles and the number of antiparticles. The most straightforward interpretation of this
conservation law is a conservation of electrical charge and (with some slight modification
for the electroweak theory) this interpretation is correct.

5.1 The covariant derivative

We could now take the electromagnetic current of the spinor field,

Jα = − ηψ̄γαψ (1461)

as the source for the Maxwell field by including JαAα with the Maxwell action. However,
gauging provides a more systematic way to come up with the same action in a way that
immediately generalizes to other types of interactions. The procedure is as follows. Suppose
we try to write a revised version of the Dirac action which is invariant under local phase
transformations,

ψ → ψ′ = ψeiϕ(t,x) (1462)
ψ̄ → ψ̄′ = ψ̄e−iϕ(t,x) (1463)

Clearly, this must be a different action, because if we substitute these expressions into the
Dirac action we find

S ′ =

∫
d4x ψ̄e−iϕ(t,x) (iγµ∂µ −m)ψeiϕ(t,x) (1464)

= S − ψ̄γµψ (∂µϕ (t,x)) (1465)

In order to build a new action which is invariant, we somehow need to cancel this extra term.
The key to a solution is that an extra, undesired piece occurs whenever we take a deriva-

tive. We can fix the problem by introducing a different kind of derivative, Dα, called a
covariant derivative. For local phase symmetry, we say that the derivative must be made
covariant with respect to phase transformations. All this means is that it should commute
with the phase change, in the sense that

D′αψ
′ = eiϕ(t,x) (Dαψ) (1466)
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We just demand that the derivative Dαψ should transform in the same way as ψ itself. If
we can find such a covariant derivative, then

Slocal =

∫
d4x ψ̄ (iγµDµ −m)ψ (1467)

is the action we need because

S ′local =

∫
d4x

(
iψ̄′γµD′µψ

′ −mψ̄′ψ′
)

(1468)

=

∫
d4x

(
iψ̄e−iϕ(t,x)γµeiϕ(t,x)Dµψ −mψ̄ψ

)
= Slocal (1469)

The only trick is to find a suitable generalization of the derivative.
To generalize the derivative, we need to know the properties that make an operator a

derivation. We define

Define: A derivation is an operator D which is linear and Leibnitz:

1. Linear: D (αf + βg) = αDf + βDg

2. Leibnitz: D (fg) = (Df) g + f (Dg)

Notice that these two conditions together require D to vanish when acting on constants.
The Leibnitz property gives D (αf) = (Dα) f+αDf, while linearity requires D (αf) = αDf.
These are consistent only if (Dα) f = 0 for any function f. Choosing f(x) = 1 gives the
result.

Next, consider how two derivations may differ. If D1 is a derivation and we define

D2 = D1 + F (x) (1470)

then D2 is also linear

D2 (αf + βg) = (D1 + F ) (αf + βg) (1471)
= D1 (αf + βg) + F (αf + βg) (1472)
= αD1f + βD1g + αFf + βFg (1473)
= α (D1 + F ) f + β (D1 + F ) g (1474)
= α (D2f) + β (D2g) (1475)

but the Leibnitz property fails:

D2 (fg) = D1 (fg) + Ffg (1476)
= (D1f) g + f (D1g) + Ffg (1477)
6= (D2f) g + f (D2g) (1478)
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We can fix this problem by introducting additive weights for functions. If fn has weight n,
and gm has weight m, then we require the product, hm+n = fngm to have weight m+n. Now
we can define

D2gm = D1gm +mFgm (1479)

and the Leibnitz rule is satisfied:

D2 (fngm) = D1 (fngm) + (n+m)Ffngm (1480)
= (D1fn) gm + fn (D1gm) + (n+m)Ffngm (1481)
= (D2fn) gm + fn (D2gm) (1482)

The use of weights is consistent with phase transformations, because if we have a product of
two spinors and each changes by a phase, we get a doubled phase factor:

χψ →
(
χeiϕ

) (
ψeiϕ

)
= χψe2iϕ (1483)

Thus, each spinor would be assigned a weight of one.
The additive term in a covariant derivative is called a connection.
We’re now in a position to find a suitable covariant derivative. Since we are in four

dimensions, we may add one function for each derivation:

Dα = ∂α − iAα (1484)

where the factor of −i is simply a convenient convention. This definition is sufficient. The
condition we require is

D′αψ
′ = eiϕ(t,x) (Dαψ) (1485)

where

ψ′ = eiϕ(t,x)ψ (1486)
D′α = ∂α − iA′α (1487)

Combining these expressions,

D′αψ
′ = (∂α − iA′α)

(
eiϕψ

)
(1488)

= i (∂αϕ)ψ + eiϕ∂αψ − iA′αeiϕ(t,x)ψ (1489)

This must reduce to a phase times the original covariant derivative,

eiϕ (Dαψ) = eiϕ∂αψ − ieiϕAαψ

so

ieiϕ (∂αϕ)ψ + eiϕ∂αψ − iA′αeiϕψ = eiϕ∂αψ − ieiϕAαψ (1490)
ieiϕ (∂αϕ)ψ − iA′αeiϕψ = −ieiϕAαψ (1491)

Since this must hold for all ψ we see that Aα must change according to

A′α = Aα + ∂αϕ (1492)

Other than this necessary transformation property, Aα is an arbitrary vector field.
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5.2 Gauging

Given the preceeding construction, the action

Slocal =

∫
d4x ψ̄ (iγαDα −m)ψ (1493)

where Dα = ∂α − iAα, is invariant under local phase transformations.

