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1 From classical particles to quantum fields

First, let’s review the use of the action in classical mechanics. I'll reproduce here a conden-
sation of my notes from classical mechanics. If you’d like a copy of the full version, just ask;
what’s here is more than enough for our purposes.

1.1 Hamiltonian Mechanics

Perhaps the most beautiful formulation of classical mechanics, and the one which ties most
closely to quantum mechanics, is the canonical formulation. In this approach, the position
and velocity velocity variables of Lagrangian mechanics are replaced by the position and
conjugate momentum, p; = g—i. [t turns out that by doing this the coordinates and momenta
are put on an equal footing, giving the equations of motion a much larger symmetry.

To make the change of variables, we use a Legendre transformation. This may be familiar
from thermodynamics, where the internal energy, Gibb’s energy, free energy and enthalpy
are related to one another by making different choices of the independent variables. Thus,

for example, if we begin with

dU = TdS — PdV (1)

where T and P are regarded as functions of S and V, we can set

H=U+VP (2)
and compute
dH = dU + PdV +VdP (3)
= TdS — PdV + PdV + VdP (4)
= TdS+VdP (5)

to achieve a formulation in which 7" and V' are treated as functions of .S and P.
The same technique works here. We have the Lagrangian, L(g;, ¢;) and wish to find a
function H(q;, p;). The differential of L is

N N
oL oL
dL. = —dg; —dg; 6
i_lﬁqu+;8qiq R
N N
= pidg; + sz‘d% (7)

where the second line follows by using the equations of motion and the definition of the
conjugate momentum. Therefore, set

N
H(gi,pi) = Y _pidi — L (8)
=1
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so that
N N
dH = Y dpidi+ ) piddg; — dL (9)
Z]:Vl z]:Vl . .
- Z dpigi + Zpid% - Z}iidqi - Zpid% (10)
z;l z;]_ i=1 i=1
= Z dpiq; — Zpid% (11)
i=1 i=1

Notice that, as it happens, H is of the same form as the energy.
Clearly, H is a function of the momenta. To see that we have really eliminated the
dependence on velocity we may compute directly,

oH 0 [
o = A i — L(i, G 12
a0, 90 (;leq (g Q)> (12)

N
oL
i=1 J
oL
_ o, o 14
pJ aqj ( )
=0 (15)

The equations of motion are already built into the expression above for dH. Since the differ-
ential of H may always be written as

H H
dH = 0 dqZ + Z Ldpi (16)

we can simply equate the two expressions:

N N N N
dH = Z dpig; — Zpidqi = Z Z—qui + Z g—gdpi (17)
i=1 i=1 i1 Cdi i1 YPi

Then, since the differentials dg; and dp; are all independent, we can equate their coefficients,

OH
), — 1
OH
o= — 19
q o, (19)

These are Hamilton’s equations.



1.1.1 Poisson brackets

Suppose we are interested in the time evolution of some function of the coordinates, momenta
and time, f(q;, pi,t). It could be any function — the area of the orbit of a particle, the period
of an oscillating system, or one of the coordinates. The total time derivative of f is

aof dq@ df dp; of
=2 (aq, a " op, dt) o (20)

Using Hamilton’s equations we may write this as

df of oH of 0H of
B Z (8% Op;  Op; aQi) N ot

(21)

Define the Poisson bracket of H and f to be
of 0oH O0f O0H
{H f} Z (aQZ apz api a%) (22>

Then the total time derivative is given by

df of
2 (H e 23
4 (23)
If f has no explicit time dependence, so that aa—{ = 0, then the time derivative is given
completely by the Poisson bracket:
df
—={H 24
= (24)
We generalize the Poisson bracket to two arbitrary functions,
Og 0f  Og Of
25
ok = Z (3% Op;  Op; O (25)

The importance of the Poisson bracket stems from the underlying invariance of Hamil-
tonian dynamics. Just as Newton’s second law holds in any inertial frame, there is a class
of canonical coordinates which preserve the form of Hamilton’s equations. One central re-
sult of Hamiltonian dynamics is that any transformation that preserves certain fundamental
Poisson brackets is canonical, and that such transformations preserve all Poisson brackets
Since the properties we regard as physical cannot depend on our choice of coordinates, this
means that essentially all truly physical properties of a system can be expressed in terms of
Poisson brackets.

In particular, we can write the equations of motion as Poisson bracket relations. Using
the general relation above we have

dgq;

W~ (g (26)



_ i (8% OH _ 0q 6_H) (27)
— \ 0q; Op;  Op; 0q;

7j=1
N
_ Z@jg (28)
=1 9P
o0H
~ Ops (29)
and
dp;
prli {H,pi} (30)
_ = <8p,~8_H_0pi8_H) (31)
— \0q; Op;  Op; 9q;
oH
= _5% (32)

Notice that since ¢;, p; and are all independent, and do not depend explicitly on time, gg? =
J

Opi — ()= % — 9

o We list zjme Stréperties of Poisson brackets. Bracketing with a constant always gives zero
{f.c}=0 (33)
The Poisson bracket is linear
{afi +bf2, g} = a{f1, 9} + b{f2, 9} (34)
and Leibnitz
{fifos 9} = fo{f1, 9} + [i{f2, 9} (35)

These three properties are the defining properties of a derivation, which is the formal gen-
eralization of differentiation. The action of the Poisson bracket with any given function f
on the class of all functions, {f,-} is therefore a derivation.

If we take the time derivative of a bracket, we can easily show

0 0 0
S = (a4 (36)

The bracket is antisymmetric
{f9}=—Hg. 1} (37)
and satisfies the Jacobi identity,

{f A9 h}y +1{g.{h, f}} +{nA{f 93} =0 (38)



for all functions f, g and h. These properties are two of the three defining properties of a Lie
algebra (the third defining property of a Lie algebra is that the set of objects considered,
in this case the space of functions, be a finite dimensional vector space, while the space of
functions is infinite dimensional).

Poisson’s theorem is of considerable importance not only in classical physics, but also
in quantum theory. Suppose f and g are constants of the motion. Then Poisson’s theorem
states that thier Poisson bracket, {f, g}, is also a constant of the motion. To prove the
theorem, we start with f and g constant:

df dg
dt  dt 0 (39)
Then it follows that
df B af B
&= S =0 (40)
dg B dg B
Now consider the bracket:
g gy = ) + 245} (42)
dt 79 - 9 7g at 7g

Using the Jacobi identity on the first term on the right, and the relation for time derivatives
on the second term, we have

Srg) = AH LoD+ o 9) (13)
= (Ao Y — o (D) + (g + 5.5 (44)
= L~ {0 U I+ g+ (. (49
- U (-IN -t (- E a1 (40
=0 (47)

We conclude our discussion of Poisson brackets by using them to characterize canonical
transformations.

1.1.2 Canonical transformations

Before characterizing canonical transformations using Poisson brackets, we display a large
class of canonical transformations. Working with the Hamiltonian formulation of classical
mechanics, we are allowed more transformations of the variables than with the Newtonian,



or even the Lagrangian, formulations. We are now free to redefine our coordinates according
to

¢ = q(zi,pist) (48)
T = (@, pit) (49)

as long as the basic equations still hold. It is straightforward to show that given any function
f = f(x;,q,t) there is a canonical transformation defined by

no= o (50)
- —igi (51)
H = ;(HJF(;—{) (52)
The first equation
pi= etl) (53)

gives ¢; implicitly in terms of the original variables, while the second determines ;. Notice
that once we pick a function ¢; = ¢;(p;, s, t), the form of m; is fixed. The third equation
gives the new Hamiltonian in terms of the old one.

Sometimes it is more convenient to specify the new momentum 7;(p;, ;,t) than the new
coordinates ¢; = ¢;(pi,xi,t). A Legendre transformation accomplishes this. Just replace
f =g — Amq;. Then

df = dg—dmq; — mdg; = pide; — A\mdg; + (NH' — H) dt (54)
dg = pidr;+ Mgdm; + (ANH' — H) dt (55)

and we see that g = g(x;, m;, t). In this case, g satisfies

_ 9y
b = o (56)
1 dg
, 1 dg
H = /\(H+at> (58)

Since canonical transformations can interchange or mix up the roles of x and p, they are
called canonically conjugate. Within Hamilton’s framework, position and momentum lose
their independent meaning except that variables always come in conjugate pairs. Notice that
this is also a property of quantum mechanics.

Finally, we return to our earlier claim that transformations certain fundamental Poisson
brackets preserve Hamilton’s equations and preserve all Poisson brackets. Specifically, a



transformation from one set of phase space coordinates (z;, ;) to another (g;, p;) as canonical
if and only if it preserves the fundamental Poisson brackets

{qm Qj}:wr = {piapj}acﬂ' =0 (59)

{Pi@i}er = — {4, Dj}en = i (60)
Here the subscript on the bracket, {},. means that the partial derivatives defining the bracket
are taken with respect to ¢; and p;. Brackets {f, g},, taken with respect to the new variables
(gi, p;) are identical to those {f, g}.» with respect to (z;, 7;) if and only if the transformation
is canonical. In particular, replacing f by H and g by any of the coordinate functions (z;, 7;),
we see that Hamilton’s equations are preserved by canonical transformations.

1.1.3 Hamilton’s equations from the action

It is possible to write the action in terms of x; and p; and vary these independently to arrive
at Hamilton’s equations of motion. We have

S = / Ldt (61)

We can write this in terms of z; and p; easily:
S = / Ldt (62)
= [ = mya (63)

- [ s — (64)

Since S depends on position and momentum (rather than position and velocity), it is these
we vary. Thus:

5 = & / (prii — H) dt (65)
: . OH OH
) . : oH oOH

L O E

and since dp; and dx; are independent we conclude

. OH
: OH

as required.



1.1.4 Hamilton’s principal function and the Hamilton-Jacobi equation

Properly speaking, the action is a functional, not a function. That is, the action is a function
of curves rather than a function of points in space or phase space. We define Hamilton’s
principal function § in the following way. Pick an initial point of space and an initial time,

and let & (xz(f ), t) be the value of the action evaluated along the actual path that a physical
(f)

system would follow in going from the initial time and place to x;"’ at time ¢ :

St t) = S |physicar= / t L(wi(t), @:(t), t)dt (71)

to

where x;(t) is the solution to the equations of motion and ng ) is the final position at time ¢.

Now consider the variation of the action. Recall that in general,

b /oL oL _.
0S = /to (8_%6% + a—xz&m) dt (72)
oL . 1" ProL  d oL
= |ia],‘2 (533'1‘| . + /t;) (8IZ — aaxz) 51’1dt (73)

Now suppose we hold the action constant at ¢y, and require the equations of motion to hold.
Then we have simply

0S |physical= g—i&%(t) = pi0x; (74)
This means that the change in the function S, when we change x; by dx; is
dS =65 |physica= pidx; (75)
of oS
ox; — i (76)

To find the dependence of S on t, we write S = S | physica= f Ldt as

s
=1L (77)

But we also have
dsS B oS . oS

Equating these and using g—i = p; gives
oS oS
L = —&;,+—
axi:m + 5 (79)
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so that the partial of S with respect to t is

— =L —pii;=—H 81
5 pit (81)

Combining the results for the derivatives of S we may write

oS oS

This is a nontrivial condition on the solution of the classical problem. It means that form
pi;dx; — Hdt must be a total differential, which cannot be true for arbitrary p; and H.

We conclude by stating the crowning theorem of Hamiltonian dynamics: for any Hamil-
tonian dynamical system there exists a canonical transformation to a set of variables on
phase space such that the paths of motion reduce to single points. Clearly, this theorem
shows the power of canonical transformations! The theorem relies on describing solutions to
the Hamilton-Jacobi equation, which we introduce first.

We have the following equations governing Hamilton’s principal function.

oS

3 =" (84)
oS
oS
5 = H (86)

Since the Hamiltonian is a given function of the phase space coordinates and time, H =
H(x;,p;,t), we combine the last two equations:

oS oS
FTie —H(zi,pi,t) = —H(x;, oz,

) (87)
This first order differential equation in s + 1 variables (¢,z;;i = 1,...s) for the principal
function S is the Hamilton-Jacobi equation. Notice that the Hamilton-Jacobi equation has
the same general form as the Schrédinger equation (and is equally difficult to solve!). It is
this similarity that underlies Dirac’s canonical quantization procedure.

It is not difficult to show that once we have a solution to the Hamiltonian-Jacobi equation,
we can immediately solve the entire dynamical problem. Such a solution may be given in
the form

S=gt,z1,...,T5,09,...,05) + A (88)

where the o; are the additional s constants describing the solution. Now consider a canonical
transformation from the variables (x;,p;) using the solution ¢(¢,x;, ;) as the generating

11



function. We treat the a; as the new momenta, and introduce new coordinates ;. Since ¢
depends on the old coordinates x; and the new momenta «;, we have the relations

_ 9y
_ 9y
B = 5o (90)
H = H—I—@ =0 (91)
ot

where the new Hamiltonian vanishes because g satisfies the Hamiltonian-Jacobi equation!.
With H' = 0, Hamilton’s equations in the new canonical coordinates are simply

dozi OH'

= = 2
dt 0p; 0 (92)
dp; OH'
dt O 0 (93)
with solutions
a; = const. (94)
B; = const. (95)

The system remains at the phase space point («;, ;). To find the motion in the original
coordinates as functions of time and the 2s constants of motion, z; = x;(¢; oy, 5;), we can

algebraically invert the s equations (5; = w. The momenta may be found by differ-
entiating the principal function, p; = % This provides a complete solution to the

mechanical problem.
We now apply these results to quantum theory.

1.2 Canonical Quantization

One of the most direct ways to quantize a classical system is the method of canonical quan-
tization introduced by Dirac. The prescription is remarkably simple. Here we go:

A dynamical variable is any function of the phase space coordinates and time, f(g;,p;,t).
Given any two dynamical variables, we can compute their Poisson bracket,

{f, 9} (96)

as described in the previous section. In particular, the time evolution of any dynamical
variable is given by

df af
- ={H, f} + = 97
and for any canonically conjugate pair of variables,
{pi, 4} = 0 (98)

12



To quantize the classical system, we let the canonically conjugate variables become oper-
ators (denoted by a “hat”, 0), let all Poisson brackets be replaced by % times the commutator
of those operators, and let all dynamical variables (including the Hamiltonian) become op-
erators through their dependence on the conjugate variables:

S S (99)
P ;) — (Di, d5) (100)
fiat) — [ =i d5t) (101)

The operators are taken to act linearly on a vector space, and the vectors are called “states.”
This is all often summarized, a bit too succinctly, by saying “replace all Poisson brackets by
commutators and put hats on everything.” This simple set of rules works admirably.

Insert:

One of our rules, eq.(101), however, is inadequate as it stands. If a dynamical variable f
depends on a product of non-commuting variables, (p;,q;), then we must specify the order
in which to write them. Given the conjugate pair, (p;, ¢;), define

, L (. i
a; = E (%’ - ﬁpz)
At 1 (. @,
a; = 2 (%‘ + ﬁpi)

R I N VA g
[an%] = 5|\ 7P ) Qj‘i‘ﬁpj

7 )

A A~

= i, D] — o Di, 4]

Then

2h
= 4
[, a;] = [aj,a}]:o

We then define an ordering of operators by placing all of the a; to the right. This is called
normal ordering, and is denoted by enclosing any expression to be normal ordered between
colons:

A (1

fﬁaCjat = f<_ &T_&,_ &T—&,t>
oint) = 2 (55 @ —a). 5= @ -a)

caat s = ala

The Hamiltonian is one such dynamical variable, so if it was originally polynomial in coor-

dinates and momenta, it will now be polynomial in a, af,

~

0= oY wa v (a gl )
A

13



ey Jm gt NP
E Ay e Qg e Qg
A

where w4 is an arbitrary coefficient and P4 is some permutation of the ordering of the

operators.
Now suppose we have an eigenstate of the Hamiltonian,

Hla) = aa)

Then if we act on |a) with aZT, and then on the resulting state with the normal-ordered

Hamiltonian,

agm) _ i1-igg1egm ot At oA A
Ha’i |O{> - wA a’i1 e a’ikajl a]k: % |Q{>
A
_ T Z1 “Apjie ]mAT N A i1iggrgm [ At ~T | A
= a, aj, -G Gjy - - - G, la) + w'y aj, ---aj_|Gj, ... G, a Z o)
A A

o N . P - T
[ah...a]k,ai = A .G |GG, a0 F |Gy -GG | Gy,

_ A A A S A i
- 5jkiajl RN 5jk—1iaj1 TN [aji : a]k 27 az] a’]k la]k
Oty g+ e Gty g, 0y, + aldy, g L0 a4,
Separate H into a pure a' part and a mixed part. Then any a' acting on the a state will
remain an eigenstate with respect to the purely a' part, and if we define a state annihilated
by a, then the extra terms from the commutator above will all annihilate the vacuum. The

trick is to get all eigenstates expressed in terms of the vacuum. For a purely a' Hamiltonian,
we can act with lowering operators. Then?

End insert

As a simple example, let’s quantize the simple harmonic oscillator. In terms of the canonical
variables (p;, ;) the Hamiltonian is

2

P 2
H=_— k 102
o T (102)
We quantize by making the replacements
pi = Di (104)
{pi,z;} = 0= ﬁ[pwl"ﬂ = 04 (105)

14



l

{l’i,l'j} = 0= E,[i.“i.‘y] =0
v
{pipsy = 0= £[pi,p] =0
R 152 1
H o= 4ok
m
We therefore have
[ﬁlv SACJ] _Zhéw
[i’i,lﬁj] — 0
)
~ P 1 9
= — 4+ -k
2m + 2

as well as the transformed Heisenberg equations of motion:

dz; 1~

dt

and similarly

dp; i
2 — ZH. b,
dt h[ Pl

= —k?ZEj

(119)
(120)

As an exercise, work out these two commutators (and as many other features of the oscillator
as you like) in detail. From these relations we can construct the usual raising and lowering
operators and find a complete set of states on which these operators act. Normally we are
interested in eigenstates of the Hamiltonian, because these have a definite value of the energy.

There is one point requiring caution with Dirac quantization: ordering ambiguity. The
problem arises when the Hamiltonian (or any other dynamical variable of interest) depends in
a more complicated way on position and momentum. The simplest example is a Hamiltonian

containing a term of the form
Hi =ap- -x

15
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For the classical variables, p - x = x - p, but since operators don’t commute we don’t know
whether to write

Hy=ap-% (122)
or )

H =o%-p (123)
or even a linear combination X o

In many circumstances the third of these turns out to be preferable, and certain rules of
thumb exist. At an algebraic level, this problem means that, unlike Poisson brackets, com-
mutators are order-specific. Thus, we can write the Leibnitz rule as

[A, BC| = B[A,C] +[A, BIC (125)

but must remember that

[A,BC] # [A,C)B + [A, BIC (126)
For now it is enough to be aware of the problem.

As noted, the rules above reproduce the Heisenberg formulation, involving commutators.
We can also arrive at the Schrédinger picture by choosing a set of functions as our vector
space of states. Let 1)(x) be an element of this vector space. Then we satisfy the fundamental
commutators,

(i, 25] = —ihdy (127)

(&3, 2] = 0 (128)

[Pi; 5] = 0 (129)

if we represent the operators as

p; = —ih 0 (131)

pi = o

- 0

H = ih—
m@t (132)
f)2

= — X 1

o + V(%) (133)

The representation of z; by x; simply means we replace the operator by the coordinate. Now
consider the time evolution of a state 1. This is given by the action of the Hamiltonian:

N L OY
Hy =ih— 134
b= (134)
and we immediately recognize the Schrédinger equation. Inserting the form of H,
" s ol
_ ) 1
2mV Y+ V(x)y =ih oy (135)
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Notice that v is a field. This means that even in quantum mechanics we are working with a
type of field theory. The difference between this field theory and “quantum field theory” lies
principally in the way the operators are introduced. In quantum mechanics, the dynamical
variables (energy, momentum, etc.) simply become operators, but in quantum field theory it
is the fields themselves that become operators. This change is not really a change at all. In
classical field theory it is perfectly possible to identify the canonically conjugate momentum
density of any given field. Quite generally these dynamical densities of the field can be
written in terms of the field and its derivatives. We therefore can (indeed must) make the
dynamical quantities into operators by making the field into operators.

Other than this difference, the method for quantization is the same. We demand the usual
fundamental canonical commutators for the field (which, as we show in the next section
acts as a coordinate when we take the continuum limit of many small particles) and the
field momentum. It turns out that we can implement these fundamental commutators by
imposing a certain commutator on the field and the momentum density. We will see all of
this in detail before long.

1.3 Continuum mechanics

Kaku deals with a simple example of many particles transforming in the limit to a (2-
dimensional) field. Let’s see if we can be a little more general. Suppose we have a system
of N particles spread throughout space at positions z;, with ¢ = 1, 2, 3, with masses m;. We
want to make the distribution so dense that we can take the limit at the difference between
any two nearby particles |z; —y;| tends to zero. We have a bit of a labeling problem, however.
Let’s suppose that the particles are in equilibrium at lattice positions so that we can relabel
the position vectors as
xX; = X = (je, ke, le)

where the integers 5,k and [ tell us at which lattice point the particle lies, and ¢ is the
adjustable lattice spacing. We want to take the limit as the spacing € goes to zero. At the
same time, we want the masses to tend to zero in such a way that the mass density becomes
a smooth function. The mass density is the mass per unit volume, hence as x;;; becomes a
continuous position variable x;,; — x, we have

IR TI LL27 A m(x)
p(X)—}:lE(l) g3 _lli% g3

We ask that this limit be finite. The kinetic energy of the system is not too hard to get. Let
the particle with equilibrium point x;;; actually be at position

Y (Xjx1) (136)

(presumably not too far from equilibrium, so that [y(x;,,) — X;jx/| is small). As the lattice
spacing goes to zero, y;i goes over into a continuous function of position:

Yy (Xjm) =y (%)

17



This means that we have many coordinates y(xjkl) — so many that in the continuum limit
they will be indezed by the points of our space! This y(x) will become our field, and this is
the sense in which the field is a coordinate.

Now the kinetic energy of the particle at y;z = y(xjkl) is

1 .
T= §mjkzyjzkz

The total kinetic energy is a sum over all jkl. If we take the limit as the cell size goes to
zero, we have

. . (1 .
Tly,y) = Zlﬁ% <§mjk:lyj2'kl>

jk
Lmjw 5.9
= a lg% (5 3 jkl
J
Since we have the limits
lig(l)(}"jkl) = y(x) (137)
. Mk .
iy (729 = & o
limY & = [d (139)
e—0 ™
J

the kinetic energy becomes simply

1(y.9) = / ()30

For the forces between particles, we’ll use a potential depending on all of the particle

positions

> Vi yiwr) = % > Vlyim —yiwr))

pairs JELG KT
and we’ll assume the forces depend only on the distances between pairs of particles. Now,
assume that the forces between particles decrease with distance, so that we can expand V in
a Taylor series. The strongest forces will be between nearest neighbors and so on. If we only
consider nearest neighbors, and make the usual approximations of small oscillations (that
is, we choose the equilibrium potential to be zero, and recognize that VV =0 at the
equilibrium point) the potential is approximately

Vo= Zv<yjkl)
jkl

1 0*V

DN

ki

(ijrl,k,l - ijl)2

Ykl
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(Yj+1,k,l - ijl) (Yj,k+1,l - ijz)

Ykl

%
+> 5

T xy
+...

Let the matrix of second partials be written as:

0*V
al’i@a}i/

= o (Y k) (140)

Yikl

Then the potential reduces to
1 1 1, 1/ . .
V = 5 Z Z 5320'”‘/ (X]kl)g (y;",k’ r—Y ]kl) (y]/ KU yz ]kl)
Jkl nearest neighbors

where the raised index identifies the x,y or z component of y;;;. Then for taking the limit
we have

Xjkl = lli% Yk (141)
oi(x) = lim - é% (ym) (142)
aay—;jl - l—g%é (yé’kl N y;kl)nearest neighbors (143)
so that
V(x) = limV

e—0

o | =

1 1, . »
= —21_1}(1)2 Z 53gUii’(Xjkl)g (y;‘f,k',z'_yzjkl)

Jkl mearest nbrs

1 ay]kl 5ka1
= 3 1% d3
2/0 (x )ax] 0x; g
1

= 5 [t (V) - (V)

il i!
Yjirw v — Ykl

Notice that we have two fields different here. The one we expected is the infinite set of
coordinates, y(x), which now form a vector field. But we also have a tensor field, o;;(x). All
we really know about o;;(x) is that it is symmetric. We can also make it traceless, by adding
and subtracting o;;(x) = $0;;0(x) where o(x) = >, 03i(x). Then 7;;(x) = 0y;(x) — $0;;0(x)
is symmetric and traceless, so

Vi) =5 [ |70 (V) (T + 3010) (V) - (V)] 0
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We could also develop a kinetic energy term for o(x) and &;;(x), but we don’t need that
level of detail here. If we had carried the calculation beyond nearest neighbors, we would
have introduced higher derivatives of y; as well.

For simplicity, let’s assume we can neglect &;;(x). Then we write the Lagrangian as just

L = T-V (144)
- % / (p(x)37* = o(x)Vyi - Vy;) d*x (145)

and the corresponding action

s - / Ldt (146)

= 5 [ (o005 = o)V V) (147)
= 5 [ ()5 = oGV V) e (148)

Several interesting things have happened here. First, notice that the Lagrangian itself is
replaced by a spatial integral. The integrand is called the Lagrangian density,

L==(px)y*—o(x)Vy; - Vi) (149)

N | —

and the action is now an integral over both space and time. The field theory action is
therefore ideally suited to our goal of a relativistic generalization of quantum mechanics.

Notice that we end up with a vector field, y(x), instead of the scalar field that Kaku
derives. Varying the action, we find

0 = 68 (150)
- %5/ (p(x)y* — o(x)Viy - Viy) d'x (151)
- / (p(x)y-0y — o(x)V,y - V,;dy) d'z (152)
= /(—%(MX)S’) 0y + Vi <0<X)vi}’)'(53’) d'z (153)

where in the last step we have thrown out two surface terms from the two integrations by
parts. Since Jy is arbitrary, the field equation (as opposed to “equation of motion”) is a wave
equation:

0= —p(x)§ + Vi(o(x)Viy)
or

1. 1
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where the position-dependent wave velocity is given by v = %. (To see that this is a

wave equation, notice that if o and p are constant, the equation reduces to 0 = —U%j}—I—VQy).

We can easily recover a 3-dimensional version of Kaku’s scalar by making the assumption
that in the limit as ¢ — 0, the angular motions of the particles about their equilibrium points
becomes negligible in comparison to the radial motion. Then we can write

y(x) = ¢n (154)

where n is a unit vector. All of the angular information is in n, so we just ignore any
derivatives of n. Then the time derivative is

y(x) = ¢n+¢n (155)
~ ¢n (156)

and similarly, the spatial derivatives reduce to

~ O;¢n (158)
The action reduces to .
S = §/ (p(x)q's2 — o(x)V w) diz (159)

We find the field equation as above. If ¢ is slowly varying and ¢ is small, we can expand to
second order, so that the field equation is

%q? —V¢-Vo=0 (160)

where v = ,/% 2 %. If the velocity is constant and equal to the speed of light, the

result is the relativistic wave equation:

_10%¢ 9,
ng_?w—vab_o (161)

(Exercise: prove this claim by varying S).

1.4 Canonical quantization of a field theory

Without going into careful detail, we can see some features of the quantization of a field
theory. Let’s consider the action for the relativistic scalar field ¢. Well use Greek indices for

spacetime «, 3,... =0,1,2,3 and Latin for space 7, 7j,... =1,2,3. Let’s write
0o = (00, 0;) (162)
where ; L8
b= (163)



We'll use the metric

—1
Nap = ~1

-1
to raise and lower indices. For example, we can write the d’Alembertian [J as
o = p*° 0,03
= 070, = 0,0
where
0* =105 = (9o, — 0,)
With this notation, the action for the relativistic wave equation is

S = %/<¢Q—V¢-V¢>d4x

= %/aagb(?agb d*x

(164)

(165)
(166)

(167)

(168)

(169)

The relativistic summation convention always involves one raised index and one lowered
index. When summed, repeated indices are both in the same position the sum is Fuclidean.

Thus, 0,0, = (80)2 + V? is the 4-dimensional Euclidean Laplacian.

Now we can illustrate the quantization. We know that the field ¢ is the limit of an
uncountable infinity of independent particle coordinates, so all we need to set up the canonical

commutator is its conjugate momentum. This, as usual, is

oL
¢
10

_ -7 fe% 3
= Qaé/aaqba o d’x

= % (/ 20% d?’:c)
= / ¢ d*x

The canonical momentum is given in terms of the momentum density,

p:

7 = 0%

p = /stx

and we can achieve the canonical commutator
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(172)

(173)

(174)
(175)
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by setting R
[#(2), b(a')] = —ifi*(z — ) (77)

Before continuing with further details of relativistic quantization, we need two things. First,
we prove Noether’s theorem, which relates symmetries to conserved quantities. The rela-
tionship is central to our understanding of field theory. Second, in the next chapter, we
develop group theory both because of the relationship of group symmetries to conservation
laws and because it is from group theory that we learn the types of fields that are important
in physics, including spinors. Then we will return to quantization.

1.5 Special Relativity

Since we have just introduced some relativitistic notation, this seems like a good place to
review special relativity, and especially the reason that the notation is meaningful.

1.5.1 The invariant interval

The first thing to understand clearly is the difference between physical quantities such as the
length of a ruler or the elapsed time on a clock, and the coordinates we use to label locations
in the world. In 3-dim Euclidean geometry, for example, the length of a ruler is given in
terms of coordinate intervals using the Pythagorean theorem. Thus, if the positions of the
two ends of the ruler are (z1,y1, 21) and (x2, ya, 22), the length is

L= \/(Iz — 1)’ + (Yo — )" + (22 — 1) (178)

Observe that the actual values of (1,91, 21) are irrelevant. Sometimes we choose our coor-
dinates cleverly, say, by aligning the z-axis with the ruler and placing one end at the origin
so that the endpoints are at (0,0,0) and (z2,0,0). Then the calculation of L is trivial:

L = \/(552 —2)’ 4+ (2 — )’ + (2 — 21) (179)
. (180)

but it is still important to recognize the difference between the coordinates and the length.

With this concept clear, we next need a set of labels for spacetime. Starting with a
blank page to represent spacetime, we start to construct a set of labels. First, since all
observers agree on the motion of light, let’s agree that (with time flowing roughly upward in
the diagram and space extending left and right) light beams always move at 45 degrees in a
straight line. An inertial observer (whose constant rate of motion has no absolute reality; we
only consider the relative motions of two observers) will move in a straight line at a steeper
angle than 45 degrees — a lesser angle would correspond to motion faster than the speed of
light. For any such inertial observer, we let the time coordinate be the time as measured by a
clock they carry. The ticks of this clock provide a time scale along the straight, angled world
line of the observer. To set spatial coordinates, we use the constancy of the speed of light.
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Suppose our inertial observer send out a pulse of light at 3 minutes before noon, and suppose
the nearby spacetime is dusty enough that bits of that pulse are reflected back continuously.
Then some reflected light will arrive back at the observer at 3 minutes after noon. Since the
trip out and the trip back must have taken the same length of time and occurred with the
light moving at constant velocity, the reflection of the light by the dust particle must have
occurred at noon in our observer’s frame of reference. It must have occurred at a distance of
3 light minutes away. If we take the x direction to be the direction the light was initially sent,
the location of the dust particle has coordinates (noon, 3 light minutes,0,0). In a similar
way, we find the locus of all points with time coordinate ¢ = noon and both y = 0 and z = 0.
These points form our x axis. We find the y and z axes in the same way. It is somewhat
startling to realize when we draw a careful diagram of this construction, that the z axis
seems to make an acute angle with the time axis, as if the time axis has been reflected about
the 45 degree path of a light beam. We quickly notice that this must always be the case if
all observers are to measure the same speed (¢ = 1 in our construction) for light.

This gives us our labels for spacetime events. Any other set of labels would work just as
well. In particular, we are interested in those other sets of coordinates we get by choosing a
different initial world line of an different inertial observer. Suppose we consider two inertial
observers moving with relative velocity v. Using such devices as mirror clocks and other
thought experiments, most elementary treatments of special relativity quickly arrive at the
relationship between such a set of coordinates. If the relative motion is in the x direction, the
transformation between the two frames of reference is the familiar Lorentz transformation:

ro_ _ur
o= (t = ) (181)
¥ = y(x—ot) (182)
y =y (183)
2 = z (184)
where .
y=—— (185)

The next step is the most important: we must find a way to write physically meaningful
quantities. These quantities, like length in Euclidean geometry, must be independent of
the labels, the coordinates, that we put on different points. If we get on the right track by
forming a quadratic expression similar to the Pythagorean theorem, then it doesn’t take long
to arrive at the correct answer. In spacetime, we have a pseudo-Euclidean length interval,
given by

2,2

Ar? =2t — 22

— g = 2P (186)
Computing the same quantity in the primed frame, we find
627—/2 — CQt/2 o x/2 o y/Q o Z/2 (187)

2
= (t - Z—f) — 2 (z —vt)? —y? — 22 (188)
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2 t 2,..2
R (t2 - ) (189)
—~? (9(:2 — 2zvt + v2t2) —y? =22 (190)
2 [ 242 2,2 , v’ 2 2
= |t — vttt — a2t + al (191)
= AP -2 -y 2P (192)
= 7 (193)

so that 7 = 7/. Tau is called the proper time, and is invariant under Lorentz transformations.
It plays the role of L in spacetime geometry, and becomes the defining property of space-
time symmetry: we define Lorentz transformations to be those transformations that leave T
mvariant.

1.5.2 Lorentz transformations

Notice that with this definition, 3-dim rotations are included as Lorentz transformations
because 7 only depends on the Euclidean length 22 + y? + 22; any transformation that leaves
this length invariant also leaves 7 invariant. Lorentz transformations that map the three
spatial directions into one another are called rotations, while Lorentz transformations that
involve time and velocity are called boosts. As we shall see, there are 6 independent Lorentz
transformations: three planes ((zy), (yz), (2x)) of rotation and three planes ((tz), (ty), (tz))
of boosts.
Notice that Lorentz transformations are linear. If we define the 4 x 4 matrix

o —v
A 5= K (194)

and the four coordinates by =% = (ct, x,y, z), then a “boost in the x direction” is given by
()" =A™ g (195)

where we assume a sum on (5. Any object that transforms in this linear, homogeneous way,
where A% ; is any boost or rotation matrix, is called a Lorentz vector or a 4-vector. The
proper time, or more generally, the proper interval, defines the allowed forms of A® 4; we
say that A% ; is the matrix of a Lorentz transformation if and only if it leaves all intervals
invariant.

We can write the interval in terms of a metric. Let

1
—1

—1
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as given in the previous section. Then the interval spanned by a 4-vector xz® is

1 ct
-1 T
-1 y

—1 z

2,2

AP =nagaa’ = (ct x y z) (197)

It is convenient to define two different forms of a vector, called covariant (x,) and contravari-
ant (z). These two forms exist anytime we have a metric. If we let

To = Napt” (198)
then we can write invariant intervals as
A% = ap2” = 2P (199)

where the second expression uses the symmetry of the metric, 1,5 = 734.
The defining property of a Lorentz transformation can now be written in a way that
doesn’t depend on the coordinates. Invariance of the interval requires

Ar? = naﬂxaxﬁ = g ()" (x’)ﬁ (200)

so that for any Lorentz vector x°,

Muwtz” = fas ()" (2" (201)
= 7ag (A% ,3*) (A7 ,2") (202)
= (apA™ A% ) 2tz (203)

Since z# is arbitrary, and 7, is symmetric, this implies
M = Nagh® A7, (204)

From now on, we will take this as the defining property of a Lorentz transformation.
Suppose w® is any set of four quantities that transform just like the coordinates, so that
if we boost or rotate to a new inertial frame, the new components of w® are given by

(W) = A" su” (205)

where A% 5 is the matrix describing the boost or rotation. It follows immediately that wqw®
is invariant under Lorentz transformations. As long as we are careful to use only quantities
that have such simple transformations (i.e., linear and homogeneous) it is easy to construct
Lorentz invariant quantities by “contracting” indices. Anytime we sum one contravariant
vector index with one covariant vector index, we produce an invariant.

It is not hard to derive dynamical variables which are Lorentz vectors. Suppose we have
a path in spacetime (perhaps the path of a particle), specified parametrically

27 (\) (206)
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so as A increases, 7 ()\) gives the coordinates of the particle. We can even let A be the proper
time along the world line of the particle, since this increases monotonically as the particle
moves along. In fact, this is an excellent choice. To compute the parameter, consider an
infinitesimal displacement along the path,

dx” (207)
Then the change in the proper time for that displacement is

dr = (Ropda®da®)"" (208)
, 1 A2
= (dt -3 (da") ) (209)

where the Latin index runs over the spatial coordinates so that dz‘dx® is the usual Euclidean
interval. Now we can integrate the infinitesimal proper time along the path to a general

point at proper time 7 :
T = /dT (210)

— /\/dt2 - 12 (da?)? (211)
. /dt\/l L dxz (212)
- /dt Y

As soon as we know the path x(¢), we can differentiate to find v (), integrate to find 7(¢), and
invert to find ¢(7). This gives z*(7) = (¢(7),x(7)) . Notice the useful relationship between
infinitesimals,

(213)

v

dr = dt (214)

C
or

~ydT = dt (215)
Once we have the path parameterized in terms of proper time, we can find the tangent

to the path simply by differentiating:
da”
dr

Since 7 is Lorentz invariant and the Lorentz transformation matrix is constant (between two
given inertial frames), we have

u’ = (216)

(W) = (217)




= — ¢ 7/ 21
dr (218)
= A u” (219)

«

d (Aﬁ xa)

so the tangent to the path is a Lorentz vector. It is called the 4 -velocity. It is easy to find
the components of the 4-velocity in terms of the usual “3-velocity”, v

dzP
W= % (220)

= (ct,x) (221)

d

()
()

(cv V= dt ) (224)

7 (e (225)

Since u® is a 4-vector, its length must be something that is independent of the frame of
reference of the observer. Let’s compute it to check:

uu, = (e, v) -y (c,—v) (226)
= A2 (02 — V2) (227)
= 02__;2 (228)
= c (229)

Indeed, all observers agree on this value!
Now let m be the (Lorentz invariant!) mass of a particle. We define the 4 -momentum,

p* = mu® (230)

Since u® is a Lorentz vector and m is invariant, p* is a Lorentz vector. Once again, the mag-
nitude is invariant, since p,p® = m2u,u® = m?c?. Notice that if m is not Lorentz invariant,
the 4-momentum is not a 4-vector. The components of p® are called the (relativistic) energy

and the (relativistic) 3-momentum. They are given by the familiar formulas,

p* = (E/c,p) (231)
B —: (232)
= (myc,myv) (233)
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Expanding the « factor when v? << ¢?,

Y = <1—V—2>_1/2 (234)

2
2 4
- 1+%+O(Z—4> (235)
we recover the non-relativistic expressions
E = myd® ~md® + %mv2 (236)
p = myv=amv (237)

We will shortly see other objects with linear, homogeneous transformations under the
Lorentz group. Some have multiple indices,

Tob - (238)
and transform linearly on each index,
(T/)aﬁ...u — A® pAﬁ O’AM VTpO'...l/ (239)

The collection of all such objects is called the set of Lorentz tensors. More specifically, we are
discussing the group of transformations (Exercise: prove that the Lorentz transformations
form a group!) that preserves the matrix diag(—1,1,1,1). This group is name O(3,1),
meaning the pseudo-orthogonal group that preserves the 4-dimensional metric with 3 plus
and 1 minus sign. In general the group of transformations preserving diag(1,...1,—1,...—1)
with p plus signs and ¢ plus signs is named O(p, ¢). From the definition of A% , via

Maw = Nagh® A7, (240)

or, more concisely
n = AnA (241)

we see that (det A)2 = 1. If we restrict to det A = +1, the corresponding group is called
SO(3,1), where the S stands for “special”.

1.5.3 Lorentz invariant tensors

Notice that the defining property of Lorentz transformations, eq.(204) or eq.(240), states the
invariance of the metric 7,3 under Lorentz transformations. This is a very special property
— in general, the components of tensors are shuffled linearly by Lorentz transformations.
The Levi-Civita tensor, defined to be the unique, totally antisymmetric rank four tensor
EaBuv with
£0123 = 1 (242)
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is the only other independent tensor which is Lorentz invariant. To see that €,4,, is invariant,
we first note that it may be used to define determinants. For any matrix M*?, we may write

det M = e, MO MP M2 MY (243)
1

= stgpgsaﬁwM‘”MﬁéM”pM” (244)
1

= & Capw M M7 MY MY (245)

because the required antisymmetrizations are accomplished by the Levi-Civita tensor. An
alternative way to write this is

(det M) er5p0 = EapuM™ M (M* MY, (246)

because the right side is totally antisymmetric on ydpo and if we set vdpo = 0123 we get
our original expression for det M. Since this last expression holds for any matrix M® _, it
holds for the Lorentz transformation matrix, A* _ :

(det A) erspr = Eapu® A7 A" A, (247)

However, since the determinant of a (proper) Lorentz transformation is +1, we have the
invariance of the Levi-Civita tensor,

Exdpo = 5a6uVAa ’YAB §AM pAV o (248)

This also shows that under spatial inversion, which has det A = —1, the Levi-Civita tensor
changes sign. The presence of an odd number of Levi-Civita tensors in any relativistic
expression therefore shows that that expression is odd under parity.

In fact, we need only know this parity argument for a single Levi-Civita tensor, because
any pair of them may always be replaced by four antisymmetrized Kronecker deltas using

e e 500 = 00301, (249)

where the square brackets around the indices indicate antisymmetrization over all 24 per-
mutations of ydpo, with the normalization %. By taking one, two, three or four contractions
we obtain the following identities:

€M e nspe = 603040 (250)
e e ngpe = 2 (0104 — 616Y) (251)
P e sy = 667 (252)
€M e g = 24 (253)

Similar identities hold in every dimension. In n dimensions, the Levi-Civita tensor is of rank
n. For example, the Levi-Civita tensor of Euclidean 3-space is €;;,, where

€123 — 1 (254)
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and all other components follow using the antisymmetry. Along with the metric, g;; =
1
1 , €ijk 1s invariant under SO(3). It is again odd under parity, and satisfies the
1
following identities

e emn = 6,07,08 (255)
e eim = 00% — 576" (256)
sf{keijn = 20F (257)
g = 6 (258)

These identities will be useful in our discussion of the rotation group.

1.5.4 Discrete Lorentz transformations

In addition to rotations and boosts, there are two additional discrete transformations which
preserve 7. Normally these are taken to be parity (P) and time reversal (7). Parity is

defined as spatial inversion,
P (t,x) — (t,—x) (259)

We do not achieve new symmetries by reflecting only two of the spatial coordinates, e.g.,
(t,x,y,z) — (t, —z, —y, z) because this effect is achieved by a rotation by 7 about the z axis.
For the same reason, reflection of a single coordinate is equivalent to reflecting all three. The
effect of the parity on energy and momentum follows easily. Since the 4-momentum is defined
by ,

5 dx

and because m and 7 are Lorentz invariant, we have

P(E/e,p) = P(mM) (261)

dr
d
= mEP(t’X) (262)
= m% (t, —x) (263)
= (E/e,—p) (264)

Time reversal is chosen to mimic Newtonian time reversal. In the Newtonian case, time
reversal is just the replacement t — —t,

Tn : (t,x) = (—t,%) (265)

Acting on non-relativistic energy and momentum this gives

TVE = Tn (%m (2—?)2) = %m (d?:))Q -5 (266)
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dx dx
Tnp = Tam (a) = md(—t) =P (267)

so that Newtonian time reversal is given by

Define: Relativistic time reversal, 7, is the discrete Lorentz transformation which reduces
in the non-relativistic limit to Newtonian time reversal, Ty.

An useful mnemonic for the effect of time reversal is to imagine filming some motion,
then running the movie backward. The backward running film is the time reversed motion.
It follows that:

T : (t,x) = (t,x) (269)
T : (E,p)— (E,—p) (270)

This transformation is a Lorentz transformation, since it preserves the fundamental invari-
ant, 7 = (:Baxa)l/ ® . However, the definition means that the 4-momentum is not a proper
Lorentz vector, since it does not have the same transformation law as the position vector.
Correspondingly, we see that the quantity relativistic norm of x® 4+ Sp® is not invariant:

(% + Bp®) (¥ + Bpa) = 7 + 28 (Bt — p - x) +m” (271)

but
(T2 + BTp*) (Twa + BTps) =72 + 2B (Et +p - x) +m? (272)

In this case we might call the 4-momentum a pseudo-vector or a semi-vector. As with polar
vectors in classical mechanics, this distinction causes little confusion. However, there is an
alternative definition of time reversal which appears better suited to relativistic problems:
chronicity.

We define chronicity as follows.

Define: Chronicity, X, is the reversal of the time component of 4-vectors,

x @ (t,x) = (—t,x) (273)

This is clearly a Lorentz transformation. Now we compute the effect of chronicity on energy
and momentum from their definitions in terms of the coordinates:

X (E/e,p) = % (m%;x)) = m%x (t,x) = md%_ (—t,x) =(—FE/c,p) (274)

With this definition of the symmetry, the energy-momentum is once again a proper 4-vector,
but the non-relativistic limit is exactly opposite to Newtonian time reversal.
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Notice the unexpected role played by the invariance of the proper time. By contrast
with Newtonian time reversal, with the invariance of 7 and the linearity of both £ and p
in 7, only the energy reverses sense. The difference is easy to see in a spacetime diagram,
where the old “run the movie backward” prescription is seen to require some fine tuning. In
spacetime, the “motion” of the particle is replaced by a world line. Under chronicity, this
world line flips into the past light cone. An observer (still moving forward in time in either
the Newtonian or the relativistic version) experiences this flipped world line in reverse order,
so negative energy appears to depart the endpoint and later arrive at the initial point of
the motion. A collision at the endpoint, however, imparts momentum in the same direction
regardless of the time orientation (see fig.(1)).