Exercise: Demonstrate the invariance of Slocal under the simultaneous transformations

ψ → ψ′ = ψeiϕ(t,x) (1494)
ψ̄ → ψ̄′ = ψ̄e−iϕ(t,x) (1495)

Aα → Aα + ∂αϕ (t,x) (1496)

by explicit substitution.

This procedure, of making a global symmetry into a local symmetry by introducing a
covariant derivative, is called gauging the symmetry.

We are left with a question: what is the new field Aα? As it stands, it doesn’t matter
much because Aα has no interesting physical properties. Since no derivatives of Aα appear
in Slocal, Aα cannot propagate. In fact, we can’t even vary Slocal with respect to Aα because
it forces the current to vanish:

δSlocal
δAα

= ψ̄γαψ (1497)

We can fix this by adding a term built from derivatives of the connection Aα, but because
Aα obeys an inhomogeneous transformation property we need some way to tell what parts
of Aα are physical. For example, we could not just write

�Aα = 0 (1498)

as a field equation for Aα because under a phase transformation the simple wave equation
changes to

�Aα +� (∂αϕ) = 0 (1499)

Which equation would we solve?
Fortunately, there is a standard way to find physical fields associated with a connection.

It depends on the fact that, unlike partial derivatives, covariant derivatives do not commute.
Consider our case first. The commutator of two covariant derivatives on an arbitrary spinor
gives

[Dα, Dβ]ψ = Dα (∂βψ − iAβψ)−Dβ (∂αψ − iAαψ) (1500)
= ∂α∂βψ − i (∂αAβ)ψ − iAβ (∂αψ)− iAα (∂βψ − iAβψ) (1501)
−∂β∂αψ + i (∂βAα)ψ + iAα (∂βψ)− iAβ (∂αψ − iAα) (1502)

= −i (∂αAβ − ∂βAα)ψ (1503)
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Several important things have happened here. The result is proportional to

Fαβ = ∂αAβ − ∂βAα (1504)

times the same spinor – all of the derivatives of ψ cancelled. This is characteristic, and
allows unambiguous identification of the new object Fαβ. Fαβ is called the curvature of the
connection Aα. Because it is defined from a commutator, we know immediately that under
a gauge transformation,

−iF ′αβψ′ =
[
D′α, D

′
β

]
ψ′ (1505)

= D′α
(
D′βψ

′)−D′β (D′αψ
′) (1506)

= D′α
(
eiϕDβψ

)
−D′β

(
eiϕDαψ

)
(1507)

= eiϕDα (Dβψ)− eiϕDβ (Dαψ) (1508)
= eiϕ [Dα, Dβ]ψ (1509)
= −ieiϕFαβψ (1510)

and therefore the curvature is invariant:

F ′αβ = Fαβ (1511)

This is also a characteristic property – the curvature of a connection is always a tensor : it
transforms linearly and homogeneously under a gauge transformation.

For phase transformations it is easy to see why the curvature is independent of ϕ. Since
the connection Aα changes by a gradient, and the curl of a gradient vanishes, the curl of Aα
is gauge invariant.

We can use the curvature to write an action for Aα. Any Lorentz invariant quantity built
purely from Fαβ is a possible term in the action. There are two possible terms:

FαβF
αβ, εαβµνFαβFµν (1512)

However, the second of these does not contribute to the field equations for Aα because it is
a total divergence:

εαβµνFαβFµν = εαβµν (∂αAβ − ∂βAα)Fµν (1513)
= 2εαβµν∂αAβFµν (1514)
= ∂α

(
2εαβµνAβFµν

)
− 2εαβµνAβ∂αFµν (1515)

= ∂α
(
2εαβµνAβFµν

)
(1516)

where the last term vanishes because

εαβµνAβ∂αFµν =
1

3
εαβµνAβ (∂αFµν + ∂µFνα + ∂νFαµ) (1517)
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and

∂αFµν + ∂µFνα + ∂νFαµ = ∂α (∂µAν − ∂νAµ) + ∂µ (∂νAα − ∂αAν) (1518)
+∂ν (∂αAµ − ∂µAα) (1519)

= ∂α∂µAν − ∂α∂νAµ + ∂µ∂νAα (1520)
−∂µ∂αAν + ∂ν∂αAµ − ∂ν∂µAα (1521)

= 0 (1522)

Therefore, the only gauge invariant action up to second order in the curvature is

Slocal =

∫
d4x

(
ψ̄ (iγαDα −m)ψ − 1

4
FαβF

αβ

)
(1523)

=

∫
d4x

(
ψ̄ (iγα∂α −m)ψ + ψ̄γαAαψ −

1

4
FαβF

αβ

)
(1524)

This is the result of U(1) gauge theory, since U(1) is the group of possible phase transfor-
mations. The procedure is readily generalized to other symmetry groups.

6 Quantizing the Maxwell field
We have quantized spin zero and spin 1/2 fields; we now come to the most important spin
1 case, the Maxwell field. The free Maxwell theory is described by the action

S = −1

4

∫
d4x FαβF

αβ (1525)

Fαβ = Aα,β − Aβ,α (1526)

Notice that the field Aα is necessarily massless, because mass term in the action would be
of the form m2AαAα, and this term is not gauge invariant.