In discussing the inevitable negative energy states that arise in field and their relation to
antiparticles, chronicity plays a central role.

The subgroup of Lorentz transformations for which the coordinate system remains right
handed is called the proper Lorentz group, and the subgroup of Lorentz transformations
which maintains the orientation of time is called the orthochronous Lorentz group. The
simply connected subgroup which maintains both the direction of time and the handedness
of the spatial coordinates is the proper orthochronous Lorentz group.

1.6 Noether’s Theorem

While now turn to a proof of Noether’s Theorem. This theorem establishes the relationship
between symmetry and conserved quantities. This important relationship means that the
measurable quantities in physics come from symmetries of the action.

By a symmetry we mean any set of transformations of the fields and/or coordinates
that leaves the action invariant. Generally we expect symmetries to form a group. We can
argue this as follows. Certainly, if we can transform a field from one value to another, we can
transform back to the original field, showing that the set of symmetry transformations include
inverses. Also, we can always count the identity transformation, which just leaves the fields
alone, as an element of the set. And surely the set of transformations is closed: transforming
a field twice, we still have a field, so the composition of two symmetry transformations
defines a third symmetry transformation. The only remaining requirement for the set of
transformations to be a group is that the transformations be associative. This is a bit
harder to argue qualitatively, so we won’t. But it turns out to be the case in all of the
symmetries we will consider.

To derive the theorem, suppose we have an action built from some fields ¢, where A is
any collection of labels or indices. In this way, ¢ can represent any number of scalar, vector
and/or other types of fields. Let the transformation

¢t — o' + A(¢", 2) (275)

be a transformation that leaves S invariant. The function A is some specific function of the
coordinates and fields.

33



The simplest form of Noether’s theorem applies when not only .S, but even the Lagrangian
density L is invariant.Then, substituting the transformation into £ the variation is given by

_oc Ay oL A

AL = aqu(w) (@@A)‘SA (0,9") (276)
oL oL A
= —8¢AA + 5o @, d)A)a“A (277)

In order for the transformation to be a symmetry, 6L must vanish identically, regardless of
the values of the fields. The fields do not have to satisfy the field equations. However, we
get Noether’s theorem when we consider what happens when the fields do satisfy the field
equations, because then the action is invariant under arbitrary variations, not just this one.
For such a variation, the Lagrangian density changes by

5L = gqﬁ&qs + <§;A)6(8M¢A) (278)
- aaé‘w + g 09" o
B aquM ( <aﬁzﬁA)5¢) (%) o (250)
- (52 (am)) 9+ 0 (aem™') (281)

We recognize the first term in parentheses as the Euler-Lagrange equations for the fields.

Now consider these results combined. Let the variation be restricted to the symmetry,
that is, d¢* = A4, but let the action be extremal so that the Euler-Lagrange equations hold.
Then

AL =0 (282)
because of the symmetry and
oL oL
= _ = ) = 2
sor = (aiaam) =" e
are the field equations. Substituting both of these into the general variation of £ gives
0 = o0aL (284)
oL oL oL
= (== =0, | == ) 6ad? + 0, | ==——0a0" 285
(5 2 (50m) ) 220" + 2 (gm0 25)
oL
= Oy =" 286
(o™ (250

We identify the Noether current,

N
=

[l

>
b

5(0,0%) (287)



and see that it is conserved,

0,J" =0

Now that we see how it works, we can generalize the theorem to cases when the Lagrangian
density is not invariant under the symmetry transformation. The action is invariant and
therefore has a symmetry if the Lagrangian density varies to give a total divergence:

AL = 0,K" (288)

for any K* built from the fields and coordinates. Then by the same reasoning used above
we have

oL
= = A4 2

oL (zt(a(a¢¢A) ) (289)

so that or

T A
oK oy (8(8u¢A)A ) (290)
We therefore define or

Jh=_—"Z A4 K# 291
52,07 (291)

and once again the current J* is conserved:

0, J" =0

1.6.1 Example 1: Translation invariance

Consider an action of the form
S = / L(¢?, 00N d x (292)

Since the integral is over all of spacetime, the value of the integral cannot depend on a
translation of the coordinates, either in time or space. If a” is an arbitrary constant 4-vector
then the replacement

ot — a4 a (293)

leaves S unchanged. The change in the fields for infinitesimal a* is

A A A 6¢A «a
oM (z) = ¢ (x +a) = ¢"(z) + é)xaa (294)
so that da¢? = %aa. Then
N (au(bA) = 0Oy (5A¢A) (295)
ot
= 0u (a—xaa > (296)
82 (bA

drrdze " (297)



so that the variation of the Lagrangian density is

or or
0L = ¢A5A¢> 9000 70 A (9u0™) (298)
Lot oL P,
= i 0" T 50,07 dwroze" (299)
_ %aa (300)
a «
- 2 ear) (301)

As required, this is a divergence. When the action is extremal, S = 0, the Euler-Lagrange
field equations are satisfied so for any variation

oo = (a2 (Ggan)) o 0 (Gan™) o
= % (5e0™") 30
Specifically, the infinitesimal translation gives
%(zaa) = AL =0, (%5@1“) (304)
0 = a, <%%aa—£a“> (305)

Notice that there is a current for each of the four (3 space and 1 time) translations. For each
different translation we get a distinct conservet current. Since a* is constant, we can extract
it from the derivative:

oL 8¢A )
= a0, — Lok 306
( 9 (9u9?) Oz (306)
and since it is arbitrary we can drop it altogether:
oL aqu
0=20 — LoF 307
(smemae %) 07
We now have four independent currents
A
e = 9L 09" s (308)

“ o o( M¢A) Oz~ “

We can raise an index with the metric,

oL 9o
uB  _—  Bagu _  Ba _ Basp
T n Tt =n 8(3#¢A) pe Ln"*ok (309)
oL
- 3059 A)a%f‘—ﬁn“ﬁ (310)
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and because the metric is constant we still have
9, T =0 (311)

The 274 rank tensor (matrix) 7% is called the stress-energy tensor. Although our expression
here is not necessarily symmetric (7#% # TP* in general), there is enough freedom in its
definition that it can always be made symmetric. It is the symmetric version of the stress-
energy tensor that provides the source for curvature in general relativity. Therefore, even
though many solutions in general relativity use macroscopic versions of 7#% in which the
elements correspond to energy density, pressures and stresses, the field theory approach
shows that it is really built from fundamental particle fields. Of course, a statistical average
of the fundamental fields gives the pressures and stresses in the macroscopic form, but in
a truly fundamental theory 7% is built from fields. For example, researchers studying the
early universe will drive the cosmological model by introducing a scalar field, the inflaton,
to produce an inflationary phase to the overall cosmological expansion.

We construct conserved charges by integrating the time component of each current over
a spatial 3-volume X

PP = / TP (312)
%
Then
dp? d
— = — [ T 313
dt dt /E v (313)
)
= [ =T%& 314
| G (314)
= — / T Py (315)
%
= —/ Tn;d*x (316)
06X

where n; is normal to the 2-dimensional boundary, 6%, of the 3-volume, Y. Therefore, the
time rate of change of P? is given by the rate of flow of 7% across the boundary.

What are these charges?” They are the conserved energy and momentum of the field. It is
interesting that conservation of momentum arises from invariance of the action under spatial
translations while conservation of energy arises from invariance under displacement in time.

1.6.2 Example 2: Lorentz invariance

We are only interested in relativistic field theories, and therefore demand that the actions
we consider must be Lorentz invariant. This requirement also leads to conserved charges.
First, we find the form of an infinitesimal Lorentz transformation. The defining property
is
Ny = TapA® MAB v (317)
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We let A%, be infinitesimally close to the identity

A% =0" 4", (318)

and expand to first order in epsilon:
Nw = na,BAa uAﬂ v (319)
= Tag (6% ,+e% ) (67 ,+€7 ) (320)
= Nap ((50‘ M(Sﬁ , 0 MS’B , +&% M(SB , e ME’B l,) (321)
X N+ 77#58’8 v+ Nawe® (322)

The 7, terms cancel, leaving

0 = nuse’ |, + naws® (323)
= €uw t+Eu (324)

which simply says that ¢,, is antisymmetric. Since an antisymmetric 4 x 4 matrix has
6 independent components, we see directly the six independent degrees of freedom of the
Lorentz transformations.

Now we consider the Noether currents. This time, the infinitesimal transformation of the
fields depends not only on the change in the coordinates,

14

o’ = & ¥ (326)

v

2 = AP av=af P a” (325)

but also on what type of field we consider. For example, scalar, contravariant vector fields
and covariant vector fields change as

o) — o(Ax) =o(z) + aaja oz (327)
v (x) = A* uH(Az) = (6% ,+e* ) (v“(:lr) + gz; 5:1:5) (328)
va(z) = v (Az) (AT 0= (vu(x) + %51’5> (o* ,—¢€" ) (329)

Other types of fields have other transformation properties. Notice the use of the inverse
Lorentz transformation for covariant vectors. This follows from the Lorentz invariance of
Vv, The infinitesimal expression ", —e , is easily shown to be the inverse to 0% , +&®

“w
to first order in epsilon.
For simplicity, we’ll consider only the scalar field. Then
99
0 = —ox”

AD e 0% (330)

= 0u0 0x° (331)

= Oq0 e 2" (332)
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The variation of the derivative term da (0,¢) is a bit trickier. Since 0,,¢ is a covariant vector,
we need to include a factor A= on the derivative. However, in the variation of the Lagrange
density, the A=! is always cancelled by a factor A on the corresponding contravariant vector
(i.e., since L is Lorentz invariant, every covariant vector is summed with a contravariant
one) so we need only consider

0a (0u®) = 0Oa(da0) (333)
= 0, (059 ” ,2¥) (334)
= 0,050 " 1"+ 03¢ ° (335)

“w
Where we use d,2” = 0y, in the last step.

The change in the Lagrangian density under the infinitesimal Noether symmetry is there-
fore

oAL = %5@ + %Q (8,0)
- %
varepsilon® ,x" + %fh (950 &° ,2")
_ 2—28@
varepsilon® ,x" + % (0,050) € a" + %8[% €6y
VR (gﬁA)a% o
oL
= 0, (Le* a")— (L™ )+ W
But
e =n"ep, =0 (343)
since the metric is symmetric and epsilon is antisymmetric. So we have
AL = 0,(L)+ % ¢ g, (344)
= 0, (L™ a¥)+ % ¢ g, (345)
= 0, (L™ a¥)+ % <%8a¢ —~ %aw) Eap (346)

Notice how we use the antisymmetry of the infinitesimal Lorentz transformation. In a little
more detail, here’s how it works:

oL o B L N 1 B
0@,00° 5 = 5B 0 g o o) (347)
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1/ oL . oL ..

= 2o gmaen) 09
1/ oL . oL

- 3 (e smen o) 09
1/ oL oL

_ 5(—3 50"~ 500 <8Q¢A)8“¢>5”’” (350)

In the first step we use the antisymmetry of epsilon, while in the last step we simply rename
the indices in the second term.
Now, returning to the variation, we have already found that

oL
THB _ o — LrHb 351
5 (0u0) ¢—Ln (351)
SO or
¢ =1" + LyHP 352
GICRIN ! )
and therefore
oL oL
= 98— oMl = THP L LprB _TBr _ ppbu 353
50,0 ° " 8 0,0) ° " " (959
= Tw TPk (354)
Thus, the symmetry variation becomes:
1 oL oL
— — " H“ — M
oaL 8a(£)+2(8(au¢A)3¢ 8(8Q¢A)a gzﬁ)ew (355)
= 0, (L™ 2")+ % (TH —T*) g, (356)

This needs to be a divergence, but the second term doesn’t look like one. There’s no prob-
lem if the stress-energy tensor is symmetric because then the contraction T*¢,, vanishes
identically. For the scalar field case, T is symmetric. Let’s work out this case first, then
come back to the asymmetric case.

1.6.3 Symmetric stress-energy tensor (Scalar Field):

With T = T+ we have simply
AL = 0y (L) (357)

Then, requiring a general variation of the action to vanish so that the field equations hold
we have as before,

5L =0 (%w) (358)
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Restricting to the symmetry variation this becomes

SAL = 0.(L) =0, ( (a.c ¢>5A¢> (359)
0 = 0, ( (a'cd))ém Le” V:z:) (360)
= 0Oa ( (af¢)8g¢€ L — Le Vx”) (361)

_ A oL o LAY
= & 0, ( I (b)aﬁgb — L£45 ) (362)
= &7 L0, (T 42) (363)
= 5,00 (T ") (364)

Because epsilon is antisymmetric, only the divergence of the antisymmetric part of 7% z
vanishes. Therefore, we define

MY = T8 g — T oF (365)

and it is conserved:

O M =0 (366)

Notice that if the stress-energy tensor is not symmetric, M“? is not conserved, because then
we have

oM = 0, (T 2" =T 2P) (367)
= 0,1%F ¥ — 0,T™ 2 — T*P0, x¥ +T*0, 2" (368)
= TP 4+ TP (369)
= TP T (370)

Therefore, we return to consider what to do when T is asymmetric.

1.6.4 Asymmetric stress-energy vector field

We will consider the case of a vector field, which may have an antisymmetric stress-energy
tensor. For example, let’s figure out the stress-energy tensor for the simplest actoin involving
a complex vector field:

S = / d*z (0°0"04vp) (371)
where 9° is the complex conjugate of v”. The stress-energy tensor is then

oL

™ = — = 9Pt — LpP 372
oL

_ OPv® — LpHP 373

F(gem e (373)

= O'0,0%v" — Lp? (374)
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The first term can be antisymmetric:
T — Ty = 0,0,0,0% — 0,0,0,0% # 0 (375)

It is easy to write down other asymmetric examples.

To handle this case, we will compute the variations in a slightly different way. For vectors
(and other rank tensors) there are two ways to look at Lorentz transformations. First, like
the scalar field, we have the coordinate dependence,

a® — A* gaf (376)

which induces a change in v*(z). Second, since v* is a Lorentz vector, the vector itself

transforms according to
v* = A p° (377)

This transformation law is the definition of a Lorentz vector; similarly, Lorentz tensors are
objects with any number of indices, which transform linearly and homogeneously under
Lorentz transformations:

TP — A AT T (378)

Since covariant tensors (with lowered indices) transform by (A~")" it is easy to build
actions which are invariant under this second form of transformation simply by making sure
that every raised index is contracted with a lowered index, and vice versa. For example, we
have

vi, — A Bvﬁvu (A" N (379)
= (A" A 0l (380)
= & g, (381)
= vl (382)

and the contraction is invariant.

The separate invariance of the theory under transformations of the fields and transfor-
mations of the coordinates makes it possible to consider the two types of transformation
independently. This simplifies the calculations.

First, consider the transformation of a vector field without a change of coordinates:

vi(x) — A® Bvﬁ(x) =% 4 51/8 (383)
v* = e pf (384)

Then for derivatives we have

9, (6v®) =& ,9,0° + (9g0%) &P 385
H BYn B

I
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The second term arises because the derivative of v® is a second rank tensor, and each index
of a tensor must be transformed. Now the variation of v® under a Lorentz transformation is

oL oL

AL = %5AU +8(8—Hva)5A (@m ) (386)
oc , . oL o o
= 34 (e 50%) + 30,07 (% 3007 + (950%) 7 ) (387)
oL oL oL
—= _— «a /8 T s« B « ﬂ
O ( gY ) + (9((%1}0‘)6 Baﬂv + a(auva) (Opv*) e w (388)

Because we are only considering the active transformation of the fields and not of the coor-
dinates, the Lagrangian density is invariant. So we can simply set 6oL =0 :

0 = 0aL (389)
oL oL oL
_ Y= (o B 9P T (90 P 390
O (5 /BU )+ 8(8uv°‘)€ B8 nv + a(aﬂva) ( BY )5 n ( )
Now we assume a general variation, so we can use the field equations,
oL oL
O=—-0,| == 391
o H (8(@1}‘1)) (391)
We also use the expression for the stress-energy tensor.
oL
™, = dov? — L6 392
Then, combining these with the vanishing symmetry variation,
oL oL oL
— _— Q B - o ﬂ o 6
0 5oa &7 507) + 5 ) 50" + 5 D) (Opv*)” (393)
oL oL
— a B a B B
= aﬂ <8(8—M) (8 61} ) + W&T 58#U + (T'u 8 + Eég) 9 " (394)
oL oL
= « f “ G007 + T 4P 395
O <8(8ﬂva)) (e 4v”) + (9(8#1)0‘)6 50,07 + e’ (395)
oL o
= <a<a—mvﬁ) e 5+ T"ep, (396)
oL 1
= O =07 )e* 5+ (T — TP 397
“(8(@@‘1)”)8 6+2( ) €su (397)
where we used 5’555 u= ef 5 = 0. Notice the explicit appearance of the antisymmetric part
of the stress-energy tensor. Extract the arbitrary matrix eg,, :
1 oL oL
0==(0,( =0 ) =0, =0 ) — (T — TP a 398
2 (% () - (ay™) - RS

43



Since the expression contracted with e,4 is now explicitly antisymmetric we can drop the
Eaf-

0=20, (a(g—fva)vﬁ) — 9y (a(g—fvﬁ)”a) — (T*% — 1) (399)

This is our first result.
Eq.(399) gives us the tool we need to construct a new, symmetric form of the stress
energy tensor. To see why, suppose we have any tensor ¥#*% which is antisymmetric on the

first two indices,
prel = —yenb (400)

Then its divergence 9,%"*" is automatically divergence free:
000, 21F = 0 (401)

This follows because the mixed partials are symmetric on pa while sigma is antisymmetric.
Therefore,
0% =T 4 9,xr*k (402)

is conserved as long as 7%% is. In addition, ©*° will be symmetric provided

0 = 0¥ —-oe (403)
= T°F 4 g,xref b _ g, ymbe (404)

Let’s find what 2% must be. If we define
oL 5

Al — mv (405)
then the condition of Lorentz symmetry, eq.(399), may be written more compactly:
TP — P> = g \mef — g e (406)
Therefore, we have two conditions on L% :
O xHbe — gyl = b _ b (407)
= 9P — g N (408)
and
Sl = _3ionp (409)

It is sufficient (but not necessary) to drop the divergence on each term of the first equation.
Then

o _ s ypoB _ \pfo (410)

yHeb = _youb (411)
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This is not hard to sort out if you know the trick. Write the first equation three times,
permuting the indices each time:

sbe _ ypoB . \palB _ \ubo (412)
yBap _ yBua _ \Bra _ \fau (413)
youB _ yaBp  _ yaBp _ yauB (414)

Each of these is a correct equation, so we can combine them freely. The trick is to add the
first two equations and subtract the third. For the left side this gives

LHS = xpbo _ypob 4 yyfon _ syfuer _ sroub 4 yrebu (415)
- (Zuﬁa _ Zﬁua) _ (Zuaﬁ + Zauﬁ) + (Eb’au + Zaﬁu) (416)
= oymbe (417)

Where we use our second condition, the antisymmetry of sigma on the first two indices.
Since the right hand side is just

RHS = \oror _ \Pow  \palB _ \pbor _ Nl 4 youb (418)
we have solved for the required form of sigma:

swbor _ ()\B,LLO! _ \Bam 4 \paB _ \pBa _ yaBu /\Wﬁ) (419)

N —

Therefore, the symmetric form of the stress energy is (interchanging « and 5 to get the right
form):

@aﬂ _ Taﬁ + auzuaﬁ (420)
1
— TRy 5% (Aauﬁ _ \BH L \mBa _ \paB _ \Bop )\BW) (421)
where ar
/\,u,ozﬁ — B 422
9 (Ova) 422)

This object is called the Belinfante tensor (see Weinberg, vol I, p. 316; ref to Belinfante,
Physica 6, 887 (1939)).

If we substitute this expression for 7% in the equation for Lorentz invariance we now
get zero automatically:

NP — QNP — (T —TP) = GAT — O NP 4 §,51F — 9, 5P (423)
= 0 (424)
What has happened to the conservation law? We replaced 7%? by ©*% and we still have

0,0%% = 0 for translation invariance, but what about Lorentz invariance? The answer lies in
the remaining part of the calculation, namely, the coordinate transformations. We considered
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only the invariance of the Lagrangian density under Lorentz transformations of the fields,
but not under transformations of the coordinates. We can demand both. Therefore, we now
consider what happens when we let

oxP =& av (425)

as we did for the scalar field.
The symmetry variation of the Lagrangian for this case is simply

oL oL
OAL = =—-0px® = =—&*
A dxe 2 oz P
Now, quite generally, Lagrangian densities depend directly on the coordinates only in the
volume density, and it is not hard to show that the volume density is Lorentz invariant. Any
other dependence is through the fields using the chain rule

oL ov® oL
SAL ~ gty G 42
AL 900 Bx”(sx + a(aﬁva)auﬁgv dx (426)
oL oL
= —0v* + ———0 (9gv” 427
R YT ey (050 (427)
and these have already been set to zero. Therefore, %xf = 0 and the variation gives zero,
OAL = 0. Therefore
(0uL) " 4a” =0 (428)
We expand this expression and use the field equations
0 = aucgﬂ Bxﬂ (429)
oL oL
— hdad o ol i v 4
(8@“8“U + EYER (aﬁva)ﬁ,ﬂgv ) et x (430)
oL oL
— « «@ o v 431
(85 (—8 (852)“)) 0,0 + (000 (851)‘1)8“86” ) et x (431)

- (o))

Next, let’s use the definition of the symmetric stress-energy tensor,

Q% = TP 4 g, yHeb (433)
oL
— B8, v _ af E/mﬁ 434
a@avy)a v — Ly + 0, (434)
o oL
B,V _ ob af poB
EIGRTD] (aavv)a v =0+ Ln 0% (435)
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to replace this term. Substituting, we find

0 = (aa (%8%”)) £p,T” (436)
= (0 (6% + L — 0,57°%)) 2,07 (437)
(8a@°‘5 + 0oL — 004%2“0‘5) €gpT” (438)
(020" + 0,Ln"") £5,2” (439)
= 0,0%cs,2" + 0, (Le p:cp) (440)
But the second term vanishes:
0z
Oa (L ,37) = (0aL)e™ sa’ + L& e (441)
= L ;=0 (442)
so we are left with
0 = (0.0%) s
O (625,27 — (0% 5,00")
= 0O, (@aﬂagpxp) — 0%%¢g,
Now, since ©*° is symmetric by construction, the second term is zero, leaving
0 = 0, (0%eg,a")
= €8p0q (@aﬁa:p)
= %55,,8& (0% 2P — 9 z")
and therefore arrive at our conservation law:
MePP = @gr — @PyP (443)
DM — (444)
Finally, consider the possible conserved currents. If we integrate M°*# as usual, we get
JP = / MOP @3y (445)
= / (0%2f —0%2*) iz (446)

There are six independent components here, since M%? and therefore J*?, is antisymmetric
under interchange of a and . These correspond to the three rotations and three boosts of
the Lorentz transformations. The rotations are the spatial components, (i,7 = 1,2, 3),

Ji = / M I Py (447)
= /(G)Oi:cj - @ij") d*x (448)
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Notice that these do not depend explicitly on the time coordinate and that the components
©% of the stress-energy generate momentum. The expression is much like the usual r x p
form of angular momentum. The remaining independent charges are

JU = / M"'d (449)
= / (02" — 0”2") &’z (450)

These depend on energy and time, and generate boosts.
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2 Group theory

Nearly all of the central symmetries of modern physics are group symmetries, for simple
a reason. If we imagine a transformation of our fields or coordinates, we can look at lin-
ear versions of those transformations. Such linear transformations may be represented by
matrices, and therefore (as we shall see) even finite transformations may be given a matrix
representation. But matrix multiplication has an important property: associativity. We get
a group if we couple this property with three further simple observations: (1) we expect two
transformations to combine in such a way as to give another allowed transformation, (2)
the identity may always be regarded as a null transformation, and (3) any transformation
that we can do we can also undo. These four properties (associativity, closure, identity, and
inverses) are the defining properties of a group.

Define: A group is a pair G = {5, o} where S is a set and o is an operation mapping pairs of
elements in S to elements in S (i.e., o : S xS — S. This implies closure) and satisfying
the following conditions:

1. Existence of an identity: 4 e € S such that eoa =aoe=a, Va € S.
2. Existence of inverses: Va € S,3da™! € Ssuchthat aca™ =aloa=ec.
3. Associativity: V a,b,c € S, a0 (boc)=(aob)oc=aoboc

We consider several examples of groups.

1. The simplest group is the familiar boolean one with two elements S = {0,1} where
the operation o is addition modulo two. Then the “multiplication” table is simply

— O O

01
01 (451)
10

The element 0 is the identity, and each element is its own inverse. This is, in fact, the
only two element group, for suppose we pick any set with two elements, S = {a, b}.
The multiplication table is of the form

a (452)
b

One of these must be the identity; without loss of generality we choose a = e. Then

b
b (453)

QO
Qe 2
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Finally, since b must have an inverse, and its inverse cannot be a, we must fill in the
final spot with the identity, thereby making b its own inverse:

(454)

SN Q O
Q2
L o

Comparing to the boolean table, we see that a simple renaming, a — 0,b — 1 repro-
duces the boolean group. Such a one-to-one mapping between groups that preserves
the group product is called an isomorphism.

. Let G = {Z,+}, the integers under addition. For all integers a, b, c we have a + b € R
(closure); 0+a = a+0 = a (identity); a+ (—a) = 0 (inverse); a+ (b +¢) = (a + b) + ¢
(associativity). Therefore, G is a group. The integers also form a group under addition
mod p, where p is any integer (Recall that a = bmod p if there exists an integer n such
that a = b+ np).

. Let G = {R,+}, the real numbers under addition. For all real numbers a,b,c we
have a +b € R (closure); 0 +a = a4+ 0 = a (identity); a + (—a) = 0 (inverse);
a+ (b+c) = (a+b) + c (associativity). Therefore, G is a group. Notice that the
rationals, (), do not form a group under addition because they do not close under
addition:

m™=3+.14 .04+ .001 + .0005 + .00009 + ...

Exercise: Find all groups (up to isomorphism) with three elements. Find all groups (up to

isomorphism) with four elements.

Of course, the integers form a much nicer object than a group. The form a complete
Archimedean field. But for our purposes, they form one of the easiest examples of yet
another object: a Lie group.

Define: A Lie group is a group which is also a manifold. Essentially, this means that a Lie

group is a group in which the elements can be labeled by a finite set of continuous
labels. Qualitatively, a manifold is a space that is smooth enough that if we look at
any sufficiently small region, it looks just like a small region of R"™; the dimension n is
fixed over the entire manifold. We will not go into the details of manifolds here, but
instead will look at enough examples to get across the general idea.

The real numbers form a Lie group because each element of R provides its own label! Since
only one label is required, R is a 1-dimensional Lie group. The way to think of R as a
manifold is to picture the real line. Some examples:

1. The vector space R"™ under vector addition is an n-dim Lie group, since each element

of the group may be labeled by n real numbers.
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2. Let’s move to something more interesting. The set of non-degenerate linear transfor-
mations of a real, n-dimensional vector space form a Lie group. This one is important
enough to have its own name: G L(n; R), or more simply, GL(n) where the field (usually
R or C) is unambiguous. The G'L stands for General Linear. The transformations may
be represented by nxn matrices with nonzero determinant. Since for any A € GL(n; R)
we have det A # 0, the matrix A is invertible. The identity is the identity matrix, and
it is not too hard to prove that matrix multiplication is always associative. Since each
A can be written in terms of n? real numbers, GL(n) has dimension n?. GL(n) is an
example of a Lie group with more than one connected component. We can imagine
starting with the identity element and smoothly varying the parameters that define
the group elements, thereby sweeping out curves in the space of all group elements.
If such continuous variation can take us to every group element, we say the group is
connected. If there remain elements that cannot be connected to the identity by such
a continuous variation (actually a curve in the group manifold), then the group has
more than one component. GL(n) is of this form because as we vary the parameters
to move from element to element of the group, the determinant of those elements also
varies smoothly. But since the determinant of the identity is 1 and no element can
have determinant zero, we can never get to an element that has negative determinant.
The elements of GL(n) with negative determinant are related to those of positive de-
terminant by a discrete transformation: if we pick any element of GL(n) with negative
determinant, and multiply it by each element of GL(n) with positive determinant, we
get a new element of negative determinant. This shows that the two components of
GL(n) are in 1 to 1 correspondence. In odd dimensions, a suitable 1 to 1 mapping is
given by —1, which is called the parity transformation.

3. We will be concerned with Lie groups that have linear representations. This means
that each group element may be written as a matrix and the group multiplication is
correctly given by the usual form of matrix multiplication. Since GL(n) is the set of
all linear, invertible transformations in n-dimensions, all Lie groups with linear repre-
sentations must be subgroups of GL(n). Linear representations may be characterized
by the vector space that the transformations act on. This vector space is also called
a representation of the group. We now look at two principled ways of constructing
such subgroups. The simplest subgroup of GL(n) removes the second component to
give a connected Lie group. In fact, it is useful to factor out the determinant en-
tirely, because the operation of multiplying by a constant commutes with every other
transformation of the group. In this way, we arrive at a simple group, one in which
each transformation has nontrivial effect on some other transformations. For a general
matrix A € GL(n) with positive determinant, let

A= (det A)r A (455)

Then det A = 1. Since o R )
det (AB) — det Adet B =1 (456)
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the set of all A closes under matrix multiplication. We also have det Al = 1, and
det 1 = 1, so the set of all A forms a Lie group. This group is called the Special Linear
group, SL(n).

Frequently, the most useful way to characterize a group is by a set of objects that group trans-
formations leave invariant. In this way, we produce the orthogonal, unitary and symplectic
groups:

Theorem: Consider the subset of GL(n; R) that leaves a fixed matrix M invariant under a
similarity transformation:

H = {A|A € GL(n), AMA" = M} (457)
Then H is also a Lie group.

Proof: First, H is closed, since if

AMAY = M (458)
BMB' = M (459)

then the product AB is also in H because
(AB) M(AB)" = (AB)M(B'A") (460)
= A(BMB') A (461)
AMA! (462)
M (463)

The identity is present because

IMI'"=M (464)

and if A leaves M invariant then so does A~!. To see this, notice that (A" = (471)
because the transpose of

(A)'A=1 (465)
. A (A =1 (466)

Since it is easy to show (exercise!) that inverses are unique, this shows that ((A)_l)t must
be the inverse of A’. Using this, we start with

AMA! = M (467)

and multiply on the left by A~! and on the right by (At)_l :

1

ATVAMAY (AN)T =AM (AN (468)
M = A7'M (A7 (469)
M = A'M (A7) (470)
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The last line is the statement that A~! leaves M invariant, and is therefore in H. Finally,
we still have the associative matrix product, so H is a group, concluding our proof.

Now, fix a (nondegenerate) matrix M and consider the group that leaves M invariant.
Suppose M is asymmetrical, so it has both symmetric and antisymmetric parts:

1 1
M = 5 (M+ M)+ (M- M) (471)
= M,+ M, (472)
Then, for any A in H,
AMA' = M (473)
implies
A (M, + M,) A" = (M, + M,) (474)
The transpose of this equation must also hold,
AML+ M)A = (M!+ M) (475)
A(M,— M) A" = (M, — M,) (476)

so adding and subtracting eqs.(474) and (476) gives two independent constraints on A :

AMAY = M, (477)
AM,A' = M, (478)

Therefore, the largest subgroups Hg and H, of G that we can form in this way are found by
demanding that M be either symmetric or antisymmetric.

If M is symmetric, then we can always choose a basis for the vector space on which the
transformations act such that M is diagonal; indeed we can go further, for rescaling the basis
we can make every diagonal element into +1 or —1. Therefore, any symmetric M may be

put in the form
1

(479)

—1

where there are p terms +1 and ¢ terms —1. We can use M as a pseudo-metric; in components,

for any vector v*,
P p+q

(v,v) = Mv'v! = Z (U")2 - Z (vi)Q (480)

i=1 i=p+1

Notice that this includes the O(3,1) Lorentz metric of the previous section, as well as the
O(3) case of Euclidean 3-space. In general, the subgroup of GL(n) leaving M, , invariant is
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termed O(p, q), the pseudo-orthogonal group in n = p + ¢ dimensions. The signature of M
iss=p—q.

Now suppose M is antisymmetric. This case arises in classical Hamiltonian dynamics,
where we have canonically conjugate variables satisfying fundamental Poisson bracket rela-
tions.

{% Qj}m = {pi;pj}mr =0 (481)
{Pi@jter = — {4, Dj}en = 04 (482)
If we define a single set of coordinates including both p; and g;,
£ =(d'p)) (483)
whereifi, 7 =1,2,...,nthena =1,2,...,2n, then the fundamental brackets may be written
in terms of an antisymmetric matrix Q% as
{¢n.¢'r=0a" (484)
where g
QW — ( 59]. _g” ) — e (485)

Since canonical transformations are precisely the ones that preserve the fundamental brack-
ets, we can define a group of canonical transformations which preserve Q%. In general, the
subgroup of GL(n) preserving an antisymmetric matrix is called the symplectic group. We
have a similar result here as for the (pseudo-) orthogonal groups — we can always choose a
basis for the vector space that puts the invariant matrix Q% in the form given in eq.(485).
From the form of eq.(485) we suspect, correctly, that the symplectic group is always even
dimensional (the determinant of an antisymmetric matrix in odd dimensions is always zero,
so such an invariant cannot be non-degenerate). The notation for the symplectic groups is
therefore Sp(2n).

For either the orthogonal or symplectic groups, we can consider the unit determinant
subgroups. Especially important are the resulting Special Orthogonal groups, SO(p, q).

We give one particular example that will be useful to illustrate Lie algebras in the next
section. The very simplest case of an orthogonal group is O(2), leaving

M:((l) ?) (436)

invariant. Equivalently, O(2) leaves the Euclidean norm
(x,x) = Myz'e) = 2* +¢° (487)

invariant. The form of O(2) transformations is the familiar set of rotation matrices,

A(0) = ( cosf) —sinf ) (488)

sinf cos®
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and we see that every group element is labeled by a continuous parameter 6 lying in the
range 0 € [0,2m). The group manifold is the set of all of the group elements regarded as
a geometric object. From the range of # we see that there is one group element for every
point on a circle — the group manifold of O(2) is the circle. Note the inverse of A(#) is just
A(—0) and the identity is A(0). Note that all of the transformations of O(2) already have
unit determinant, so that SO(2) and O(2) are isomorphic.

2.1 Lie algebras

If we want to work with more complicated Lie groups, working directly with the transfor-
mation matrices becomes prohibitively difficult. Instead, most of the information we need
to know about the group is already present in the infinitesimal transformations. Unlike the
group multiplication, the combination of the infinitesimal transformations is usually fairly
simple. This is why, in the previous section, we worked with infinitesimal Lorentz transfor-
mations. Here we’ll start with a simpler case to develop some of the ideas further.

Let’s begin with the example of O(2). Consider those transformations that are close to
the identity. Since the identity is A(0), these will be the transformations A(e) with ¢ << 1.
Expanding in a Taylor series, we keep only terms to first order:

cose —sine 1 —¢
Ale) = ( sine  cose ) ~ ( e 1 ) (489)
() o

The only information here besides the identity is the matrix

( (1) _01 ) (491)

but remarkably, this is enough to recover the whole group! For general Lie groups, we get
one generator for each continuous parameter labeling the group elements. The set of all
linear combinations of these generators is a vector space called the Lie algebra of the group.
We will give the full defining set of properties of a Lie algebra below.

Imagine iterating this infinitesimal group element many times. Applying A(e) n times
rotates the plane by an angle ne :

A(ne) = (A(e))" = (1 e ( o) ))n (492)

Expanding the power on the right using the binomial expansion,

Ane) ~ é (Z) ( . )keklnk (493)
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To make the equality rigorous, we must take the limit as ¢ — 0 and n — oo, holding the
product ne = 6 finite. Then:

n k
_ : n 0 -1 k
a0 = m S0 5) (199

S (0 1Y L 495
- M mm—rr\1 0 )¢ (455)
k—
o= nmn=-1)-(n—k+1) (0 -1 g
= Iy Bl =1 o0 (496)
k=0
S e R Ut IV AU EES I
- i (ne) <1 0 ) (497)

— 20%9k<(1) _01 )k (498)

exp (( (1) _01 ) 9) (499)

where in the last step we define the exponential of a matrix to be the power series in the
second line. Quite generally, since we know how to take powers of matrices, we can define
the exponential of any matrix, M, by its power series:

1
exp M = Z EM’“ (500)
k=0

Next, we check that the exponential form of A(6) actually is the original class of trans-

formations. To do this we first examine powers of ( ? _01 ) ;
0 -1\ -1 0
(1 0) (0 _1>:_1 (501)
3
0 —1 0 —1
(1 0) —_(1 o) (502)
0 -1\’
(1 0 ) =1 (503)

The even terms are plus or minus the identity, while the odd terms are always proportional

to the generator, (1) _01 . Therefore, we divide the power series into even and odd parts,
and remove the matrices from the sums:
[e's) k
1 /0 —1 &
A) = ;E(1 0 ) 0 (504)
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U T AT RV 0 —1\"" it
_2(2 )!(1 0> o +mz_02m+ ( 0) g7 (505)

m=0
_ - (_1)m 2m —1 - m 2m+1
- e )X e .
0 -1 .
= 1cosf+ ( 10 )sm@ (507)

_ ( cos —sin ) (508)

sinf@ cosd

The generator has given us the whole group back.
To begin to see the power of this technique, let’s look at O(3), or the subgroup of SO(3)
of elements with unit determinant. Since every element of O(3) satisfies

AlA=1 (509)
we have
1 = det(1) (510)
= det (A") det (A) (511)
= (det (4))? (512)

so either det A = 1 or det A = —1. Defining the parity transformation to be
P= -1 (513)

then every element of O(3) is of the form A or PA, where A is in SO(3). Because P is a
discrete transformation and not a continuous set of transformations, O(3) and SO(3) have
the same Lie algebra.

The generators of O(3) (and SO(3)) may be found from the property of leaving the

matrix
1

9ij = 1 (514)
invariant: ' '

Just as in the Lorentz case in the previous chapter, this is equivalent to preserving the proper
length of vectors. Thus, the transformation

y=A" ™ (516)

m
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is a rotation if it preserves the length-squared:

gijyiyj = gijxixj (517)

Substituting, we get
G = gy (Ai mxm) (Aj nx") (518)
= (gl-in LA n) i (519)

Since x™ is arbitrary, we can turn this into a relation between the transformations and the
metric, g,n., but we have to be careful with the symmetry since z™z" = 2"2™. It isn’t a
problem here because both sets of coefficients are also symmetric:

g A" A = gpA AT (521)
= guA" A (522)
= gyA" AT (523)
Therefore, we can strip off the xs and write

This is the most convenient form of the definition of the group to use in finding the Lie
algebra. For future reference, we note that the inverse to g;; is written as g; it is also the
identity matrix.

As in the 2-dimensional case, we look at transformations close to the identity. Let

At =0 +¢ (525)

J
where all components of ¢’ | are small. Then

Gmn = Gij ((5fn + ¢t m) 61 4 & n)
= (930 + 91" ) (6, +€ )
= (9 + 95" ) O+ ,)
= (gmj +ejm) (0 + )
= GO + EjmO) + gmi€ , +Ejme
Gmn + Enm + Emn + O(£7)

(
(
(
(
(
(

Dropping the second order term and cancelling g,,, on the left and right, we see that the
generators &,,, must be antisymmetric:

Enm = —Emn (532)

We are dealing with 3 x 3 matrices here, but note the power of index notation! There is
actually nothing in the preceeding calculation that is specific to n = 3, and we could draw all
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the same conclusions up to this point for O(p, ¢)!). For the 3 x 3 case, every antisymmetric
matrix is of the form

0 a -b
Ala,b,c) = —a 0 ¢ (533)
b —c 0
0 10 00 —1 0 0 0
=a|l -1 00 ]+b1 00 O +cl O 0 1 (534)
0 00 10 0 0 —1 0
and therefore a linear combination of the three generators
0 10
Ji = -1 0 0 (535)
0 00
00 -1
Jy = 00 0 (536)
1 0 0
0 0 0
Js = 0 0 1 (537)
0 —1 0

Notice that any three independent, antisymmetric matrices could serve as the generators.
We begin to see why the Lie algebra is defined as the entire vector space

v=v'Jy + 02+ 0P s (538)
In fact, the Lie algebra has three defining properties.

Define: A Lie algebra is a finite dimensional vector space V' together with a bilinear, anti-
symmetric (commutator) product satisfying

1. For all u,v € V| the product [u,v] = —[v,u] = w isin V.
2. All u,v,w € V satisfy the Jacobi identity

[u, [v, w]] + [v, [w, u]] + [w, [u,v]] =0 (539)

These properties may be expressed in terms of a basis. Let {J,Ja = 1,...,n} be a vector
basis for V. Then we may compute the commutators of the basis,

[Jaa Jb} = Wgh (54())

where for each a and each b, w,, is some vector in V. We may expand each w,, in the basis

as well,
Wap = Cop “Je (541)
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for some constants c,, ©. The c,, © = —¢,, © are called the Lie structure constants. The basis
then satisfies,

[T, Jo] = ¢, . (542)

which is sufficient, using linearity, to determine the commutators of all elements of the
algebra:

[u,v] = [u®J,, v°Jy) (543)
= u’[Jy, Jy (544)
= u"vley “J. (545)
= wtJ, (546)
- w (547)

Exercise: Show that the commutation relations of the three O(3) generators, J;, given in
eq.(h37) are given by
[Ji, J] = €i; " i (548)

where g,; " = 9" € jm, and €;4, is the 3-dimensional version of the totally antisymmet-
ric Levi-Civita tensor,

k

€123 = €231 = €312 =1 (549)
€132 = €321 = €913 = —1 (550)

with all other components vanishing. See our discussion of invariant tensors in the sec-
tion on special relativity for further properties of the Levi-Civita tensors. In particular,
you will need
R in = 63 6F — §76F (551)
Notice that most of the calculations above for O(3) actually apply to any of the pseudo-
orthogonal groups O(p, q). In the general case, the form of the generators is still given by

eq.(532), with g,,, replaced by MED of eq.(479). Dropping the (p, q) label, we have

My, = My (6, +¢ )0+ ) (552)
= Myn + Mye' , + M€, (553)

leading to ' .
Enm = ni€Z m — “Emn = mjgj n (554)

The doubly covariant generators are still antisymmetric. The only difference is that the
indices are lowered with M,,, instead of ¢,,,. Another difference occurs when we compute
the Lie algebra because in n-dimensions we no longer have the convenient form, &;j,,, for
the Levi-Civita tensor. The Levi-Civita tensor in n-dimensions has n indices, and doesn’t
simplify the Lie algebra expressions. Instead, we choose the following set of antisymmetric
matrices as generators:

9] = (07,05 — 6n,) (555)

mn
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The (rs) indices tell us which generator we are talking about, while the m and n indices
are the matrix components. To compute the Lie algebra, we need the mixed form of the
generators,

[8(1"3)}7” - MMk [g(rs)}

n

= MRS — MRS (556)
= M™§E — M™sT (557)

We can now calculate

] N, = ) 2 = T ), (s

959
260

n k

(558)
— (M = M) (M — M) (559)
— (M5 — M) (M5 - M) (560)

= M™ MY — MM, (561)
=M™ M™ S5 + M™MS, (562)
—M™ M6 + MMM (563)
(564)

(565)

(566)

(567)

(568)

n

\)

=~

MMM — MM 56
= MMM — MM, 56
— MM + MMM, 56
— M M™SY + MMM 567
MM — MM 568

S Ot

Rearranging to collect the terms as generators, and noting that each must have the free m
and n indices, we get

[e“], 9] = M (M™6;, — M™6Y)
— MY (M), — MM
— MM (M5 — M™5Y)
MM (M, — M™TSY)
— M [g(us)]m - Mvs [S(ur)]m
M [g(vs)]m o s [g(vr)]m

569
270
o71
972
273

274

n

(569)
(570)
(571)
(572)
(573)
n (574)

Finally, we can drop the matrix indices. It is important that we can do this, because
it demonstrates that the Lie algebra is a relationship among the different generators that
doesn’t depend on whether the operators are written as matrices or not. The result, valid
for any O(p, q), is

[E(uv)’g(rs)] _ Mvrg(us) . MUSE(UT) . MUTE(US) + Musg(vr) (575)
We will need this result when we study the Dirac matrices.

Exercies: Show that the O(p,q) Lie algebra in eq.(575) reduces to the O(3) Lie algebra in
eq.(548) when (p,q) = (3,0). (Hint: go back to eq.(574) or eq.(575) and multiply the
whole equation by €y,6-5¢- Notice that M,,, is just g,., and that J; = %5ijk€(‘jk) ).
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The properties of a Lie algebra guarantee that exponentiating the algebra gives a Lie
group. To see this, let’s work from the group side. We have group elements that depend on
continuous parameters, so we can expand g(a, b, ..., c) near the identity in a Taylor series:

dg 1 &%
1 n a
= 1+ — —
9@, 2" + 8xam + 2 Ozaxb

1
1+ Jo® + éKab:caxb 4 ... (577)

%2’ 4 (576)

Now let’s look at the consequences of the properties of the group on the infinitesimal gener-
ators, J,. First, there exists a group product, which must close:

g(29)g (23) = g(25) (578)
1+ Jyzi+ .. ) QA+ ez +...) = 1+ J25+... (579)
L+ Joa$ + Juxg + ... = 1+ Jag+ ... (580)
so that at linear order,
Jox] + Jox5 = Jyas (581)

This requires the generators to combine linearly under addition and scalar multiplication.
Next, we require an identity operator. This just means that the zero vector lies in the space

of generators, since ¢g(0,...,0) =1 =1+ J,0% For inverses, we have
g(z})g ™" (25) = 1 (582)
1+ Juzi+..) A+ gz +...) = 1 (583)
1+ Jaf + Juxg = 1 (584)
so that z§ = —x{, guaranteeing an additive inverse in the space of generators. These prop-

erties together make the set {x%.J,} a vector space.
Now we need the commutator product. For this, consider the (closed!) product of group
elements

919291 95" = g3 (585)

We need to compute this in a Taylor series to second order, so we need the inverse to second
order.