6.1 Hamiltonian formulation of the Maxwell equations

We immediately hit a problem when we try to write the Hamiltonian formulation, because

πρ(x) = − δS

δ∂0Aρ(x)
(1527)

= −1

2

∫
d3x′ ηαµηβνFµν(x

′)
δ

δ∂0Aρ(x)
(Aα,β(x′)− Aβ,α(x′)) (1528)

= −1

2

∫
d3x′ ηαµηβνFµν

(
δραδ

0
β − δ

ρ
βδ

0
α

)
δ3(x− x′) (1529)

= F 0ρ (1530)
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and therefore the conjugate momentum to A0 vanishes:

π0 = F 00 = 0 (1531)
πi = F 0i = − (A0,i − Ai,0) (1532)

= −∂iA0 − ∂0A
i (1533)

≡ Ei (1534)

We should expect this. Since Aα is gauge dependent, not all of its components are physical.
There are several ways to deal with this problem. First, let’s see what happens if we just

ignore it. Then the Hamiltonian is

H = −
∫
d3x (πα∂0A

α − 1

2
F 0i (A0,i − Ai,0) (1535)

− 1

4
(Ai,j − Aj,i)

(
Ai,j − Aj,i

))
(1536)

= −
∫
d3x

(
Fi0∂0A

i − 1

2
F 0i (A0,i − Ai,0) (1537)

− 1

4
(Ai,j − Aj,i)

(
Ai,j − Aj,i

))
(1538)

= −
∫
d3x

(
F 0i∂0A

i − 1

2
F 0i
(
A0,i + ∂0A

i
)

(1539)

− 1

4
(Ai,j − Aj,i)

(
Ai,j − Aj,i

))
(1540)

= −
∫
d3x

(
1

2
F 0i∂0A

i − 1

2
F 0iA0,i (1541)

− 1

4
(Ai,j − Aj,i)

(
Ai,j − Aj,i

))
(1542)

= −
∫
d3x

(
1

2
πi (−Ai,0 − A0,i) (1543)

− 1

4
(Ai,j − Aj,i)

(
Ai,j − Aj,i

))
(1544)

=

∫
d3x

(
1

2
πiπi + πiA0,i +

1

4

(
−εijkBk

) (
−εijmBm

))
(1545)

=

∫
d3x

(
1

2
πiπi + πiA0,i +

1

2
BiBi

)
(1546)

where we have defined the magnetic field as

Bm = εmij (Ai,j − Aj,i) (1547)
B = ∇×A (1548)
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When the field equations are satisfied, we have ∇ ·E = 0. Then the middle term becomes a
surface term which does not contribute to the field equations,∫

d3x
(
πiA0,i

)
=

∫
d3x

(
EiA0,i

)
(1549)

=

∫
d3x

(
∂i
(
EiA0

)
− (∇ · E)A0

)
(1550)

= EiA0

∣∣
boundary

(1551)

and final expression is simply

H =
1

2

∫
d3x

(
E2 + B2

)
(1552)

In fact, throwing out the surface term, we can write the Hamiltonian in general as

H =

∫
d3x

(
1

2
πiπi −

(
∂iπ

i
)
A0 +

1

2
BiBi

)
(1553)

Then A0 appears as a Lagrange multiplier, enforcing ∇ · E = 0 as a constraint. Since H is
independent of π0, we have Ȧ0 = {H,A0} = 0.

Now we check Hamilton’s equations:

∂0A
0 =

δH

δπ0

= 0 (1554)

∂0A
i =

δH

δπi
(1555)

= − δ

δπi

∫
d3x

(
1

2
πiπi + πiA0,i +

1

2
BiBi

)
(1556)

= −
(
πi + A0,i

)
(1557)

The first expression is a gauge choice. Something about the formalism has forced this upon
us. The second expression gives

Ei = −∂0A
i − ∂iA0 (1558)

For the momentum we have

∂0π
0 = − δH

δA0

(1559)

= − δ

δA0

∫
d3x′

(
1

2
πiπi + πiA0,i +

1

2
BiBi

)
(1560)

= ∂iπ
i (1561)

and
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∂0π
j = − δH

δAj
(1562)

= − δ

δAj

∫
d3x′

(
1

2
πiπi + πiA0,i +

1

2
BiBi

)
(1563)

= −
∫
d3x′

(
δ

δAj

1

4
(Am,n − An,m) (Am,n − An,m)

)
(1564)

= −1

2

∫
d3x′ (Am,n − An,m)

δ

δAj
(Am,n − An,m) (1565)

= −1

2

∫
d3x′ (Am,n − An,m)

(
∂n

δ

δAj
Am − ∂m

δ

δAj
An

)
(1566)

=
1

2

∫
d3x′

(
∂n (Am,n − An,m) δjm (1567)

− ∂m (Am,n − An,m) δjn
)
δ3(x− x′) (1568)

= ∂n
(
Aj,n − An,j

)
(1569)

=
(
−εjnm∂nBm

)
(1570)

= (∇×B)j (1571)

which we may write as

∇ · E = 0 (1572)
∂E

∂t
−∇×B = 0 (1573)

using π0 = 0. The final Maxwell equation follows automatically from our definition of the
magnetic field as the curl of the potential, B = ∇ × A. Notice that in order to get the
complete set of equations we had to use all four conjugate momenta even though π0 ≡ 0. So
far, the only thing that has gone wrong is the emergence of the condition ∂0A

0 = 0, which
is not a necessary consequence of Maxwell theory.

Now let’s check the fundamental Poisson brackets. Normally we would expect{
πα, A

β
}
P.B.

= δβαδ
3 (x− x′) (1574)

but we immediately see an inconsistency with π0 = 0. Setting α = β = 0, the right side does
not vanish, but the right side does. Let’s check it explicitly:

{
π0, A

0
}
P.B.