Exercise: Show to second order that the inverse of
1
g=1+ Ja*+ §Kabxaxb +... (586)

is
1
gl=1— Ja’+ 5 (Jady + JpJu — Kap) 22" + .. (587)
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Now, expanding to second order in the Taylor series,

1
gs = 1+ JaZa(ZL‘, y) + éKabza<x7y)zb(x7y) (588>
1 1
- (1 + Jzt + §Kabxaxb> (1 +Jy b+ §Kbcybyc> (589)
1
X (1 — Jat + (JCJd - §ch> IL‘CZL‘d) (590)
1
X (1 — ded + (JdJe — §Kde) ydye) (591)
b b a, b 1 b, c 1 a,.b
= (14 Sy’ + Sy’ + . Jpx%y” + EKbcy <+ §Kab$ x (592)
x (1= Jaz® — Jay® + Jadey™y© + JoJax“y* (593)
1 1
+J. Jafr? — §Kdeydye — §chxcxd) (594)
= 1= Jgx® — Tyt + JoJoyy© + Jo gy + JJgxtad (595)
1 1
—§Kdeydye —3 gt + (beb + beb) (1 — Jyz? — ded) (596)
1 1
+J, Jpxty® + §Kbcybyc + §Kabxaxb (597)
Collecting terms,
g3 = 1+ J.2%zy)+--- (598)
1 — Jgzt — Ty + Joa® + Jyy® (599)
+JaJeyy® + JoJgxlyt + JJgatat — JyJgaba? (600)
— Iy Jy’xt — JyJgabyd — Ty Tty + I, Jyaty® (601)
1 1 1 1
5 Kooy + S K 2" = S Kaey"y* — 5 Kega“a (602)
= 1+ J.Juay? — JpJgyla? (603)
= 14 J.Jay® — JyJ.acy? (604)
1+ [Je, JaJzy* (605)

Equating the expansion of g3 to the collected terms we see that we must have z® such that
[T, Jazy® = J,2%(z,y) (606)
Since z¢ and y? are arbitrary, z® must be bilinear in them:
2% = 1%, “ (607)
and we have derived the need for a commutator product for the Lie algebra,

e Ja] = €0y O (608)
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Finally, the Lie group is associative: if we have three group elements, g, g» and g3, then
91 (9298) = (9192) 93 (609)

To first order, this simply implies associativity for the generators
Jo (Jode) = (Jalb) Je (610)

Now consider the Jacobi identity:

0 = [Jos [Jo, JJ] + [Jo; e, L] + [es [Jas S]] (611)
= [Ja, (ode = Jeb)] + [ b, (Jeda = Jae)] (612)
+Jes (Jadp — JpJa)] (613)

= Jo(JJ) — Ju (Jedy) — (Jode) Jo + (Jody) Ja (614)
+Jy (Jeda) = o (Jode) = (Jeda) Jp + (Jade) T (615)
+Je (Jads) = Je (JoJa) — (Jahy) Je + (Joda) Je (616)

= Jo (JpJe) — (JoT) J. (617)
—Jo (Jep) + (Jade) Ty (618)

— (JoJe) Ja + Ty (Jeda) (619)

+ (Jedb) Jo = Je (JpJa) (620)

— Iy (Jade) + (JpJa) Je (621)
+Je (Jady) = (Jeda) Ty (622)

From the final arrangement of the terms, we see that it is satisfied identically provided the
multiplication is associative.

Therefore, the definition of a Lie algebra is a necessary consequence of being built from
the infinitesimal generators of a Lie group. The conditions are also sufficient, though we
won’t give the proof here.

The correspondence between Lie groups and Lie algebras is not one to one, because in
general several Lie groups may share the same Lie algebra. However, groups with the same
Lie algebra are related in a simple way. Our example above of the relationship between O(3)
and SO(3) is typical — these two groups are related by a discrete symmetry. Since discrete
symmetries do not participate in the computation of infinitesimal generators, they do not
change the Lie algebra. The central result is this: for every Lie algebra there is a unique
maximal Lie group called the covering group such that every Lie group sharing the same
Lie algebra is the quotient of the covering group by a discrete symmetry group. This result
suggests that when examining a group symmetry of nature, we should always look at the
covering group in order to extract the greatest possible symmetry. Following this suggestion
for Euclidean 3-space and for Minkowski space leads us directly to the use of spinors.

In the next section, we discuss spinors in three ways. The first two make use of convenient
tricks that work in low dimensions (2, 3 and 4), and provide easy ways to handle rotations
and Lorentz transformations. The third treatment is begins with Dirac’s development of the
Dirac equation, which leads us to the introduction of Clifford algebras.
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2.2 Spinors and the Dirac equation

When we work with linear representations of Lie groups and Lie algebras, it is important to
keep track of the objects on which the operators act. These objects are always the elements
of a vector space. In the case of O(3), the vector space is Euclidean 3-space, while for Lorentz
transformations the vector space is spacetime. As we shall see in this section, the covering
groups of these same symmetries act on other, more abstract, complex vector spaces. The
elements of these complex vector spaces are called spinors.

2.2.1 Spinors for O(3)

Let’s start with O(3), the group which preserves the lengths, x* = 22 + y? + 22 = g;;z'27 of
Euclidean 3-vectors. We can encode this length as the determinant of a matrix,

B z T — 1y
X = ( r+iy —z ) (623)
det X = — (2 +y*+27) (624)

This fact is useful because matrices of this type are easy to characterize. Let

M:(i ?) (625)

be any matrix with complex entries and demand hermiticity, M = M :
M = M (626)
(22) - (5 1)

Then v — a is real, 6 — d is real, and § = v*. Only 7 = b+ ic remains arbitrary. If we also
require M to be traceless, then M reduces to

a b—ic

just the same as X. Therefore, rotations may be characterized as the set of transformations
of X preserving the following properties of X :

1. det X
2. Xt=X
3. tr(X)=0

To find the set of such transformations, recall that matrices transform by a similarity trans-
formation

X = X' = AXAT (629)
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(Here we use the adjoint instead of the inverse because we imagine X as doubly covariant,
X;. For the mixed form, X* ; we would write X — AX A1), From this form, we have:

det X' = det (AXA")

— (det A) (det X) (det A")

so we demand

|det AJ?
det A

=1
— ¥

We can constrain this further, because if we write

A = e¥2U

then

X' = AxAf

— W12 X emi/2gt

Uxut

where now

detU =1

(630)
(631)

(632)
(633)

(634)

(635)
(636)
(637)

(638)

That is, without loss of generality, we can take the determinant to be one because an overall

phase has no effect on X.

Next, notice that hermiticity is automatic. Whenever X is hermitian we have

(X/)T _

so X' is hermitian.

Finally, let’s impose the trace condition. Suppose tr(X) = 0. Then

tr(X') =

(Ax A
ATt x T At
AXAf
X/

tr(AX AT
tr(ATAX)

(643)
(644)

For the final expression to reduce to tr(X) for all X, we must have ATA = 1. Therefore, AT =
A~! and the transformations must be unitary. Using the unit determinant unitary matrices,
U, we see that the group is SU(2). This shows that SU(2) can be used to write 3-dimensional
rotations. In fact, we will see that SU(2) includes two transformations corresponding to each

element of SO(3).
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The exponential of any anti-hermitian matrix is unitary matrix because if U = exp (i1 H)
with HT = H, then
Ul = exp (—iH") = exp (—iH) =U"" (645)

Conversely, any unitary matrix may be written this way. Moreover, since
det A = "4 (646)

the transformation U = exp (iH) has unit determinant whenever H is traceless. Since every
traceless, hermitian matrix is a linear combination of the Pauli matrices,

(VL) e

we may write every element of SU(2) as the exponential
Uw™) = e™"om (648)

where the three parameters w™ are real and the Pauli matrices are mixed type tensors,
Om = [om]" ,, because U is a transformation matrix.

There is a more convenient way to collect the real parameters w™. Define a unit vector
n so that

w = gﬁ (649)
Then
. i
U(p,n) = exp (EH . a) (650)

is a rotation through an angle ¢ about the in direction.

Exercise: Let i = (0,0, 1) and show that the relation between (x,y, z) and (2/,y/, 2’) given
by

Z ' — iy
X= (:Jc’+z'y' —z’y ):UXUT (851)

_ Py z Ty e
= exp<2n a><$+iy . )exp( 2n a) (652)

is a rotation by ¢ about the z axis.

Exercise: By expanding the exponential in a power series and working out the powers of
n - o for a general unit vector n, prove the identity

exp (%n : a) -1 cosg tif-o sing (653)

Also, show that U(27,f1) = —1 and U(4m, 1) = 1 for any unit vector, i. From this,
show that U (27, 1) gives X' = X.
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Now let’s consider what vector space SU(2) acts on. We have used a similarity transfor-
mation on matrices to show how it acts on a 3-dimensional subspace of the 8-dimensional
space of 2 X 2 complex matrices. But more basically, SU(2) acts the vector space of complex,

two component spinors:
o
= 654
= () (654)
X = Ux (655)

Exercise: Using the result of the previous exercise,

exp(Za-o)=1cos? +ifi-o sin’ (656)
2 2 2
find the most general action of SU(2) on x. Show that the periodicity of the mapping
is 4, that is, that

U(4mm,n)x = x (657)

for all integers m, while
U2mm, fi)x = =X # X (658)
for odd m.

The vector space of spinors y is the simplest set of objects that Euclidean rotations act
on. These objects are familiar from quantum mechanics as the spin-up and spin-down states
of spin-1/2 fermions. It is interesting to observe that spin is a perfectly classical property
arising from symmetry. It was not necessary to discover quantum mechanics in order to
discover spin. Apparently, the reason that “classical spin” was not discovered first is that its
magnitude is microscopic. Indeed, with the advent of supersymmetry, there has been some
interest in classical supersymmetry — supersymmetric classical theories whose quantization
leads to now-familiar quantum field theories.

2.2.2 Spinors for the Lorentz group

Next, we extend this new insight to the Lorentz group. Recall that we defined Lorentz
transformations as those preserving the Minkowski line element,

§* =1 — (2* +y* + 2% (659)

or equivalently, those transformations leaving the Minkowski metric invariant. Once again,
we write a matrix that contains the invariant information in its determinant. Let

otttz x—ay
X_<m+z'y t—z) (660)
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noting that X is now the most general hermitian 2 x 2 matrix, X' = X, without any
constraint on the trace. The determinant is now

det X =1 —2? —y* — 2 = & (661)

and we only need to preserve two properties.
Let
X' = AX A (662)

Then hermiticity is again automatic and all we need is |det A|> = 1. As before, an overall
phase does not affect X, so we can choose det A = 1. There is no further constraint needed,
so Lorentz transformations is given by the special linear group in two complex dimensions,
SL(2,C). Let’s find the generators. First, it is easy to find a set of generators for the general
linear group, because every non-degenerate matrix is allowed. Expanding a general matrix
infinitesimally about the identity gives

G:(“”):H(O‘ﬁ) (663)
p o v 0
- a b (e f
_1+(Cd)+z(gh> (664)
for complex numbers «, 3,7,6 and real parameters a,...,h. Since the deviation from the

identity is small, the determinant will be close to one, hence nonzero. Since we recover the
whole group by exponentiation,
G:exp<(;‘ ?) (665)

the unit determinant is achieved by making the generators traceless, setting 6 = —a. A
complete set of generators for SL(2,C) is therefore

("))
(o)

Because any six independent linear combinations of these are an equivalently good basis,
let’s choose the set

T = iom (668)
Kpn = om (669)

which have the advantage of being hermitian and anti-hermitian, respectively.

When we exponentiate J,,, and K, (with real parameters) to recover the various types of
Lorentz transformation, the anti-hermitian generators J,, give SU(2) as before. We already
know that these preserve lengths of spatial 3-vectors, so we see again that the 3-dimensional
rotations are part of the Lorentz group. Since the generators K,, are hermitian, the corre-
sponding group elements are not unitary. The corresponding transformations are hyperbolic
rather than circular, corresponding to boosts.
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Exercise: Recalling the Taylor series

0 >\2k+1

sinhA = Z —_— (670)
— (2k +1)!
e )\2k

coshA = Z oh] (671)
k=0

show that K; = ( 1

> generates a boost in spacetime.

The Lie algebra of SL(2,C) is now easy to calculate. Since the Pauli matrices multiply
as (exercise!)

OmOn = Omnl + 1€mnk0k (672)
their commutators are [0, 0] = 2i€,n,0%, the Lie algebra is
[Jm, Jn] = [iUm, ZO’n] = _zigmnko'k = _2€mnka (673)
[Jm, Kn] = [idm, Un] = _Zsmnkgk = _25mnkKk (674)
(K, Kp| = [0m,00] = —2i€mnk0k = —26mnkJk (675)

This is an important result. It shows that while the rotations form a subgroup of the Lorentz
group (because the J,, commutators close into themselves), the boosts do not — two boosts
applied in succession produce a rotation as well as a change of relative velocity. This is the
source of a noted correction to Thomas precession (see Jackson, pp. 556-560; indeed, see
Jackson’s chapters 11 and 12 for a good discussion of special relativity in a context with real
examples).

There is another convenient basis for the Lorentz Lie algebra. Consider the six generators

1
L = 5 (ot Kon) (676)
1
My = 5 (= Kun) (677)
These satisty
1
1
= —2emnkli (680)
1
=0 (682)
1
= —2emnrMy (684)
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showing that the Lorentz group actually decouples into two commuting copies of SU(2).
Extensive use of this fact is made in general relativity (see, eg., Penrose and Rindler, Wald).
In particular, we can use this decomposition of the Lie algebra sl(2, C') to introduce two sets
of 2-component spinors, called Weyl spinors,

Xt (685)

with the first set transforming under the action of exp (u™L,,) and the second set under
exp (v™M,,) . For our study of field theory, however, we will be more interested in a different
set of spinors — the 4-component Dirac spinors.

2.2.3 Dirac spinors and the Dirac equation

There is a systematic way to develop spinor representations of any pseudo-orthogonal group,
O(p, q). Dirac arrived at this representation when he sought a relativistic form for quantum
theory. We won’t look at the full historical rationale for Dirac’s approach, but will use a
similar construction. Dirac wanted to build a relativistic quantum theory, and recognizing
that relativity requires space and time variables to enter on the same footing, sought an
equation ltnear in both space and time derivatives:

0y

o = (—ica'0; + mpB) (686)

where the v# and [ are constant. A quadratic equation, the Klein-Gordon equation,
O¢ = —m?¢ (687)

had already been tried and discarded by Schrédinger because the second order equation
requires two initial conditions and the uncertainty principle allows us only one. To determine
the coefficients, Dirac demanded that the linear equation should imply the Klein-Gordon
equation. Acting on our version of Dirac’s equation with the same operator again,

8%

e = (—ia'd; + mpB) (—ia'0; + mB) ¢ (688)
= (=a'a?9;0; — ima'BO; — imBa‘0; + m*B?) ¢ (689)

we reproduce the Klein-Gordon equation provided
—a'd?9;0; = —V* (690)
m (o’ + Ba’)0; = 0 (691)
m?p* = m? (692)

or equivalently,

a'ad +alat = 209 (693)
a'B+Bat = 0 (694)
g=1 (695)
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We can put these conditions into a more relativistic form by defining

" = (8,8a")
Then the constraints on v* become
VY Ay = 207
70 440 =
2
0" =1

which may be neatly expressed as

{77} =y =2

(696)

(697)
(698)
(699)

(700)

where the curly brackets denote the anti-commutator. This relationship is impossible to
achieve with vectors. To see this, note that we can always perform a Lorentz transformation

that brings v* to one of the forms
7 = (,0,0,0)

f‘)/'u' = (a7 a? 070)
7 = (0,0,0,0)

(701)
(702)
(703)

depending on whether +# is timelike, null or spacelike. Then, since n*” is Lorentz invariant,

we have the possibilities:

(8]
0
BoArL
Ay = 0
0
o? o
. a? o
{9 = 0
0
0
2
BoAavY a
{+*. 7"} 0
0

(704)

(705)

(706)

none of which equals n*”. Therefore, v* must be a more general kind of object. It is sufficient
to let v* be a set of four, 4 x 4 matrices, and it is not hard to show that this is the smallest

size matrix that works.

Exercise: Show that there do not exist four, 2 x 2 matrices satisfying {y#,~+"} = 2n*”
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Here is a convenient choice for the Dirac matrices, or gamma matrices:

o <_00_ 0(’)) (707)

where the o? are the usual 2 x 2 Pauli matrices.
Exercise: Show that these matrices satisfy {v#, 7"} = 2n*".

Substituting v into eq.(686), we have the Dirac equation,

("0 —m)p = 0 (708)
(o= 2 (709)

This equation gives us more than we bargained for. Since the v* are 4 x 4 Dirac matrices,
the object 1 that they act on must also be a 4-component vector. We now show that ¢ is a
spinor by showing that they transform as a spinor representation of the Lorentz group.
Let’s do this for the general case of O(p, q) rather than just O(3, 1), since the development
is essentially the same in all cases. In the process, we will not only see that the object v is
a spinor, but also find the form for Lorentz transformations.
Let the O(p, ¢) metric be as in eq.(479), M (Pa) _ = diag(1,...,1,—1,...,—1), and let its

inverse be M (’; 0" We first define n = p + q dlstmct matrices by

{v,77} =2M( 1 (710)

Notice that there are two matrices on the right side. The metric is just a set of coefficients
telling us whether the right side is zero or not for any given pair of gamma matrices. The
identity matrix occurs because the i are matrices (with components [y7]" ) and therefore
their anticommutator must also be a matrix. Often the identity matrix is suppressed for
brevity. It is always possible to choose the gamma matrices so that (vi)Jr = M(Z; 9 (v,
making some hermitian and the rest anti-hermitian. Now, from these gamma matrices we

construct the commutator,
. 1 S
o =1 ] (711)

Exercise: Show that for spacetime, with (7°)' = 4° and (/)" = —7', 6" has the following
hermiticity relations:

(UOz‘)T — i (712)
(09) = —o¥ (713)
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Next, we show that these commutators satisfy the Lie algebra of O(n). We first use the
anticommutator relation to rearrange the terms. Since the anticommutator relation gives
YNt = —iyd 4 2M;; , we can rewrite the commutator as

4

1 o g
7 \ZZ]
9 (7 v = (p,q)>

4

Using this relation, the commutator of two sigmas is:

g 170 . . y
7 kl o 7 1, k_1l kl
[0V, 0"] = 1 [7 V=M 7 = Mipg
1 L.
= =7 [
= —lvivjv’“v’Jrl’V’“v’viv"
1 1

—(77”—7]7)=—(773+77”—2M(,”,,q)

(714)

(715)

(716)
(717)

(718)

Now we just rearrange the order of gamma matrices in the second term until it matches the

first term;

Yrly

Finally, using

we have

[U”, o

V(=7 + 2M ) ¥
="y + 2MG, v
7' (_ijl t 2M(Jziq)> t QM(izlhq)’ykW

k. i .71 jl k_1 7l k_7g
VY = 2M, VY 2M G )V

(=7 +2M5 ) 77 = 2M]) A+ 2ME Y

i kg ik g i
- Vk’y]’yl + 2M(1]J€7Q)’7]7l - 2]W(Jzo,q
= (2 ) o+ 2M
—2M?
(p.q
T

i ki ik
—2M, )Y+ 2MG )Y

VY 2ME,

77+ 2Mip g

YYo= 3 (v} + 3 [V, 9]
= MY — 9259

(,9)

iy iy VR
— VPV + YA - 5 (M7
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720

(719)
(720)
(721)
(722)
(723)
(724)
(725)
(726)
(727)
(728)

726
727
728

(729)
(730)

(731)



ik 1 il k 1 al k_ 7
—M{p V' + My, g7 = My, 7y (732)

- _%M(]:q) (M(p 9 QUH) + %M(iz];q) (M(];,q) o 20ﬂ> (733)
_%M(j;q) (M(p Q) ZUM) + %M(i;?,q) (M(kp]fJ) N 20kj> (734)
- ; (M(]k )M(p Q) M(ig,q)M(J;,q)> (735)
;(M(ﬂ oMby = Mip oM )) (736)
+M(sz,q)ai = My 0" + M(jzi,q)aki — M, " (737)
The first four terms cancel, leaving the o(p, ¢) algebra:
[0V, "] = M(qu)ail - M(p Q)Uﬂ - M(p 0? M(p q)‘7 (738)

This shows us why Dirac’s wave function v is a spinor. Using infinitesimal, real parameters,
€05, Can use o"® to generate an infinitesimal Lorentz transformation,

1 s
A p=0" p+enlo™) 5 (739)

which act on spinors according to

[W]" =A% 5 w)” (740)

We assume that ., = —&,,., so the factor of % avoids double counting.
To see that v is really a spinor, we use them to construct vectors. Let the spinor space
have a hermitian metric, h4p, so that we can form inner products of spinors

06w = [ hag )7 (741)

We require h4p to be invariant under Lorentz transformations, in the sense that

[A), *hasA? b= hep (742)
For infinitesimal transformations, this means that
1 A 1
hep = (50 44 567«5 [(UT8>T]C ) hag (53 pT §5uv [UM]B D) (743)
1 rs1B 1 rs\T A
hcp = hep + §€rshCB [O’ ] pt 557*3 [(U ) i|C hap (744)
rs1B rs\T A
0 = heple™” ,+ [(0 ) ]C hab (745)

Now we can build the n-dimensional object
c
v = [?/JT} hse V] [v]” (746)
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Now suppose we transform [¢)]” according to eq.(740 ). Then

1" = w” a1, (747)

so v' changes to
Wl = W1 hse [v]7 , W17 (748)
- [wT]A [AT]A ? hso [Vi]c DAD E W’]E (749)

For an infinitesimal transformation the matrix product is

AhyA = [AT], Phse [V]S AP & (750)

_ (55 b e [0 B) hao [1]C (751)

« (5D N E) (752)

= hac 17 gt gewhac 1 510" 4 (753)

—sene (@], hse 1, (754)

e ] =[] + [60]' (755)

and using the Lorentz invariance of hap, eq.(745 ), we see that the change in v* is given by

oo = 5[0 hasens (1] plo)” =101 ¢ [0 ) T (756)

(01" hasers [v0™]" L [0]" (757)

N — Do —

Therefore, we compute the commutator,

b) = g 6= )| (759
= % ] (759)
- % (V7" =" (760)
= % (V'Y A = 2Ms 30") (761)
= Mgy = Mgy (762)
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Substituting into dv’ we have

( 1 A i _rs]B
[ov]" = 3 (W1 hagens [V 0] L [0)° (763)
1 A i s 18 r
= 5 [V hasers (M 17 5= Mgy 1717 ) (01" (764)
1 r A S B
= SMggens [V has [r]” [¥]” (765)
1 s A r
—5 MG pens (V7] has )7 5] (766)
1 ir s S T
Y (M(p,q)gmv — Mg persv ) (767)
= ¢ (768)
But ' | is just an arbitrary antisymmetric matrix, &;,, with one index raised using the
O(p, q) metric, M, (’; 7 and is therefore an infinitesimal Lorentz transformation.

Now we see why 1 is a spinor. If we think of v’ as a bi-spinor,

i i A
W] = [v'%]” (769)
then we can write the infinitesimal transformation laws as
1
59" = Few ™) pl0v)” (770)
i14 1 i1B rs 1 rs i1C
[vify} B = o [vm} plo ]D B~ 5ers o ]B o [vm} p (771)

This means that if we rotate 1) by an angle £, the same transformation will rotate v’ by .
This is the characteristic property of a spinor.

How many components does ¢ have in general? We can find out by finding the minimum
size for the gamma matrices, and we can do this by finding out how many independent
matrices we can build from the gamma matrices. We can always remove symmetric parts of
products of gamma matrices, but the antisymmetric parts remain independent. Let

Dk = Alind M (772)

where the bracket on the indices means to take the antisymmetric part. If there are n distinct
7", there will be (") different matrices "~ having m indices. Each of these is independent,
for all m, so we have Y " (7’;) = 2" independent matrices constructible from the ~*. The
linear combinations of these 2" matrices form the Clifford algebra associated with O(p, q).
The minimum dimension having 2" independent matrices is 2"/2 (or 2("*1/2 if n is odd) since
a 22 x 2"/2 matrix has 2" components. It is not too difficult to show that a satisfactory
set of matrices of this dimension always exists. Therefore, spinors in n dimensions will have

2"/2 components (n even), and this agrees with the the 4-component spinors found by Dirac.
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We still need to know what the metric hap is for the Dirac case. It must satisfy the
invariance condition of eq.(745), which in 4 dimensions reduces to

0
0

hol + (UOi)Th = ho¥ + 5%,
ho'! + (6¥) b = ha'l — 5k

These relations are satisfied if we define the metric to be

1

hABE 1

—1

(773)
(774)

(775)

The choice of hp as the metric is fixed by its rotational invariance under the ¢** which we
easily check as follows.If we momentarily ignore index positions, we see that hsp has the
same form as 7°, and we can use the properties of 7° to compute its effects. Thus for the 0:

components,

hO_Oi + O_Oih

while for the 75 components,

hol — g,

,}/OO_O'L +O'0i’}/0

% (,yo,yo,yl o ,YOWWO + ,7071',}/0 o ,YZ,YO,YO)
iW+VWW—¢WW—¢)

0

ol — gtin
EWWW—¢W¢—¢¢W+V¢W)
%WWWLJWWW—¢¢¢+W%MQ
0

Therefore, Dirac spinors have the Lorentz-invariant inner product

<1/17¢> = [wT]AhAB¢B

It is convenient to define ¢» = ¥th, with components

Vg = [@/JT]A hap

Then we may write the inner product simply as

(V,¢) =Py

78
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(777)

(778)
(779)

(780)

(781)

(782)
(783)

(784)

(785)
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The simplicity of using +° to compute inner products has led some authors of older field
theory texts to actually write 1% for h, as in 1) = 7%, but the difference between a
metric and a transformation is important Indeed, the index structure is clearly wrong in the
latter expression — we would have. 17%) = [¢] A [70]A B 1] P

Returning to our original goal, we now have the Dirac equation

(iv"0, +m)Y = 0 (787)
(" = 2 (788)

This is the field equation for a spin—% field. Since we have an invariant inner product, we
can write an invariant action as

S = /d4$ Y (i, —m) (789)
The action is to be varied with respect to ¢ and v independently
055 = / d'z (58 (10, —m) b + P (10, — m) 60 (790)

The 1) variation immediately yields the Dirac equation,
(170, — m) b = 0 (791)

while the d1 required integration by parts:

0 = / d*z 1 (i7"0,00 — mdp) (792)
- / de (—i0,07"50 — dm) 50 (793)

Thus
10,0 +myp =0 (794)

which is sometimes written as

" (z'fw%u + m) ~0 (795)

2.2.4 Some further properties of the gamma matrices

In four dimensions, there are 16 independent matrices that we can construct from the Dirac
matrices. We have already encountered eleven of them:

19", o (796)
The remaining five are most readily expressed in terms of
s = 7y (797)
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Exercise: Prove that ~5 is hermitian.

Exercise: Prove that {v;,7*} = 0.

Exercise: Prove that v5v5 = 1.

Then the remaining five matrices may be taken as

Y5, V57" (798)

Any 4 x 4 matrix can be expressed as linear combination of these 16 matrices. We will
need several other properties of these matrices. First, if we contract the product of pair of
gammas, we get 4 :

VY = NPy = %n,w {777} = N =4 (799)

We need various traces. For any product of an odd number of gamma matrices we have
tr (yryeghat) = tr ((75)° e (800)
(—1)%H i (ysytinteytergs) (801)

using the fact that 75 commutes with any of the v#. Now, using the cyclic property of the
trace
tr(A...BC)=tr(CA...B) (802)

we cycle 5 back to the front:

tr (,ym,)/uz,yuzkﬂ) — (_1)2k+1 tr (757#17M27u2k+175) (803)
— (_1)2k+1 tr (75757M17M2,yu2k+1) (804)
e — tfr (ry“lryﬂ?ryiufmc«kl) (805)
=0 (806)
Thus, the trace of the product of any odd number of gamma matrices vanishes.
Traces of even numbers are trickier. For two:
tr(v*47) = tr(—=y"+* 4+ 2n""1) (807)
= —tr (Y"y") + 2n"tr 1 (808)
or, since trl = 4,
tr (') = 4™ (809)
Exercise: Prove that
tr (Y97 y") =4 (™0 = n* 0 4+ n* ) (810)
Exercise: Prove that
VY = —27° (811)
and
Yy, = 4P (812)
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2.2.5 Casimir Operators

For any Lie algebra, G, with generators (G, and commutators
[Ga, Gi) = ¢ Gl (813)
we can consider composite operators found by multiplying together two or more generators,
G1Go, G3GyGhr, . .. (814)
and taking linear combinations,
A =aG Gy + GGG + ... (815)

The set of all such linear combinations of products is called the free algebra of G. Among the
elements of the free algebra are a very few special cases called Casmir operators, which have
the special property of commuting with all of the generators. For example; the generators
J; of O(3) may be combined into the combination

R=069JJ; =Y (J;)’ (816)

We can compute

i B = [ Y] (817)
= Jj [Ji, Jj] + [Ji, Jj] Jj (818)
Jicijk Ik + €ijidid; (819)

= gijk (Jj i + JiJj) (820)

= 0 (821)

where, in the last step, we used the fact that €;;;, is antisymmetric on jk, while the expression
J;Ji + JiJy is explicitly symmetric. R is therefore a Casimir operator for O(3). Notice that
since R commutes with all of the generators, it must also commute with all elements of O(3)
(Exercise!!). For this reason, Casimir operators become extremely important in quantum
physics. Because the symmetries of our system are group symmetries, the set of all Casimir
operators gives us a list of the conserved quantities. Often, elements of a Lie group take
us from one set of fields to a physically equivalent set. Since the Casimir operators are left
invariant, we can use eigenvalues of the Casimir operators to classify the possible distinct
physical states of the system.

Let’s look at the Casimir operators that are most imporant for particle physics — those of
the Poincaré group. The Poincaré group is the set of transformations leaving the infinitesimal
line element

ds* = 2dt* — da® — dy® — d2* (822)

invariant. It clearly includes Lorentz transformations,

[da']* = A 4dz” (823)
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but now also includes translations:

[Z]" = 2%+a” (824)
= [do']" = da” (825)
Since there are 4 translations and 6 Lorentz transformations, there are a total of 10 Poincaré

symmetries. There are several ways to write a set of generators for these transformations.
One common one is to let

M* 5 = x%05 — 250"
Pa = aoz (826)
Then it is easy to show that
[Ma B MH V} = [:(:0‘85 - :Egaa, :c“&, - x,,@“]

x*0g (2*0, — x,0") — x30* (2#0, — ,0")
—a10, (%05 — x30%) + x,0" (x%05 — 130%)
= %030, — 27, 0" — 2n*"0, + 255, 0"
—xt6, 05 + xt'1,30% + 2,005 — 1,650
= 5gMa V—T][gl,Mau—T]a'uMﬁl,—i—dgMﬁ " (827)

To compute these, we imagine the derivatives acting on a function to the right of the commu-
tator, [M® g, M* ,] f(x). Then all of the derivatives of f cancel when we antisymmetrize.
With suitable adjustments of the index positions, we see the result above is equivalent to
the Lorentz (0(3,1)) case of eq.(575). Two similar but shorter calculations show that

[M® ,,P] = ngP*— 8P (828)
[Py P5] = 0 (829)

Eqs.(827-829) comprise the Lie algebra of the Poincaré group.
Exercise: Prove eq.(828) and eq.(829) using eqs.(826).
Now we can write the Casimir operators of the Poincaré group. There are two:
P? = 9*"P,Ps
W2 = nWew? (830)

where

1
WH = égﬂ"aﬁpyMaﬁ (831)

and *°? is the spacetime Levi-Civita tensor. To see what these correspond to, recall
from our discussion of Noether currents that the conservation of 4-momentum is associated
with translation invariance, and P, is the generator of translations. In fact, P, = i0,,
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the Hermitian form of the translation generator, is the usual energy-momentum operator
of quantum mechanics. We directly interpret eigenvectors of P, as energy and momentum.
Thus, we expect that eigenvalues of P? will be the mass, pap® = m?.

Similarly, W2 is built from the rotation generators. To see this, notice that we expect the
momentum, p%, to be a timelike vector. This means that there exists a frame of reference in
which p* = (mc,0,0,0). In this frame, W< becomes

Wr = —e™®P,M,s (832)
= —mce"" M4 (833)
Therefore, W° = 0, and for the spatial components,
1 -
wk = 5mcg’fowzmj (834)
= meJF (835)

Since m is separately conserved, this shows that the magnitude of the angular momentum
J? is also conserved.

Exercise: Using the Lie algebra of the Poincaré group, eqs.(827-829), prove that P? and
W? commute with M,z and P,. (Warning! The proof for W? is a bit tricky!) Notice
that the proof requires only the Lie algebra relations for the Poincaré group, and not
the specific representation of the operators given in eqs.(826).

Since the Casimir operators of the Poincaré group correspond to mass and spin, we will be
able to classify states of quantum fields by mass and spin. We will extend this list when we
introduce additional symmetry groups.
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3 Quantization of scalar fields

We have introduced several distinct types of fields, with actions that give their field equations.
These include scalar fields,

1
S = 3 / (0%00up — m*¢?) d*x (836)
and complex scalar fields,
1
S = 3 / (0%¢" Oatp — mPp*p) d'x (837)

These are often called charged scalar fields because they have a nontrivial global U(1) sym-
metry that allows them to couple to electromagnetic fields. Scalar fields have spin 0 and
mass m.

The next possible value of W?2 ~ J2 is spin—%, which is possessed by spinors. Dirac spinors
satisfy the Dirac equation, which follows from the action

S = / d*z 1 (iy"0, — m) Y (838)

Once again, the mass is m. For higher spin, we have the zero mass, spin-1 electromagnetic
field, with action

S = / de (iF“‘ﬁFag + JaAa) (839)

Electromagnetic theory has an important generalization in the Yang-Mills field, F4 op Where
the additional index corresponds to an SU(n) symmetry. We could continue with the spin—%
Rarita-Schwinger field and the spin-2 metric field, g, of general relativity. The latter follows
the Einstein-Hilbert action,

S = /d4:v v/ —det (gap)g*" R (840)

where R app 18 the Riemann curvature tensor computed from g,s and its first and second
derivatives. However, in this chapter we will be plenty busy quantizing the simplest examples:
scalar, charged scalar, and Dirac fields.

We need the Hamiltonian formulation of field theory to do this properly, and that will
require a bit of functional differentiation. It’s actually kind of fun.

3.1 Functional differentiation

What distinguishes a functional such as the action S[z(t)] from a function f(z(t)), is that
f(z(t) is a number for each value of ¢, whereas the value of S[z(¢)] cannot be computed
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without knowing the entire function x(¢). Thus, functionals are nonlocal. If we think of
functions and functionals as maps, a compound function is the composition of two maps

f i R>R (841)
r : R—R (842)
giving a third map
foxr:R— R (843)
A functional, by contrast, maps an entire function space into R,
S : F—R (844)
F = {z|z:R— R} (845)

In this section we develop the functional derivative, that is, the generalization of differenti-
ation to functionals.

We would like the functional derivative to formalize finding the extremum of an action
integral, so it makes sense to review the variation of an action. The usual argument is that
we replace x(t) by x(t) + h(t) in the functional S[z(t)], then demand that to first order in
h(t),

0S=S[x+h]—S[z] =0 (846)

We want to replace this statement by the demand that at the extremum, the first functional
derivative of S[x] vanishes,

0S[x(1)]
dz(t)

=0 (847)

Now, suppose S is given by
Slx(t)] = /L(x(t),js(t))dt (848)

Then replacing x by = 4+ h and subtracting S gives

0S8 = /L(a;+h,:t'+h)dt— /L(x,jc)dt (849)
_ / (L(x,j:) + aLg;’ o + aLg;’ i)h) dt — / L(x, &)dt (850)
_d

- (-5 a 1)

Setting 0x = h(t) we may write this as

5S = / (% - %%) Sx(t') dt’ (852)

Now write

55 = &ii sia(t) = ( / (% _ %aL(% i')) ‘;5;%)) dt’) se(t)  (853)
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or simply

05 [ (OL(x,i) d OL(x,d)\ sxu(t) ,,
5%(15)_/( or a0 )5:,3(,5) dt (854)

We might write this much by just using the chain rule. What we need is to evaluate the
basic functional derivative,
dx(t)
dx(t)
To see what this might be, consider the analogous derivative for a countable number of
degrees of freedom. Beginning with

(855)

J )
g‘éi = 5 (856)

we notice that when we sum over the ¢ index holding j fixed, we have
8q _

since j = 7 for only one value of j. We demand the continuous version of this relationship.
The sum over independent coordinates becomes an integral, Y, — [ dt’, so we demand

/ (;xx—((tt/))dt’ _1 (858)

This will be true provided we use a Dirac delta function for the derivative:

dx(t')
dx(t)

= 5(t' — 1) (859)

Substituting this expression into eq.(854) gives the desired result for % :

o = S (o) aeow

OL(z,2) d OL(z,1)
Ox dt 0z

We thank C. Torre for the elegant idea of using a Dirac delta function to extract the equation
of motion. The motivational comments and formal developments below, with any inherent
flaws, are ours.

Notice how the Dirac delta function enters this calculation. When finding the extrema
of S as before, we reach a point where we demand

0=246S = / (aLgi’jj) - %%g’; j“n)) h(t) dt (862)

(861)

for every function h(t). To complete the argument, we imagine h(t) of smaller and smaller
compact support near a point at time ¢y, The result of this limiting process is to conclude
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that the integrand must vanish at ¢y. Since this limiting argument holds for any choice of ¢y,
we must have
OL(z,z) d OL(z,x)
ox dt Oz
everywhere. The Dirac delta function simply streamlines this limiting process; indeed, the
Dirac delta is defined by just such a limiting procedure.
Let’s summarize by making the procedure rigorous. Given a functional of the form

Fla(t)] = / g (), 5 (t),..) dt (864)

=0 (863)

we consider a sequence of 1-paramater variations of f given by replacing z(t') by
zo(e, ') = x(t') + eh, (¢, 1) (865)
where the sequence of functions h,, satisfies

lim Ay, (t, ) = 6(t —¢)) (866)

n—oo

Since we may vary the path by any function h(z), each of these functions €h,, is an allowed
variation. Then the functional derivative is defined by

offz@®)] _ . d
So(t) =, g/

[z, (g, 1")] (867)
e=0
The derivative with respect to € accomplishes the usual variation of the action. Taking a
derivative and setting € = 0 is just a clever way to select the linear part of the variation. Then
we take the limit of a carefully chosen sequence of variations h,, to extract the variational
coefficient from the integral.
To see explicitly that this works, we compute:

ofle@®)] _ . d :
e = S]] (868)

n—roo d&‘ e=0

_ im dg(z(t') + eh,(t, V), z(t') + eh,(t,1'),...) (870)
n—o0 d{;‘ 0

_ . 89 / ag dhn(t7 t/) /

= n]1_>n010 (%hn(t, t ) + af(t/) pTy + ... ) dt (871)

_ . / ag o d ag /

- /nlg%o hn(t,t") ((% T 90 +.. ) dt (872)

_ dg d 9y Nyt

— / (83: T ) 5(t — t')dt (873)

_0g ddyg

= ot (874)
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A convenient shorthand notation for this procedure is

%ng)] _ %@) / g @), &), .. dt (875)

- / 09 0a(F) 1 (876)

dx 0x(t)
_ 0g N
= / 5x(t’)5(t —t')dt (877)
09 dog
= o T (878)

The method can doubtless be extended to more general forms of functional f.
One advantage of treating variations in this more formal way is that we can equally well
apply the technique to classical field theory.

3.1.1 Field equations as functional derivatives

We can vary field actions in the same way, and the results make sense directly. Consider
varying the scalar field action:

1

S = 5 / (0%p0up — m*¢?) d*x (879)

with respect to the field . Setting the functional derivative of S to zero, we have

_ 05[]

VT ) 0
— % ; /(8 00 — m*@?) 'z’ (881)
) 0 Spx) _y X)Y i
- [(rona il -mei ) o
_ oy OO
— /( Da0%p — m’p) 5ol X)d (883)
N / (—0a0% — m®p) 6°(x' — x)d"a’ (884)
— _Op—m?p (885)

and we have the field equation.

Exercise: Find the field equation for the complex scalar field by taking the functional
derivative of its action, eq.(837).

Exercise: Find the field equation for the Dirac field by taking the functional derivative of
its action, eq.(838).
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Exercise: Find the Maxwell equations by taking the functional derivative of its action,
eq.(839).

With this new tool at our disposal, we turn to quantization.

3.2 Quantization of the Klein-Gordon (scalar) field

To begin quantization, we require the Hamiltonian formulation of scalar field theory. Begin-
ning with the Lagrangian,
L= 5 / (0%p0up — M*¢?) P (886)

we define the conjugate momentum density to ¢ as the functional derivative of the Lagrangian
with respect to the function ¢ :

"= 5o (887)
= 5(§0¢)%/(8agp8aap—m2g02) 4z’ (888)
= /(80g0) B (x' —x)d*a’ (889)
= 9"p(x) (890)

Notice that we treat ¢(x) and its derivatives as independent. In terms of the momentum
density, the action and Lagrangian density are

1
S = 5/ (7 = Voo —m?¢?) d'x (891)
L = % (7 = Vo - Vo —m?¢?) (892)

For the infinite number of field degrees of freedom (labeled by the spatial coordinates x),
the expression for the Hamiltonian becomes

H = Y pi—L (893)
= H= [ ax)px)d’r - L (894)
so that
H = / m(x)p(x)d*xr — % / (0%pDap — M*°) d’x (895)
- / (7 + V- ¢+ m¥?) d'a (896)
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We can define the Hamiltonian density,
1
H = 3 (7r2 +Vy- Vo+ m2902) (897)

Hamilton’s equations can also be expressed in terms of densities. We replace Hamilton’s
equations,

7= o (898)
. OH
pi = — ¢ (899)

with their functional derivative generalizations:

p(x) = 5?&) (900)
fx) = —% (901)

and check that our procedure reproduces the correct field equation by taking the indicated
derivatives. For ¢,

b = o (902)
1 ) 2 2, 2\ 43,/
- éfsﬂi(x)/(w + Ve Vo +m'y’) dx (903)
- lmotz)e
= / m(x)0%(x" — x)d*2’ (905)
= 7(x) (906)
while for 7,
w(x) = —522[() (907)
— —/ (Vgp : V%;)) + m%%) >z’ (909)
B 2 5@()(’) . mg 590(X/) 3$/
AN ==ae =)k o
— / (V0% (x' — x) — m*pd*(x' — x)) d°x' (911)
I (912
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But 7 = dym = 9y0% so
Op = —m?p (913)
and we recover the Klein-Gordon field equation.

We move toward quantization by writing the field equations in terms of functional Poisson
brackets. Let

(05 v s\,
Utemnsteni = [ (5705~ mowg i)

where we replaced the sum over all p; and ¢ by an integral over x. The bracket is evaluated
at a constant time. Then we have

(914)

N om(x') dp(x")  om(x) 0p(x") ) 15
el = [ (53500 oo 0 ) o)
= /53(x' —x)8(x" — x)d*x (916)
= S’ -X) (917)

while
{r(x), 7(x")} = {p(x), p(x")} =0

Hamilton’s equations work out correctly:

p(x) = {H(p,m), o)} (918)
)

[ (o 500 ~ s 9 ) o

_ / %5:'»()(_)(/)61% (920)

_ 5H(sg:()};)ﬂ(><)) (921)

and

w0 = {H(pm,a(x)} / (922)

- [ CRa 5 a0 s ) )

. / %53@_:&')& (924)

_ _5H<¢5§0x(>};;r<x>> (925)

Now we quantize, canonically. The field and its conjugate momentum become operators
and the fundamental Poisson brackets become commutators:

{r(x),p(x")} = °(x" - x) = [7(x), p(x")] = i6°(x" = x) (926)
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(where i = 1) while
[p(x), o(x")] = [#(x'), #( x")] = 0
These are the fundamental commutation relations of the quantum field theory. Because the

commutator of the field operators 7(x) and $(x) are evaluated at the same value of ¢, these
are called equal time commutation relations. More explicitly,

=
(%
=

@(X//,t)] _ i63(x”—x’)
[P 1), o(x" 1) = [r(xs 1), w(x", )] = 0

This completes the canonical quantization. The trick, of course, is to find some solutions
that have the required quantized properties.

3.2.1 Solution for the free quantized Klein-Gordon field

Having written commutation relations for the field, we still have the problem of finding
solutions and interpreting them. To begin, we look at solutions the classical theory. The

field equation

m2

Op = ) (927)

(where we have replaced %, but retain ¢ = 1) is not hard to solve. Consider plane waves,
o(x,t) = Aer®r) | gtemi e (928)
= Aen PP 4 pfemi(Fime) (929)

Substituting into the field equation we have
i\’ i m? i
A (%> Pap” exp 5 (Pax®) = _ﬁA exp o (Paz®) (930)
so we need the usual mass-energy-momentum relation:
Pap”™ = m? (931)
We can solve this for the energy,
E, = p*+m? (932)
E_. = —\/p?2+m? (933)

then construct the general solution by Fourier superposition. To keep the result manifestly
relativistic, we use a Dirac delta function to impose p,p® = m?. We also insert a unit step
function, O(F), to insure positivity of the energy. This insertion may seem a bit ad hoc, and
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it is — we will save discussion of the negative energy solutions and antiparticles for the last
section of this chapter. Then,

1 4 e _ 4 pes
Pt) = / V2E (a(B,p)et ) + af (B, p)e =) (934)
T
) (papa — m2) O(EYh *d*p (935)
where A = v2Fa(E, p) is the arbitrary complex amplitude of each wave mode and W is

the conventional normalization for Fourier integrals.
Recall that for a function f(z) with zeros at x;, i = 1,2,...,n, 6(f) gives a contribution
at each zero:

=3 e =) (936)

so the quadratic delta function can be written as

§ (pap™ —m?®) = & (E*—p>—m?) (937)
- ﬁa (B- Vo7 +m?) (938)
+ﬁ5 (B +Vor+m?) (939)

Exercise: Prove eq.(936).