=

∫
d3x′

(
δπ0

δπα

δA0

δAα
− δπ0

δAα
δA0

δπα

)
(1575)

=

∫
d3x′

(
δ (0)

δπα

δA0

δAα

)
(1576)

= 0 (1577)
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Putting in zero explicitly for π0 means that A0 has vanishing bracket with all of the other
variables. One resolution of the dilemma is to choose a gauge in which A0 also vanishes.
Though such a gauge choice breaks manifest Lorentz covariance of the formulation, it is al-
ways possible. Suppose we begin with a generic form of the 4-potential Ãα. Then performing
a gauge transformation to a new potential Aα we have

Aα = Ãα + ∂αϕ (t,x) (1578)

and in particular we demand
0 = A0 = Ã0 + ∂0ϕ (t,x) (1579)

Therefore, we need only choose

∂0ϕ (t,x) = −
∫
Ã0 (t,x) dt (1580)

to eliminate A0. Notice that this does not use all of the gauge freedom. If we choose, we
can make another gauge transformation (say, by a function ϕ′) as long as ∂0ϕ

′ = 0. This
just means that we can still adjust the gauge using an arbitrary function of the spatial
coordinates, ϕ (x) .

Now the problem has been shifted to a different location. By eliminating A0 and π0

from our list of independent variables, we have lost the ability to derive one of the Maxwell
equations, ∇ ·E = 0. This equation remains as a constraint that must be satisfied by hand.
The remaining (equal time) Poisson brackets are{

πj (t,x) , Ai (t,x′)
}
P.B.

= δijδ
3 (x− x′) (1581)

Since momentum is given by the electric field, πi = Ei, the divergence constraint requires
∂

∂xi
{
πi (t,x) , Aj (t,x′)

}
P.B.

= δij
∂

∂xi
δ3 (x− x′) (1582)

so that
0 = {∇ · E (x) , Aj (x′)}P.B. = δij

∂

∂xi
δ3 (x− x′) (1583)

and once again we have an inconsistency.

6.2 Handling the constraint

The differential condition that the divergence of the electric field vanish, ∇ · E = 0, may
be turned into an algebraic condition by parameterizing our fields by wave number rather
than position. Thus, our fields Ai (x) and πj (x) at any time t may be recast as Fourier
transforms,

Ai(x, t) =
1

(2π)3/2

∫
d3k√

2ω

(
Ãi(k)eikαx

α

+ Ãi†(k)e−ikαx
α
)

(1584)

πi(x, t) = −∂0A
i (1585)

=
−i

(2π)3/2

∫
d3k

√
ω

2

(
Ãi(k)eikαx

α − Ãi†(k)e−ikαx
α
)

(1586)
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where ω is an as yet unspecified function of k2. We also easily find the inverse transforms,

1

(2π)3/2

∫
d3xAi(x, t)e−ikmx

m

=
1

(2π)3

∫
d3x

∫
d3k′√

2ω′

(
Ãi(k′)eik

′
αx

α

e−ikmx
m

+ Ãi†(k′)e−ik
′
αx

α

e−ikmx
m
)

(1587)

=

∫
d3k′√

2ω′

(
Ãi(k′)eiω

′tδ3 (k− k′) + Ãi†(k′)e−iω
′tδ3 (k + k′)

)
(1588)

=
1√
2ω

(
Ãi(k)eiωt + Ãi†(−k)e−iωt

)
(1589)

1

(2π)3/2

∫
d3xπi(x, t)e−ikmx

m

=
−i

(2π)3

∫
d3x

∫
d3k

√
ω

2

(
Ãi(k)eikαx

α − Ãi†(k)e−ikαx
α
)
e−ikmx

m

(1590)

= −i
√
ω

2

(
Ãi(k)eiωt − Ãi†(−k)e−iωt

)
(1591)

Solving for the transforms,

Ãi(k) =
1

(2π)3/2

√
ω

2

∫
d3x

(
Ai(x, t) +

i

ω
πi(x, t)

)
e−ikαx

α

(1592)

Ãi†(−k) =
1

2 (2π)3/2

∫
d3x

(
√

2ωAi(x, t)− i
√

2

ω
πi(x, t)

)
e−ikmx

m

eiωt (1593)

Ãi†(k) =
1

(2π)3/2

√
ω

2

∫
d3x

(
Ai(x, t)− i

ω
πi(x, t)

)
eikαx

α

(1594)

from which can directly show that the change to new variables, Ãi(k) and −iÃi†(k), is
canonical. To see this we compute the Poisson bracket,{
Ãi(k),−iÃi†(k′)

}
A,π

= −i
∫
d3y

(
δÃi(k)

δπk (y)

δÃj†(k′)

δAk (y)
− δÃi(k)

δAk (y)

δÃj†(k′)

δπk (y)

)

=
−i

(2π)3

∫
d3y

∫
d3x

∫
d3x′

δ

δπk (y)

(√
ω

2

(
i

ω
πi(x, t)

)
e−ikαx

α

)
× δ

δAk (y)

(√
ω′

2

(
Aj(x′, t)

)
eik
′
αx
′α

)

− −i
(2π)3

∫
d3y

∫
d3x

∫
d3x′

δ

δAk (y)

(√
ω

2

(
Ai(x, t)

)
e−ikαx

α

)
× δ

δπk (y)

(√
ω′

2

(
− i

ω′
πj(x′, t)

)
eik
′
αx
′α

)
Carrying out the functional derivatives and integrating over the resulting delta functions, we
have{

Ãi(k),−iÃi†(k′)
}
A,π

=
1

2 (2π)3

∫
d3y

∫
d3x

∫
d3x′

(√
ω′

ω
δ3 (x− y) ηijδ3 (x′ − y)

151



+

√
ω

ω′
δ3 (x− y) δikδ

3 (x′ − y) ηjk
)
e−ikαx

α+ik′αx
′α

=
1

(2π)3

∫
d3x

(
1

2

√
ω′

ω
ηij +

1

2

√
ω

ω′
ηij

)
e−i(kα−k

′
α)xα

=
1

2
ηij

(√
ω′

ω
e−i(ω−ω

′)t +

√
ω

ω′
ei(ω−ω

′)t

)
δ3 (k− k′)

= ηijδ3 (k− k′)

Therefore, Ãi(k) and −iÃi†(k) are just as good as Ai(x, t) and πi(x, t) for describing the
fields. We can equally well think of x or k as a continuous index for the “coordinates”
Ai(x, t), and we can write our Poisson brackets in terms of either set. However, in the new
canonical variables the constraint ∇ · E (x) = 0 becomes

0 = ∇iπ
i (x, t) (1595)

= − i

(2π)3/2

∫
d3k

√
ω

2

(
ikiÃ

i(k)ei(ωt−k·x) + kiÃ
i†(k)e−i(ωt−k·x)

)
(1596)

Inverting the Fourier transform shows that we must have

kiÃ
i(k) = 0 (1597)

kiÃ
i†(k) = 0 (1598)

We have therefore succeeded in finding a set of canonical variables in which the constraint
equation is algebraic. The algebraic constraint simply says the the field Ai and its momentum
are transverse, a fact which we already knew about electromagnetic waves.

Defining the projection operator

P i
j = δij −

kikj
k2

(1599)

we can finally isolate the physical degrees of freedom:

εi ≡ P i
j Ã

j(k) (1600)

εi† ≡ P i
j Ã

j†(k) (1601)

These automatically satisfy

kiε
i(k) = 0 (1602)

kiε
i†(k) = 0 (1603)

because P i
jki = 0.
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Finally, we compute the Poisson bracket of εi(k) and −iεi†(k). Since εi(k) and −iεi†(k)
span the physical subspace, these are our fundamental Poisson brackets. To do this, we
simply project the brackets we have already found for the transforms of the fields:{

εi(k), εj†(k′)
}
A,π

=
{
P i
kÃ

k(k),−iP j
mÃ

m†(k′)
}
A,π

= P i
kP

j
mη

kmδ3 (k− k′)

= P ijδ3 (k− k′)

Now the bracket is consistent: if we dot ki into both sides we get zero, while on the two
dimensional subspace spanned by εi, the bracket, P ij reduces to a Kronecker delta.

Notice that if we transform back to the original, position-dependent variables, we get a
projective Dirac delta,

P i
j (x− x′) ≡ 1

(2π)3

∫
d3k

(
δij −

kikj
k2

)
eiki(x−x

′)i (1604)

Then we have

∂

∂xi
P i
j (x− x′) ≡ 1

(2π)3

∫
d3k

(
δij −

kikj
k2

)
∂

∂xi
eiki(x−x

′)i (1605)

≡ i

(2π)3

∫
d3k

(
kj − kj

kiki
k2

)
eiki(x−x

′)i (1606)

= 0 (1607)

and the corresponding Poisson bracket,{
πj (x) , Ai (x′)

}
P.B.

= P i
j (x− x′) (1608)

is consistent, with one further caveat. Since P ij is symmetric in i and j, we have not only{
∂jπj (x) , Ai (x′)

}
P.B.

= ∂jP i
j (x− x′) = 0 (1609)

but also must have {
∂jπj (x) , ∂iA

i (x′)
}
P.B.

=
∂

∂x′i
P i
j (x− x′) = 0 (1610)

and therefore we need an additional gauge condition,

∇ ·A = 0 (1611)

From the Fourier expansion of Ai, we see that the condition already follows from kiε
i = 0, but

we must also check that the condition is consistent with the gauge freedom of the potential.
To check the consistency, recall that we have some residual gauge freedom beyond what

was required to set A0 = 0. Now suppose we have imposed A0 = 0, and that

∇ ·A = f(x, t) (1612)
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Then changing the gauge again by ϕ(x, t), we have

A′ = A +∇ϕ(x, t) (1613)
∇ ·A′ = ∇ · (A +∇ϕ(x, t)) (1614)

= f(x, t) +∇2ϕ(x, t) (1615)

Demanding ∇ ·A′ is always possible by choosing

ϕ(x, t) =
1

4π

∫
d3x′
∇ ·A(x′, t)

|x− x′|
(1616)

However, we also have to maintain A0 = 0, which, in general, will change by the time
derivative of ϕ :

A′0 = A0 + ∂0ϕ(x, t) (1617)

= 0 +
1

4π

∫
d3x′∂0∇ ·A(x′, t)

|x− x′|
(1618)

We are saved here by the constraint, since

0 = ∂iE
i = ∂i

(
−∂0A

i
)

= −∂0∇ ·A (1619)

Therefore, A′0 = A0 = 0, and we have simultaneously imposed the pair of gauge conditions,

A0 = 0 (1620)
∇ ·A = 0 (1621)

Notice that, as a consequence of these, Aα also satisfies the Lorentz gauge condition

∂αA
α = 0 (1622)

The various gauge conditions mean that we have reduced the vector potential to two inde-
pendent components. These correspond to the two polarization states of light. We now turn
to the free solution and quantization.