Exercise: Argue that O(F) is Lorentz invariant.

The integral for the solution p(x,t) becomes
1 4 feY i (e
(ID(X, t) = W / V2FE { (aeﬁ(pax ) + GTeiﬁ(po‘x )) (940)
1
xmé (E —vVp*+ m2> (941)

+ <ae%(Pax“) + aTe’%(paxa)> (942)
1
<t (B Vo) e et (943
1 /( L (paa® -z o
_ aeiar®) 4 gto—ias )) 944
P (944)

1
X———=0 (E — \/p?+m2) hd%p (945)
g (£ V)

Define

o= (w,k) (946)
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p

k = = 4
P (047
1 2

w = —prrmie /kz+<ﬂ> (948)
h h

Then
1 dgk’ i(wt—k-x) t —i(wt—k-x)
p(x,t) = (a(k)e %) 4 qf(k)e " wk)) (949)

(27r)3/2 V2w

This is the general classical solution for the Klein-Gordon field. Notice that since w = w(k),
the amplitudes a and a' depend only on k.

To check that our solution satisfies the Klein-Gordon equation, we need only apply
the wave operator to the right side. This pulls down an overall factor of (ik,)(ik*) =
—h—12 (E? —p?) = —Tg—;. Since this is constant, it comes out of the integral, giving —’;;‘—jgp as
required.

Now we need to quantize the classical solution. Since we know the commutation relations
that ¢ and 7 satisfy when they become operators, it is useful to invert the Fourier integrals to
solve for the coefficients in terms of the fields. To this end, multiply ¢(x,t) by o )3 73 dPrex

and integrate. It will prove sufficient to evaluate the expression at ¢t = 0. On the left this
gives the Fourier transform of the field,

1 o
LHS = —B/Z/QO(X, 0)e® *dx

(2m)
while the right hand side becomes
1 d3k - -
_ i(k'—k)-x t i(k'+k)-x 3
RHS = o | s (a(k)e +at(k)e ) &z (950)
d3k 3 / T 3 /
= N (a(k)d® (k' — k) + a'(k)é* (K + k)) (951)
w
1
= (a(K') + a'(—K')) (952)

V2w

We also need the conjugate momentum,

T(x,t) = aogo (x,1) (953)

_ 27T 3/2 / \/7d3 z (wt—k-x) aT(k)efi(wtfk-x)) (954>

Once again taking the Fourier transform, W [ (%, 0)e® *d3x, of the momentum density,
we find it equal to

RHS, =

w’ 1/ o
Ed?’k (a(k)ez(k x gl (k)e'k +k)'x) d*x (955)
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= /\/>d3 k' — k) — a'(k)§® (k' + k))
= Z\/;( (k') —a'(=K))

We have the results,

V2w
(27)2

a(k) —al (k) = ﬁ\g / 7(x,0)e™ *d3y

These results combine to solve for the amplitudes. Adding gives a(k’) :

V 2w’ ) e

k/ — 0 _ 0 ik -Xd3
G( ) 9 (27‘(‘)3/2 (@(Xa ) w/ﬂ'(x7 )) (& X
while subtracting then changing the sign of kK’ gives the adjoint:

V 2w’ ) e
a.I. / _ X —1(x ik’-x Sx
() 2 (2m)*/2 (90( 0+ O)) !

a(k) +a' (k) = o(x,0)e™ *d3z

(956)

(957)

(958)

(959)

(960)

This gives the amplitudes in terms of the field and its conjugate momentum. So far, this

result is classical.

Next, we check the consequences of quantization for the amplitudes. Clearly, once ¢ and
T become operators, the amplitudes do too. From the commutation relations for ¢ and 7

we can compute those for a and a'.

[a(k), a'(K')]

il !
zkx zkde dS/

. {wx) L), 60¢) + ()
We need
. . . v ., , 21 .. o
609 = L) 60 + Z70) | = =2 (700, )]
= ;53(X—X/)
Therefore,

/ ; 1/ / 2
[d(k),dT(k’)} - _ww3 //e”"xe’k Py d3x’;53(x—xl)

_ / i(k—k’) xd3
27T 3V w

:53k k')

Notice that the delta function makes w = «'.
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Exercise: Show that [a(k),a(k’)] = 0.
Exercise: Show that [af(k),a’(k’)] = 0.

Finally, we summarize by the field and momentum density operators in terms of the mode
amplitude operators:

. 1 d3k A i(wt—k-x) ~ T —i(wt—k-x)
b(x,t) = o 7 (a(k) +a'(k)e ) (968)

3
ﬁ(x’ t) — 27T 3/2 / \/>d3 z(wt—k-x) _ dT(k)e—i(wt—kx)) (969)

Next, we turn to a study of states. To begin, we require the Hamiltonian operator, which
requires a bit of calculation.

3.2.2 Calculation of the Hamiltonian operator

This is our first typical quantum field theory calculation. They're a bit to keep track of, but
not really that hard. Our goal is to compute the expression for the Hamiltonian operator

~ h
H = §/ (A + V@ p+m?e?) d’x (970)
in terms of the mode operators. Because the techniques involved are used frequently in field
theory calculations, we include all the gory details.
Let’s consider one term at a time. For the first,

1
I, = 3 / 2P (971)

- _2(217T)3 / ( / \/gd?’k (a(k)e“wtk'x)—aT(k)e“wtk*‘))) (972)
X ( / \/gd?’k/ (a(k/)e“w’t—k’ ot (K )ei/ K" X>)> &z (973)

_ kdK dx (974)
( z(wt kx) _ ~ (k)e i(wt— kX)) (975)
(d i K %) &T(k/)e%(wwk'-x)) (976)

~1 / /

TR / / / Ve d kdK d (a(l)a(l )= g77)

m
—a(k)al(k (ki) (978)
T(k) (k ) —z(w w')t—(k—k')x) (979)
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I dT<k)&T(k/)e—i((w+w’)tf(k+k’)-x)) (980)

///\/_dgkdgk/ a(k)a(kK)0% (k + k') eferet (981)
f(K)o% (k — K') ef=t o

—dT( ) (K')3° (k — K/) et (983)
! (k)al ()8 (k + K) et (984)

981

Now perform the integral over d®z, using the fact that the Fourier waves give Dirac delta
functions:

1 )
— [ &Pz ™ =5k 985
| =00 (9%5)
Then

% / P dir = —i / / Ve Bkd3E (&(k)d(k’)53 (k 4 k) el (986)

—a(k)al (K)o (k — k') e?@=")t (987)

—af(k)a(k)® (k — K') e i@t (988)

+at(k)al ()0 (k + K) e—i<w+w’>t) (989)

Now, integrate over d°k’, using the Dirac deltas. This replaces each occurrence of k/ with
either +k or —k, but always replaces w’ with w.

% / 2Py = —}l / wd’k (a(k)a(—k)e*™" — a(k)a' (k) (990)
—a'(k)a(k) + a'(k)a'(—k)e ") (991)

Let’s press on to the remaining terms. The second term is

1
Iy, = = / V¢ - Vodiz (992)
- o / / / —dSkd3k P (—ik) - (—ik) (993)
( ( ) t(wt—k-x) (k)e—i(wt—kx)) (994)
% (d(k/)el(w t—k’-x) d'i‘(k/)efi(w’tfk/-x)> (995)

As before, the d3z integrals of the four terms give four Dirac delta functions and the d®&’
integrals become trivial. The result is

- - / KKk (—a (k)a(—k)e?™" — a(k)a' (k) (996)
—a'(k)a(k) — dT(k)aT(—k)e’Qi“t) (997)
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It is not hard to See the pattern that is emerging. The K term will combine nicely with the
w = “;2 from the 72 integral and a corresponding m? term from the final integral to give a
cancellation. The crucial thing is to keep track of the signs.

The third and final term is

1 3 3 1./
§/m2¢2d3x = /// 'k dk (998)

X a(k) ke 1 g (k)e W k) (999)
x (@(k)e 1K 4l (ke 1K) (1000)
— %/% (a(k)a(—k)e*™ +a(k)a' (k) (1001)
+a'(k)a al(k)a'(—k)e ") (1002)
Now we can combine all three terms:
H = g/;ﬁ2+v¢-v¢+m2¢2:df’x (1003)
= —= / wd®k (a(k)a(—k)e*™" — a(k)a' (k) (1004)
—a'(k)a(k) + a'(k)a'(—k)e ") (1005)
h [k-k . .
- Td% (—a(k)a(—k)e*™" — a(k)a' (k) (1006)
—a'(k)a(k) — a'(k)a'(—k)e **") (1007)
+m7 dw—k (a(k)a(—k)e*" + a(k)al (k) (1008)
+a'(k)a(k) + a'(k)a'(—k)e ") (1009)
- _2/% (& — K-k — m?) a(k)a(—k)e' (1010)
+ (—w® —k-k—m?) (ak)a'(k) + a' (k)a(k)) (1011)
+ (w? =k -k —m?) al(k)a'(—k)e ") (1012)
— g/d?’k: (a(k)a' (k) +a'(k)a(k)) w (1013)
= / dk (a*(k)a(k)Jr—) hw (1014)
Therefore, all of this boils down to simply
H= /d3k (a*(k)a(k) + %) hw (1015)

when written in terms of the mode amplitudes @ and a'. This result makes good sense —
it is just the energy operator for the quantum simple harmonic oscillator, summed over all
modes.
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3.2.3 Our first infinity

The form of the Hamiltonian found above displays an obvious problem — the second term,

1
5 / wd3k (1016)

diverges! While the constant “ground state energy” of the harmonic oscillator, %hw, causes
no probem in quantum mechanics, the presence of such an energy term for each mode of
quantum field theory leads to an infinite energy for the vacuum state. Fortunately, a simple
trick allows us to eliminate this divergence throughout our calculations. To see how it works,
notice that anytime we have a product of two or more fields at the same point, we develop
some terms of the general form

P(x)p(x) ~ a(w, k)a'(w, k) + ... (1017)

which have af(w, k) on the right. When such products act on the vacuum state, the a'(w, k)
gives a nonvanishing contribution, and if we sum over all wave vectors we get a divergence.
The solution is simply to impose a rule that changes the order of the creation and annihilation
operators. This is called normal ordering, and is denoted by enclosing the product in
colons. Thus, we define the Hamiltonian to be the normal ordered product

H = ;/ (7 + Vo ¢ +m?¢?) : &’ (1018)
_ g / &l : (a(k)at (k) + af(K)ak)) : w (1019)
= / d*k ' (k)a(k) fuw (1020)

This expression gives zero for the vacuum state, and is finite for all states with a finite
number of particles. While this procedure may seem a bit ad hoc, recall that the ordering
of operators in any quantum expression is one thing that cannot be determined from the
classical framework using canonical quantization. It is therefore reasonable to use whatever
ordering convention gives the most sensible results.

3.2.4 States of the Klein-Gordon field

The similarity between the field Hamiltonian and the harmonic oscillator makes it easy to
interpret this result. We begin the observation that the expectation values of H are bounded
below. This follows because for any normalized state |«) we have

(a| Hla) = (a|/w: (a*(k)a(k)+%> L &k |a) (1021)

_ / w dk (o] at(K)a(k) o) (1022)
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But if we let |3) = a(k) |a), then (3| = (a]a'(k), so

(| o) = / w &k (o]t ()a(k) ) (1023)
_ / w @k (B18) (1024)
> 0 (1025)

since the integrand is positive definite. However, we can show that the action of a(k) lowers
the eigenvalues of H. For consider the commutator

[ﬁ,a(kﬂ - [ / W' <&T(k’)d(w’,k’) +%> :dgk’,d(k)} (1026)
— / w' [a'(K),a(k)] a(k')d°K’ (1027)

. / W5 (k — K) a(K)dPF (1028)
_ —wd(k) (1029)

Therefore, if |a) is an eigenstate of H with H |o) = a |) then so is a(k) |o) because

A

A (a(k) o)) = [H &(k)] o) + a(k) H |a) (1030)
) ) + a(k)a |a) (1031)
) (a(k) o)) (1032)

Moreover, the eigenvalue of the new eigenstate is lower than «. Since the eigenvalues are
bounded below, there must exist a state such that

a(k)[0) =0 (1033)

for all values of k. The state |0) is called the vacuum state and the operators a(k) are called
annihilation operators. From the vacuum state, we can construct the entire spectrum of

eigenstates of the Hamiltonian. First, notice that the vacuum state is a minimal eigenstate
of H:

2

= / W'al (Ka(k') |0) &K
=0

H|0) = /w’: (af(k’)a(k’) + 1) L 10) K

Now, we act on the vacuum state with a'(k) to produce new eigenstates.

Exercise: Prove that |k) = af(k)|0) is an eigenstate of H.

100



We can build infinitely many states in two ways. First, just like the harmonic oscillator states,
we can apply the creation operator af(k) as many times as we like. Such a state contains
multiple particles with energy w. Second, we can apply creation operators of different k:

K k) = al(K)al(k) |0) = af(k)a' (k) |0) (1034)

This state contains two particles, with energies w and w'.

As with the harmonic oscillator, we can introduce a number operator to measure the
number of quanta in a given state. The number operator is just the sum over all modes of
the number operator for a given mode:

A

N = /: (a'(k)a(k)) : Pk
= / a'(k)a(k)d’k

Exercise: By applying N, compute the number of particles in the state
K, k) = al (K)a' (k) 0) (1035)

Notice that creation and annihilation operators for different modes all commute with

one another, e.g.,
[a'(K'),a(k)] =0 (1036)

when k' # k.

3.2.5 Poincaré transformations of Klein-Gordon fields

Now let’s examine the Lorentz transformation and translation properties of scalar fields. For
this we need to construct quantum operators which generate the required transformations.
Since the translations are the simplest, we begin with them.

We have observed that the spacetime translation generators forming a basis for the Lie
algebra of translations (and part of the basis of the Poincaré Lie algebra) resemble the energy
and momentum operators of quantum mechanics. Moreover, Noether’s theorem tells us that
energy and momentum are conserved as a result of translation symmetry of the action. We
now need to bring these insights into the quantum realm.

From our discussion in Chapter 1, using the Klein-Gordon Lagrangian density from
eq.(892), we have the conserved stress-energy tensor,

oL
™ = &6 — L 1037
20,0 * " 1o
1
= 0Mpdp— 577‘“’ (7% = Vo - Vo —m?y?) (1038)

which leads to the conserved charges,

PF = / AR (1039)
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and the natural extension of this observation is to simply replace the products of fields in
T+ with normal-ordered field operators. We therefore write

pr = / T @By (1040)

First, for the time component,
P’ = /:T00 AP (1041)
= / pd°p — (7T — Voo —m2p ) dx (1042)
= 2/ 72+ VE-Vo+m?2p? : dx (1043)
- i (1044)

This is promising!
Now let’s try the momentum:

Pl = / T : &z (1045)
= / 0'pd°p — %77 (72 = V@ -4 —m?@?) : d’x (1046)
/ 109 7 dPr (1047)

Exercise: By substituting the field operators, eq.(968) and eq.(969), into the integral for
P, show that

k' {—a(k)a(—k)e*™" + a(k)al (k) (1048)

+

a'(k)a(k) — a'(k)a'(=k)e **'} &k (1049)

The calculation is similar to the computation of the Hamiltonian operator above, except
there is only one term to consider.

We can simplify this result for pi using a parity argument. Consider the effect of parity on
the first integral. Since the volume form together with the limits is invariant under k — —k,

/ / / d3k—>/ / / dSk_/ / / d*k (1050)
and w (—k) = w (k) , we have

L= / &l ks a(k)a(—k)e2! (1051)

N | —
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1 3 . . it
= §/d k (—k;)a(—k)a(k)e (1052)

1 .
- - / B b a(k)a(—k)e2t (1053)
- 1 (1054)

and therefore I; = 0. The final term in the same way, so the momentum operator reduces to

P = /:aigaﬁ;d% (1055)
_ % / k- (a(k)al (k) + af(k)a(k)) : &k (1056)
_ / K a(k)al (k)d*k (1057)

Once again, this makes sense; moreover, they are suitable for translation generators since
they all commute.

In a similar way, we can compute the operators MeB , and show that the commutation
relations of the full set reproduce the Poincaré Lie algebra,

[Ma,é” M;u/_ _ nﬁuMC‘éV _ nﬂVMOéM _ naﬂMﬁV _ no‘VMB“ (1058)
[Maﬁ’ p;[ _ nuapﬁ _ 77#5]504 (1059)
[pa, J — (1060)

The notable accomplishment here is that we have shown that even after quantization, the
symmetry algebra not only survives, but can be built from the quantum field operators.
This is far from obvious, because the commutation relations for the field operators are
simply imposed by the rules of canonical quantization and have nothing to do, a priori, with
the commutators of the symmetry algebra. One consequence, as noted above, is that the
Casimir operators of the Poincaré algebra may be used to label quantum states.

3.3 Quantization of the complex scalar field

The complex scalar field provides a slight generalization of the real scalar field. As before
we begin with the Lagrangian,

L= / (0%¢" 0o — mPp*p) d’x (1061)

We define the conjugate momentum densities to ¢ and ¢* as the functional derivatives L

with respect to ¢ and * :
oL

6 (Qow)
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and similarly

. oL 0

T = 5 o0’ = 0"p(x) (1063)
The action and Lagrangian density, written in terms of these momenta, are therefore
- / (7% — V" - o — mPp*p) d'z (1064)
L = " =V Vo —mipp (1065)
The Hamiltonian is
H = / (mp + 7" d*r — L (1066)
= /(mr* + 1) — (7t = Ve Ve —mPprp) da (1067)
= / (7w + Vo - Vo + mPp*p) d’x (1068)
Hamilton’s equations are:
(0 = i (1069)
i) = — 5(‘;& ) (1070)
= (1071)
X)) = - 5£5X) (1072)

Exercise: Prove that Hamilton’s equations reproduce the field equations for ¢ and ¢*.

Now write the field equations in terms of functional Poisson brackets, which, for func-
tionals f = f[p, 7, ¢*, %] and g = g [p, 7, p*, 7*] are now given by

[ (5 bg . 6 4
o = [ “(wxw(x) T 5 () b () (1073)

. of dg B of 0g
PIRE  ) (1074)
The result is the same:
o) = [ (G o 1075
B Im(x') 0p(x") B 3,
dp(x) om(x) 0) a (1076)



_ / 5 — x)0} (X" — x)dx (1077)

= &' —x) (1078)
{r"(x),¢"(x")} = " —x) (1079)

with all other brackets vanishing.

Exercise: Check that Hamilton’s equations

(x) = {H(p,m¢" 1), 0(x)}
p'(x) = {H(p,m " 7)), 0" (X)}
w(x) = {H(p,m¢" 1), 7(x)}
m(x) = {H(p,m ¢ 7)), 7" (%)}

work out correctly.

Now we quantize, replacing fields by operators and Poisson brackets by equal-time com-
mutators:

[7(x, 1), p(x",1)] = i} (x" —x) (1080)
[7* (X', 1), ¢*(x",1)] = i} (x" — %) (1081)

with all other pairs commuting. Now we seek solutions satisfying these quantization relations.

3.3.1 Solution for the free quantized complex scalar field

The solution proceeds as before, starting with solutions for the classical theory. The field
equations

mQ

2
* m *

are complex conjugates of each other. The only difference from the real case is that we no
longer restrict to real plane waves. This leaves the amplitudes independent:

o(x,t) = Aer PPy gt (=) (1084)

Substituting into the field equation we have

N 2 ) -\ 2 )
1
= —papap”e(x.1) (1086)
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SO again,
pap® = m? (1087)

We can solve this for the energy,

E. = Vprim? (1088)
E. = —\/p?+m? (1089)

The general Fourier superposition is

p(x,t) = (2 3/2/ 2E a(E,p)er ™) 4+ bl(B, p)e i ®" )> (1090)
7T
X6 (pap® — m?) @(E)h Yd'p (1091)
1 &k (wi—kex) | bt () iwt—k)
= (a(k)e @ =1%) 4 i (k)e @) (1092)

(27?)3/2 V2w

The conjugate field and momenta are

1 d3k ,
o' (x,t) = 37 (b(k)e’(”t kx) L q (k)e’l(“’t’k'x)) (1093)
(27r )

m(x,t) = @ / \/7 &k (b(k)e' %) — af (k)" 7kx)) (1094)

T (x,t) = ) 3/2 / \f &k elWi=k) _ pi ()it —k) (1095)

We need to invert these Fourier integrals to solve for a(k),b(k),a’(k) and b'(k).