6.3 Vacuum solution to classical E&M

First, we need the solutions to the classical theory. The field equation is

∂E

∂t
−∇×B = 0 (1623)

with the constraints

A0 = 0 (1624)
∇ ·A = 0 (1625)
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where the electric and magnetic fiels are defined by

Ei = −∂0A
i (1626)

Bi = εijk (Aj,k − Ak,j) (1627)

Substituting for E and B in the field equation gives the wave equation:

−∂
2A

∂t2
= ∇× (∇×A) (1628)

= −∇2A +∇ (∇ ·A) (1629)
= −∇2A (1630)

which we immediately solve as before with a Fourier integral,

Ai(x, t) =
1

(2π)3/2

∫
d3k√

2ω

(
εi(k)ei(ωt−k·x) + εi†(k)e−i(ωt−k·x)

)
(1631)

The only differences from the scalar field is that here we have a different expansion for each
component of the potential and this time the field equation gives us a simpler expression for
the frequency in terms of the wave vector,

ω =
√
k2 (1632)

because the photon has zero mass. This condition is consistent with our earlier requirement
that ω be a function of k2.

Notice that the constraints are already satisfied. The first, A0 = 0, is satisfied by consid-
ering only the three components Ai. For the second, we still have the transversality of the
waves,

kiε
i(k) = 0 (1633)

and its conjugate.
The conjugate momentum, πi = ∂0A

i, follows immediately,

πi(x, t) =
−i

(2π)3/2

∫
d3k

√
ω

2

(
εi(k)ei(ωt−k·x) − εi†(k)e−i(ωt−k·x)

)
(1634)

so we are ready to quantize.

6.4 Quantization

We have shown that we may write the fundamental commutators in terms of the mode
amplitudes: {

εi(k),−iεj†(k′)
}
P.B.

= P ijδ3 (k− k′) (1635)

so we immediately have [
ε̂i(k),−iε̂j†(k′)

]
= −iP ijδ3 (k− k′) (1636)
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or simply [
ε̂i(k), ε̂j†(k′)

]
= P ijδ3 (k− k′) (1637)

The mode amplitudes are therefore raising and lowering operators. As with scalar and spinor
fields, we could go on and define a complete set of energy eigenstates using these raising and
lowering operators.

Exercise: Define the space of states of the electromagnetic field.

The potential may now be written as an operator, by substituting the mode operators
for the mode amplitudes. It is most convenient to first rewrite each polarization/amplitude
ε̂i(k) as a product,

ε̂i(k)⇒ εα(i)(k)â(i)(k) (1638)

where for each i = 1, 2, εα(i)(k) is a spacelike 4-vector giving one of the two polarization
directions. The k-dependent operator then gives the mode amplitude. The two vectors
εα(i)(k) satisfy a pair of covariant constraints, in place of kiεi(k) = 0. One of the pair of
constraints expresses the transverse condition, while the additional constraint gives εα(i)(k) a
vanishing time component in the current frame of reference, i.e., the Lorentz reference frame
in which we fixed A0 = 0. In this frame, let tα be the unit timelike vector, tα = (1,0) . This
allows us to rewrite our gauge conditions in a Lorentz invariant way,

tαAα = 0 (1639)
∂αA

α = 0 (1640)

Exercise: Show that the two conditions

tαAα = 0 (1641)
∂αA

α = 0 (1642)

are equivalent to the gauge conditions

A0 = 0 (1643)
∇ ·A = 0 (1644)

Now, noting that kα = (ω,k) , demand

tαε
α
(i)(k) = 0 (1645)

kαε
α
(i)(k) = 0 (1646)

The first equation reduces each εα(i)(k) to a purely spatial vector, εα(i)(k) =
(
0, ε(i)(k)

)
, and

the second then reduces to k · ε(i)(k) = 0, as required. We may also choose εα(i)(k) to be
orthonormal

εα(i)(k)ε(j)α(k) = −δij (1647)
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Exercise: In a frame of reference where tα = (1, 0, 0, 0) for an electromagnetic wave in the
z direction (i.e., kα = (0, 0, 0, 1)), find expressions for εα(1)(k) and εα(2)(k).

We can now write the field operator in final form:

Aα(x, t) =
1

(2π)3/2

2∑
i=1

∫
d3k√

2ω

(
εα(i)(k)â(i)(k)ei(ωt−k·x) + εα†(i)(k)â†(i)(k)e−i(ωt−k·x)

)
(1648)

7 Appendices

7.1 Appendix A: The Casimir operators of the Poincaré group.

The Lie algebra of the Poincaré group is:

[Mαβ,Mρσ] = ηβρMασ − ηβσMαρ − ηαρMβσ + ηασMβρ (1649)[
Mα

β, Pν
]

= ηνβP
α − δανPβ (1650)

[Pα, Pβ] = 0 (1651)

Exercise: Prove that P 2 and W 2 are Casimir operators of the Poincaré group, using eqs.(),
where

P 2 = ηαβPαPβ

W 2 = ηαβW
αW β (1652)

and Wα is given by

W µ =
1

2
εµναβPνMαβ (1653)

It is easy to show that P 2 is a Casimir operator. Just compute[
Pµ, P

2
]

= ηαβ [Pµ, PαPβ] (1654)
= ηαβPα [Pµ, Pβ] + ηαβ [Pµ, Pα]Pβ (1655)
= 0 (1656)

and (with Mµν = ηµαM
α
ν),[

Mµν , P
2
]

= ηαβ [Mµν , PαPβ] (1657)
= ηαβPα [Mµν , Pβ] + ηαβ [Mµν , Pα]Pβ (1658)
= ηαβPα (ηνβPµ − ηµβPν) (1659)

+ηαβ (ηναPµ − ηµαPν)Pβ (1660)
= PνPµ − PµPν + PµPν − PνPµ (1661)
= 0 (1662)
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Now we turn to W 2. We first look at easy case – the commutator with Pµ :[
Pµ,W

2
]

= ηαβWα [Pµ,Wβ] + ηαβ [Pµ,Wα]Wβ (1663)

=
1

2
ηαβWα

[
Pµ, ε

νρσ
β PνMρσ

]
(1664)

+
1

2
ηαβ [Pµ, ε

νρσ
α PνMρσ]Wβ (1665)

=
1

2
Wαε

ανρσ ([Pµ, Pν ]Mρσ + Pν [Pµ,Mρσ]) (1666)

+
1

2
([Pµ, Pν ]Mρσ + Pν [Pµ,Mρσ])Wβε

βνρσ (1667)

= −1

2
Wαε

ανρσ (Pν (ηρµPσ − ησµPρ)) (1668)

−1

2
(Pν (ηρµPσ − ησµPρ))Wβε

βνρσ (1669)

= −1

2
Wαε

ανρσ (ηρµPνPσ − ησµPνPρ) (1670)

−1

2
(ηρµPνPσ − ησµPνPρ)Wβε

βνρσ (1671)

= 0 (1672)

Here the last expression vanishes because in each term the antissymmetric Levi-Civita tensor
is contracted on a symmetric product of momentum operators:

εανρσPνPσ =
1

2
εανρσ (PνPσ + PνPσ) = 0 (1673)

Finally, consider the commutator of W 2 with Mαβ, where

W µ =
1

2
εµναβPνMαβ (1674)

To accomplish the result, let’s examine W 2 directly:

W 2 = W µWµ (1675)

=
1

4
εµναβPνMαβεµτρσP

τMρσ (1676)

=
1

24

(
δντ δ

α
ρ δ

β
σ + δατ δ

β
ρ δ

ν
σ + δβτ δ

ν
ρδ

α
σ (1677)

−δατ δνρδβσ − δβτ δαρ δνσ − δντ δ
β
ρ δ

α
σ

)
PνMαβP

τMρσ (1678)

24W 2 = PνMαβP
νMαβ + PνMαβP

αMβν + PνMαβP
βMνα (1679)

−PνMαβP
αMνβ − PνMαβP

βMαν − PνMαβP
νMβα (1680)

Now rearrange by commuting all of the factors of P to the left, then collect terms

24W 2 = Pν (P νMαβ + [Mαβ, P
ν ])Mαβ
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+Pν (PαMαβ + [Mαβ, P
α])Mβν

+Pν
(
P βMαβ +

[
Mαβ, P

β
])
Mνα

−Pν (PαMαβ + [Mαβ, P
α])αMνβ

−Pν
(
P βMαβ +

[
Mαβ, P

β
])
Mαν

−Pν (P νMαβ + [Mαβ, P
ν ])Mβα (1681)

= P 2MαβM
αβ + Pν [Mαβ, P

ν ]Mαβ

+PνP
αMαβM

βν + Pν [Mαβ, P
α]Mβν

+PνP
βMαβM

να + Pν
[
Mαβ, P

β
]
Mνα

−PνPαMαβM
νβ − Pν [Mαβ, P

α]Mνβ

−PνP βMαβM
αν − Pν

[
Mαβ, P

β
]
Mαν

+P 2MαβM
αβ − Pν [Mαβ, P

ν ]Mβα (1682)

Now, substituting for the commutators,

24W 2 = P 2MαβM
αβ + Pν

(
δνβPα − δναPβ

)
Mαβ

+PνP
αMαβM

βν + Pν
(
δαβPα − δααPβ

)
Mβν

+PνP
βMαβM

να + Pν

(
δββPα − δ

β
αPβ

)
Mνα

−PνPαMαβM
νβ − Pν

(
δαβPα − δααPβ

)
Mνβ

−PνP βMαβM
αν − Pν

(
δββPα − δ

β
αPβ

)
Mαν

+P 2MαβM
αβ − Pν

(
δνβPα − δναPβ

)
Mβα (1683)

= 2P 2MαβM
αβ + (PβPα − PαPβ)Mαβ

+PνP
αMαβM

βν − 3PνPβM
βν + PνP

βMαβM
να

+3PνPαM
να − PνPαMαβM

νβ + 3PνPβM
νβ

−PνP βMαβM
αν − 3PνPαM

αν − (PβPα − PαPβ)Mβα

= 2P 2MαβM
αβ + 2PνP

αMαβM
βν − 2PνP

αMαβM
νβ (1684)

= 2P 2MαβM
αβ (1685)

This makes our task much easier. We just need:[
Mαβ,W

2
]

=
1

12

[
Mαβ, P

2MρσM
ρσ
]

=
1

12

[
Mαβ, P

2
]
MρσM

ρσ +
1

12
P 2 [Mαβ,MρσM

ρσ]

=
1

12
P 2 [Mαβ,MρσM

ρσ] (1686)

and therefore compute[
Mαβ,M

2
]

= [Mαβ,MρσM
ρσ]
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= [Mαβ,Mρσ]Mρσ +Mρσ [Mαβ,M
ρσ]

= (ηβρMασ − ηβσMαρ − ηαρMβσ + ηασMβρ)M
ρσ

+Mρσ

(
δρβM

σ
α − δσβM ρ

α − δραM σ
β + δσαM

ρ
β

)
= MασM

σ
β +MαρM

ρ
β −MβσM

σ
α −MβρM

ρ
α

+MβσM
σ

α −MρβM
ρ

α −MασM
σ

β +MραM
ρ

β

= MασM
σ

β +MαρM
ρ

β −MασM
σ

β −MαρM
ρ

β

−MβσM
σ

α −MβρM
ρ

α +MβσM
σ

α +MβρM
ρ

α

= 0 (1687)

and therefore [
Mαβ,W

2
]

= 0 (1688)

7.2 Appendix B: Completeness relation for Dirac solutions

Prove the completeness relation,

2∑
a=1

(
[ua(p

α)]A [ūa(p
α)]B − [va(p

α)]A [v̄a(p
α)]B

)
= δAB (1689)

where A,B = 1, . . . , 4 index the components of the basis spinors, and the spinors are given
by

[u1(pα)]A =

√
E +m

2m


1
0
pz

E+m
px+ipy

E+m

 ; [u2(pα)]A =

√
E +m

2m


0
1

px−ipy
E+m
−pz
E+m

 (1690)

[v1(pα)]A =

√
m+ E

2m


pz

E+m
px+ipy

E+m

1
0

 ; [v2(pα)]A =

√
m+ E

2m


px−ipy
E+m
−pz
E+m

0
1

 (1691)

We have the barred spinors given by u†ah and v†ah :

[ū1(pα)]A =

√
E +m

2m


1
0

− pz

E+m

−px−ipy
E+m

 ; [ū2(pα)]A =

√
E +m

2m


0
1

−px+ipy

E+m
pz

E+m

 (1692)

[v̄1(pα)]A =

√
m+ E

2m


pz

E+m
px−ipy
E+m

−1
0

 ; [v̄2(pα)]A =

√
m+ E

2m


px+ipy

E+m
−pz
E+m

0
−1

 (1693)
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First, compute the individual products. For the u-type spinors,

[u1]A [ū1]B =
E +m

2m


1 0 − pz

E+m
−px−ipy

E+m

0 0 0 0
pz

E+m
0 −

(
pz

E+m

)2 −pz(px−ipy)

(E+m)2

px+ipy

E+m
0 −pz(px+ipy)

(E+m)2
− (px)2+(py)2

(E+m)2

 (1694)

[u2]A [ū2]B =
E +m

2m


0 0 0 0

0 1 −px+ipy

E+m
pz

E+m

0 px−ipy
E+m

− (px)2+(py)2

(E+m)2
pz(px−ipy)

(E+m)2

0 −pz
E+m

pz(px+ipy)

(E+m)2
−
(

pz

E+m

)2

 (1695)

so the sum is

[u1]A [ū1]B + [u2]A [ū2]B =
E +m

2m


1 0 − pz

E+m
−px−ipy

E+m

0 1 −px+ipy

E+m
pz

E+m
pz

E+m
px−ipy
E+m

− p2

(E+m)2
0

px+ipy

E+m
−pz
E+m

0 − p2

(E+m)2

 (1696)

For the v-type spinors, we find

[v1]A [v̄1]B =
m+ E

2m


(

pz

E+m

)2 pz(px−ipy)

(E+m)2
−pz
E+m

0
pz(px+ipy)

(E+m)2
(px)2+(py)2

(E+m)2
−px+ipy

E+m
0

pz

E+m
px−ipy
E+m

−1 0

0 0 0 0

 (1697)

[v2]A [v̄2]B =
m+ E

2m


(px)2+(py)2

(E+m)2
−pz(px−ipy)

(E+m)2
0 −px−ipy

E+m

−pz(px+ipy)

(E+m)2

(
pz

E+m

)2
0 pz

E+m

0 0 0 0
px+ipy

E+m
−pz
E+m

0 −1

 (1698)

with sum

[v1]A [v̄1]B + [v2]A [v̄2]B =
m+ E

2m


p2

(E+m)2
0 −pz

E+m
−px−ipy

E+m

0 p2

(E+m)2
−px+ipy

E+m
pz

E+m
pz

E+m
px−ipy
E+m

−1 0
px+ipy

E+m
−pz
E+m

0 −1

 (1699)

The difference between the sum of the u-type and the sum of the v-type matrices is

1

2m

(
1− p2

(E +m)2

)
1

1
1

1

 = δAB (1700)
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so the full completeness relation is

2∑
a=1

(
[ua(p

α)]A [ūa(p
α)]B − [va(p

α)]A [v̄a(p
α)]B

)
= δAB (1701)

8 Changes since last time:
I since the 2/19/02 version I have:

1. Altered the section on functional derivation

2. Added a paragraph on the quantum Poincaré algebra

3. Developed the complex scalar field

Starting 3/10/02:

1. Further work on Dirac equation quantization

2. Changed sign convention on particular choice of Dirac matrices.

3. Insert comment on antiparticles in the KG solution.

4. New paragraph on discrete Lorentz transformations in relativity section.

5. Section on antiparticles and chronicity

6. Discussion of Lorentz invariant tensors

7. Change of notation in section “Dirac spinors and Dirac equation” (C becomes h)

8. Continuing work on quantization of the Dirac field

9. Add two appendices (solutions for two of the exercizes).

10. Brief addition to complex scalar field section.

Changes since 3/17/02

1. Minor addition to Hamiltonian formulation of Dirac

2. Substantial changes to quantization of Dirac field

3. Add section finding Dirac Hamiltonian in terms of b, d.

4. Insert missing eq. number in Spin of spinors section.

Changes, 11/13/09: Update some LeTex commands to Lyx standard.
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