Exercise: By taking inverse Fourier integrals, show that

a(k) — )3/2\/> / i ( —£W*<x,0)) e (1096)
bk) = 27:)3/2\[ / B ( —gﬁ(x,O)) ekx (1097)

It follows immediately from this exercise that the conjugate mode amplitudes are given

by
a*(k) = 273)3/2\/7 / B ( (x,0) + w(x 0)> Tikex (1098)
b (k) = 13/2\/7/615 ( (x,0) + w( ,0)> ek (1099)

We can now move to study the quantum operators. When the fields become operators the
complex conjugates above become adjoints (for example, a*(k) — a'(k)). We next find the
commutation relations that hold among the four operators a(k), b(k),af(k) and b'(k).
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Exercise: From the commutation relations for the fields and conjugate momenta, eqs.(1080)
and (1081), show that

lak),a' (k)] = & (k—K) (1100)
[B(k),?ﬂ(k’)} = Pk-K) (1101)

Exercise: From the commutation relations for the fields and conjugate momenta, eqs.(1080)
and (1081), show that

[a(k),i)(k')] ~ 0 (1102)
[a(k),iﬂ(k')] — 0 (1103)

As for the Klein-Gordon field, we could go on to construct the Poincaré currents, writing
the energy, momentum and angular momentum in terms of the creation and anihilation
operators. These emerge much as before. However, for the charged scalar field, there is an
additional symmetry. The transformation

o(x,t) — eiagp(x, t) (1104)
O (x,1) — et (x,t) (1105)

leaves the action
S = / (00" Oatp — mPp*p) d'x (1106)

invariant. Therefore, there is an additional Noether current. In this case, the variation of
the Lagrangian

L= / (0%¢* 0o — mPp*p) d’x (1107)
is also zero, so from eq.(287) the current is simply
oL
Jh= A4 1108
9 (0u0?) (1108)
where
¢ — ¢t + A (9P, 2) (1109)
defines A“4. For an infinitesimal phase change, the fields change by
© = p+inyg (1110)
" = P —lap” (1111)
so the current is
oL oL
JY = ——Ap+ Ap* 1112
00,07 90,07 7 )
= (0%")iap — (0%p) iap® (1113)
= i ((0%") ¢ — (0%0) ¢") (1114)
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We are guaranteed that the divergence of J* must vanish and can easily check using the field
equations:

OoJ® = a0, ((0°¢") v — (0%p) ") (1115)
= ia ((0.0%¢") p — (09¢) Oup” + (07¢") Dutp — (020" p) ©*) (1116)
= —ix (m2g0*<p — m2<p<p*) (1117)
= 0 (1118)

In general, when new fields are introduced to make a global symmetry into a local symme-
try, the new fields produce interactions between the original, symmetric fields. The strength
of this interaction is governed by the Noether currents of the symmetry. In the present case,
when this U(1) (phase) invariance is gauged to produce an interaction, the new field that
is introduced is the photon field, and it is this current J¢ that carries the electric charge.
Therefore, writing e for a;, we see that

J¥=(p,J) = e(i ("0 — ¢p") i (pp" — ©"Vp)) (1119)

Substituting the operator expressions for the fields, we find that the conserved charge is
given by

Q = /Jod?’x (1120)

= z’e/N(ﬁ@—fr*@*)d% (1121)

_ 2(2;) / / / \/7 PrdPk d*x N B(k) (K )eillrei=lktl)x) - (1199)

—af (K)a(k)e (D=2 4 h(k)pi (K )l = k) (1123
—af (k)b! (k') (WHeDi=(et) _ (g ¢y b)) (1124)

_ _¢ 3773 N s3 i(wtw)t
— 2//\/>d kd k;N(b(k) (K)5® (k + k) e (1125)
—at(k)a(k)o® (k — k) e @ 4 h(k)bl (K)o (k — k) et (1126)
—af (k)b ( ’)53 (k + k) e 7@ _ (g 5 b)) (1127)
= —g / d*kN (B(k)a(—k)e%wt — al(k)a(k) + b(k)b' (k) (1128)
—al (k)b (—k)e 2t a( )B( k)t 4 b(k)bf (k) (1129)
—al(K)a(k) + bf(k)af(—k)e 2wt (1130)
= =5 | d (b(x) 2M—a(k)é(—k)em (1131)
—2a' (k)a(k) + 2bT(k)b(k) (1132)
+ bt (K)af (—k)e 2wt — a*<k)é*<—k)e—2w> (1133)
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Since the first and last pairs of terms cancels, this reduces to simply
Q=e / &k <&T(k)&(k) - BT(k)B(k)) (1134)
~ . / Pk (k) — Ni(k)) (1135)

where the operators N, (k) and Ny (k) are the number operators for particles of types a and
b, respectively. Notice that these particles have opposite charge.

It proves to be of some importance that the charge e appears as the phase of the U(1)
symmetry transformation. This means that complex conjugation has the effect of changing
the signs of all charges. This charge conjugation symmetry is one of the central discrete
symmetries associated with the Lorentz group, and it plays a role when we consider the
meaning of antiparticles later in this chapter. Notice, in particular, in the solution for the
complex scalar field, eq.(1092), that the phase of the antiparticle is just reversed from the
phase for the particle.

3.4 Scalar multiplets

Suppose we have n scalar fields, ¢, i = 1,...,n governed by the action
1 a in i 2 i i\ g4
5:5/2(8g08ag0—m<p<p)dx (1136)

The quantization is similar to the previous cases. We find the conjugate momenta,

e 5o = @ (1137)
and the Hamiltonian is
H = %/ (r'm’ + Vo' Ve + mPp'e') (1138)
The fundamental commutation relations are
[7(x, 1), ¢/ (X', 1)] = 1076 (x — x) (1139)

with all others vanishing. These lead to creation and annihilation operators as before,
[a'(k), T (k)] = 676° (k — K (1140)
and a number operator for each field,

N(k) = a'f(k)a' (k) (1141)
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The interesting feature of this case is the presence of a more general symmetry. The
action S is left invariant by orthogonal rotations of the fields into one another. Thus, if O° j
is an orthogonal transformation, we can define new fields

' =0" ;¢ (1142)

It is easy to see that the action is unchanged by such a transformation. For each infinitesimal

generator of a rotation, [g()] Y= (6207 — 6167) , there is a conserved Noether current found
from the infinitesimal transformation,

0 = &+ [eay]” @ (1143)
Since the Lagrangian is invariant, the current is
oL ,
oo = ———Apg¢ 1144
O TON ki (1144)
aoespz‘ [S(rs)] K ij (1145)
= gpraa(ps _ gpsaagp’l’ (1146)

We are guaranteed that the divergence of J* vanishes when the field equations are satisfied.

3.5 Antiparticles

Until this section we have dodged the issue of the negative energy solutions to scalar field
theories by inserting a step function, ©(F), in the Fourier series for the solution. Now let’s
consider these in more detail. We'll see that the negative energy states may be interpreted
as antiparticles. While the discussion applies to all fields we consider, it is simplest to look
at the real scalar field. The same considerations apply to the complex and multiplet fields.

To begin, let’s look at sources for an interacting scalar field. For example, consider a
term in the particle action that couples a scalar field to a spinor field. One possible action is

1 _
S = 3 / d*z (0%¢0ag — m*¢* — 20000)) (1147)
The field equation for ¢ is therefore
O¢ +m?¢p = —J (1148)
where B
J =Yy (1149)

In this simple case, the spinor field provides a source for the scalar field. For our purposes
it is sufficient to consider solutions to equations of the general form given in eq.(1148).

To solve eq.(1148), we use Green’s theorem. For a complete treatment of the method,
see e.g., Jackson or Arfken. Simply put, if we can first solve

(O+4+m?) G (z,2") = 6" (z — 2') (1150)
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for a function G (z, 2') satisfying the relevant boundary conditions, then equation (1148) has
the solution

o(x) = /d4x’G (z,2") J(x") (1151)

for the same boundary conditions when the source is J(x). To see this, just apply the Klein-
Gordon operator to ¢(x):

(O+m?) ¢(z) = (O+m?) /d%'G (z,2") J(2") (1152)

Since ((J 4 m?) depends on z and the integral is over 2/, we may bring the operator inside
the integral:

(O+m?) ¢(z) = /d4x’ (O+4m?) G (z,2") J(2) (1153)
= — /d4m'54 (x —a") J(2) (1154)
= —J(z) (1155)

The reason the technique is useful is because a solution to eq.(1150) may be built from
solutions to the homogeneous equation.

To find the Green function, G (z,z’), explicitly when the boundary conditions are at
infinity, we again use a Fourier series. Write

Glz,2') = ﬁ / ARG (e —) (1156)
T

S o—a) = (21>4 / e hela ') (1157)
T

Then, cancelling the factor of (27)*,
(O +m?) / d*kG (k) *e@ =) = [ @i pe ke ) (1158)

/ d'kG(k) (=ko k™ +m?) e @2 = / di ke ke (@ =2") (1159)

so that 1
Gk)=—— 1160
() = (160)
Inverting the Fourier transform gives the Green function:
/ 1 4 1 —ika (z*—x'%)
G(r,2)=—— | &k 5 e e (1161)
(2m) ((ko) — k2 —m?)

The interesting feature here is the divergence in the denominator. To compute it we resort
to a contour integral and the residue theorem.
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The poles are given by factoring the divergent factor as

1 1 1 1
= + 1162
(k9)? —k2 —m2  2ko (k:ﬂ —ViZ+m?2 kRt m2) (1162)

The poles lie on the real axis in the complex k° plane, but we can displace the poles slightly
by replacing ko — kg + i€ or kg — ko — ic. The direction we push the pole depends on the
boundary conditions we want to impose. Let’s consider the possibilities. For each of the
two simple poles we have two choices, so there are four possible contributions to the Green
function. We compute them in turn. The first pole occurs when

k0 = +vVk2 + m?2 (1163)
Displacing this point leads to two cases:

K = 4Vk2+m?+ic (1164)
K = +VKk2+m2—ie (1165)
The first choice gives the Green function

1 dik e~ i(ko(t—t')—k-(x—x"))

G r,7) = — / 1166
1 ' dkO —iko(t—t’)
= 5 / T : (1167)
(27r) 2k kO — VK2 +m? — ie
dk0 e —i(kO(t—t")—k(x—x"))
_ 1168
(2m)* / / 2k0 |0 — /K2 + m2 — ie ( )

To close the k° contour, we add a half-circle and let its radius tend to infinity. When ¢t > ¢/,
we must add this half circle in the upper half plane, while for ¢ < ¢ we must close in the
lower half plane. Since the pole is in the upper half plane, the integral for ¢ < t' gives zero,
while for ¢t > ¢’ we have

Hz,e) = lim—— [ d*ke) L (1169)
x,x') = lim e o
) e=0 (27T)4 / fitpperplane 2k0 kO —V k2 + m2 — 1€
; 3
_ 27”4 / d’k ik (=) =i/ K () (1170)
(27r) W 2
zk\x x'| cos 0—ivVk2+m2(t—t')
= /dcp/sm&dﬁ/dk (1171)
V% +m?
Qﬂ- 7 ezk|x x'| cos 0—ivk2+m?2(t—t')
= d(cosf /k‘Qdk‘ 1172
(27‘(‘)4 / ( ) v/ k2 + m2 ( )

2724 —iVkZ4m2(t—t') (piklx—x'| _ o—iklx—x|
- / 24k~ ( ) (1173)

VEZ £ m?2 ik |x — x|
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) / g sk X = X' ) (1174)
27T X—X/’ k;2_|_m2

_ / zZsin zm |X X/‘ fzm\/;(t t) (1175)
27T ‘X _ X/| 1

zZ sin ZT' 2 ’
_ d —imV/22+1(t—t") 1176
(27T) rJo V1+ 22 ( )

Let’s put off the final integral for now. The important part for the moment is the time
dependence, which we may write using a unit step function:

Gipi(x,2') =0t —t") H (z,2") (1177)

For the second displacement, the upper contour (for ¢ > t') gives zero contribution while
for t < t’ we compute

1 d*k 1 - / /
H x, .I/ = — / [ e*Z(kO(t*t )—k-(x—x")) 1178
2 (72 2m)* ) 2K0 kO — K2+ m? (1178)
1 dkO kO (¢ —t)

= lim ke ) ?{ — 1179
e=0 (27T)4 / upper %—plane 2k0 kO -V k2 + m2 + 1€ ( )

27TZ dgk ik ’ . ’

— ik (x—x")  —ivVKZ+mZ(t—t")
= e e 1180
(21)" / N (1180)
= Hj(z,2) (1181)

so that

Gip _i(x,2') =0 —t)H (z,2) (1182)

For the second pole, at k° = —v/k? + m?, we again have two possible displacements,

= —VKk2+m?2+ie (1183)
= —VKk2+m?2—ie (1184)

Choosing the first,

1 dAk —z(ko (t—t")— k(x—x/))
G_g4i (x,2) = lim —/ 5
’ )0 20 kO + VK? +m? — e

e—0 (27‘( 4

has the pole in the upper half plane, so

—271 dgk i 2 2 / /
G z, ) = O(t—t / 6z(\/k +m?2(t—t')+k-(x—x ))
Bt (0,0) t=1) @em') 2k +m?
= @(f—t/) H[[ ($,l’l)
Finally, pushing the pole to the lower half plane gives

G p_i(z,2")=0{ —t)Hy (x,2")
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Collecting these results,

Gipyi(z,2") ©(t—t)H(x,2) (1185)
Gip_i(z,2) Ot —t)H(x,a) (1186)
G_py(x,2") = ©@—1t)Hy(z,2") (1187)
G p_i(x,2) = O —t)Hy(x,2") (1188)

The +F and —FE subscripts indicate whether the solution describes a positive or negative
energy solution. As we show below, the +t and —t subscripts indicate whether solutions
progress causally toward the future or toward the past.

The full Green function is a sum of one of the H; terms with one of the Hj; terms.
Classically, we would choose the Green function to be

G(I‘, ZE/) = G+E,+t(x, ZE/) + G—E,+t (I, x/) (1189)

because then the solution is given by
o(t,x) = /d4:1:'G (x,2") J(2) (1190)
- / 4o (t —t) / B2 (H (2,2) + Hyy (0,2)) J(E,x) (1191

= /t dt’ / d*x' (Hy (v, 2') + Hyp (z,2") J (', X) (1192)

The limits on the time integral show that the field at time ¢ is determined only by sources
J(t',x’) evaluated for times ¢’ earlier than ¢. This is our minimal expectation for causal-
ity. However, Feynman has shown that using any of the Green functions is consistent with
causality, and proposes pairing G(z,x’) with G4(x,2"). Indeed, the Feynman choice is ac-
tually more consistent with causality as we now understand it. Causality, in essence, is the
preservation of the spacetime light cone. No physical propagation that begins in the future-
pointing light cone may exceed the speed of light — it must remain in the future-pointing light
cone. We call such motion futurelike. Correspondingly, we are justified in asserting that any
propagation beginning in a direction inside the past-pointing light cone must remain within
this past-pointing light cone. Motion into the past light cone we’ll call pastlike. A similar pro-
hibition applies for causal tachyons — particles whose motion remains in spacelike directions.
The symmetry of the situation suggests that it is reasonable to consider both directions of
time propagation equally. Doing so leads us to a clearer understanding of antiparticles.
Therefore, we will choose the Green function in the form which associates positive energy
solutions with futurelike motion in time and negative energy solutions to pastlike motion,

G(z,2") = Gip(r,2) + G_p 4 (z,2)) (1193)

leading to fields of the form
t 00
o(t,x) = / dt’/d3x’H[ (x,2") J(t', x') + / dt' Hyyp (z,2") J(t', %) (1194)
—00 t
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As a result of this choice, ¢(t,x) can depend on events in both its forward and backward
light cones. The benefit of this choice is that it gives a clear physical meaning to the negative
energy solutions, for the following reason. Suppose a particle travels backward in time, from
point A(ts, x2) to point B(t; x1) with ¢; < t5. Then an observer moving forward in time will
experience the particle first at ¢; and later at ¢, and the particle will appear to move in the
opposite direction, from x; to xo. Moreover, if the particle carries negative energy from A to
B, the observer sees the negative energy arrive at B, then depart later from A. This means
that the energy at B decreases and the energy at A increases, so to the futurelike observer
a positive amount of energy has moved from B to A. The same argument applies to electric
or other charges. If a negative charge moves backward in time from A to B, the forward
moving observer sees a positive charge leave B then arrive at A.

To summarize: fix a set of coordinates on spacetime, (¢, x) where the sign of ¢ distinguishes
the two halves of the light cone, “future” and “past”. Now consider a futurelike observer, that
is, moving in such a way that the time coordinate ¢ associated with their position increases.
To this observer, particles moving into the future light cone will have positive energy F,
momentum p, and may have a charge q. When this same futurelike observer observes the
same type of particle travelling into the past light cone, (with decreasing time ¢, positive
energy F, momentum p, and charge ¢ in its own pastlike frame of reference), the particle
appears to the futurelike observer to move in the direction of increasing t, have energy —F,
momentum —p, and charge —q.

We can turn this around in order to interpret negative energy states. If our futurelike
observer watches a particle of negative energy moving into the past light cone, they will
interpret it as a particle of positive energy moving into the future. In this way, we find a place
for negative energy states. Let’s make this precise using the discrete Lorentz transformations.

In our discussion of discrete Lorentz transformations, we defined chronicity, ©, as follows:

O : t——t (1195)
O : x—Xx (1196)
© : F—--F (1197)
© : p—p (1198)
© : ¢g—q (1199)
We also need the actions of charge conjugation,
C : t—t (1200)
C : x—x (1201)
C : E—-F (1202)
C : p—p (1203)
C : q——q (1204)
which we implement by complex conjugation, and parity
P o t—t (1205)
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X — —X ( )
EF—FE ( )
p— —p (1208)
q—q (1209)

AV IR VIR VIR

The effect of combining all three operations at once is then

CPO : t— —t (1210)
CPO : x— —x (1211)
CPO : E— —E (1212)
CPO : p——p (1213)
CPO : q— —q (1214)

The action on the phase of a field is

l

CPO - L (Bt —p-x) = L ((~E) (~1) ~ (-p) - (-x) = —+(Et —p-x)  (1215)

Therefore, if we always choose our field expansions to include ¢! symmetrically with ¢, the
field theory will be CPO-invariant. This combined action of discrete transformations gives
us the picture we want. By simply changing the sign , we turn the phase a particle of 4-
momentum p* = (F, p) and charge ¢ into the phase of a particle 4-momentum p* = (—E, —p)
and charge —q travelling backward in time in a parity flipped space.
Now our interpretation of the negative energy states is clear. By choosing the Green
function to be
Gz, 2") = Gip(z,2) + G_p 4 (z,2)) (1216)

and the field expansion to be

1 d3k
2m)*? ) Vaw
we always associate the negative energy solutions with pastlike motion. The appearance of
such a pastlike particle (with energy —E, momentum p and charge ¢) to a futurelike observer

is the CPO transform of the field, i.e., a futurelike particle of energy +FE, momentum —p
and charge —q.

(a(k)e@=k%) 4 gf(k)e (k) (1217)

SO(X’ t) =

Define: Suppose a given variety of particle exists in futurelike states described by phys-
ical field ¢4 (F,p,q...), and also in pastlike states described by ¢_ (—E,p,q...)
having negative energy. Then ¢, (E,p,q...) has an antiparticle state defined as

CPO¢_(—E,p,q...).

Since

CPO¢_(—E,p,q...)=CPO¢_(E,—p,—q...) (1218)
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antiparticle states are positive energy and futurelike. It is easy to see that all other quantum
numbers are reversed, because a pastlike particle carrying any quantum charge g into the
past will be experienced by a futurelike observer as carrying a charge —g¢g into the future.

We require field theories to be symmetric with respect to particles and antiparticles, so
that for field operators

CPOY (t,x) (CPO) " = ¢ (t,x) (1219)
Since the conjugate momentum
", ) = %@(X, t> (1220)
satisfies
CPOR(x,t) (CPO)™" = CPO (%@(t,x)) (cPo)™ (1221)
_ 9, (t,x) (1222)
- 875@ )
= —7(x,t) (1223)
we find that the effect of CPO on a (k) = ¢(x) — L7(x) is
CPOa (k) (CPO)™' = CPO <¢<x) - 57%()()) (cPO)~! (1224)
— 50— =2 (—a(x) (1225)
()
= $(x)+ —7(x) (1226)
= a' (k) (1227)
Moreover, we have
CPOI (wt —k-x) (CPO) " = —i((—w)(~t) — (k) - (—x)) (1228)
= —i(wt—k-x) (1229)
so that the action of CPO on a plane wave is
cPO (a(E, p)ei Pas” >) (CPO) " = ol (B, p)e +?=") (1230)

Therefore, the full expansion for ¢(t,x) will be symmetric under CPO if it is an equal linear
combination of terms

2(t,%) ~ a(E, p)ei **) 4 al(B, p)e i ®") (1231)

This form agrees with eq.(1217) for ¢(t,x). But eq.(1217) was found by setting

o(x,t) = /\/ﬁ )eh(puz '+ af(E, p)e” i (paa )> (1232)

(2m) 3/2
X0 (pap® —m*) O(E)R™'d'p (1233)
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where we included the positive energy step function. The present calculation justifies our
earlier step.

Our choice of boundary conditions leads us to ask what boundary conditions the other
possible Green functions represent. A moment’s reflection on the expression

G(z,2") = Gipt(x,2") + G_p i (z,2)) (1234)

suggest that this is the proper Green function for an observer travelling backward in time.
For such an observer, an antiparticle (also moving backward in time) would be assigned
positive energy, hence the G g _(z,2) term. To the same observer a matter particle would
be a negative energy state travelling in the positive time direction.

3.6 Chronicity, time reversal and the Schrodinger equation

The relationship of chronicity and time reversal to quantum mechanics is also interesting.
Consistent with energy in Newtonian mechanics, the action of time reversal is always taken
to leave the Hamiltonian invariant. By contrast, the chronicity reverses the sign of the
energy. We now consider the effect of these transformations on solutions of the Schrédinger
equation.
Suppose a state 1) solves the Schrodinger equation,
o
th— =H 1235
= (1235)
We want to know when a transformed state T is also a solution, where T is either time
reversal or chronicity. In either case we have
o(T -
AACA N (1236)
ot
A sufficient condition for this to be the case is found by acting on the equation with 7!
and inserting appropriate identities:

T‘lih@ = T7'H(TYy) (1237)

(T~YhT) (T*%T) v = (T7UAT) Y (1238)

Now, for both time reversal and chronicity, T*1%T = —%. Therefore the transformed state
T is a solution if

— (T74T) h% =T'OT (1239)

Time reversal and chronicity take advantage of the two simple ways to solve this equation.
For time reversal, is accomplished by making the operator anti-unitary,

TiT ' = —i (1240)
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while chronicity is unitary but changes the sign of the Hamiltonian,
OHO ' = —H (1241)

This is the reason that chronicity is not suitable for quantum mechanics: since quantum
mechanics includes neither antiparticles nor pastlike particles, negative energy states cannot
be reinterpreted as futurelike, positive energy states. Then, the presence of both positive
and negative energy states of the same quantum system leads to runaway production of ever
more negative energy states. As noted previously, the failure of energy and momentum to
form a 4-vector under time reversal is not a problem in a non-relativistic theory.

With both pastlike and futurelike particles present symmetrically, we may consistently
regard all negative energy states with futurelike positive energy states, so there will be
no runaway solutions. Another way to think about this is to consider interactions. The
interaction of a futurelike particle with a pastlike particle always occurs as if the futurelike
particle were encountering a positive energy antiparticle. Nor can futurelike particles gain
arbitrary energy by creating negative energy states, because the only negative energy states
are pastlike. Futurelike particles can only produce pastlike particles under special conditions
such as particle-antiparticle annihilation.

One further consequence of using chronicity is that, being hermitian, it is a quantum
observable. Since 72 = 1, there will be two eigenvalues. We conjecture that these will
correspond to antiparticle number, with particles assigned the eigenvalue +1 and their an-
tiparticles the eigenvalue —1. Of course, it is arbitrary which is called the particle, but the
two states are distinguishable. This assignment is equivalent to assigning plus one to fu-
turelike observers and minus one to pastlike observers, which accounts for our observations
revealing only the +1 eigenvalue and only the one pair of Green functions.
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4 Quantization of the Dirac field

4.1 Hamiltonian formulation

Now we turn to the quantization of the Dirac field. The action is

S = / d*z 1 (iy"0, — m) ¥ (1242)
The conjugate momentum to 1 is the spinor field
oL 0
7TA - 5(anA) —'L'QZ)’}/

: B c

= i [¢"] hse [°] (1243)
We can also write this as B

70 = it (1244)

Undaunted by the peculiar lack of a time derivative in the momentum, we press on with
the Hamiltonian:

H o= [dwiirow - [deb 0, - m
= [P (102000 109000 — 00+ miv)
_ / P (=i 0 + mPo)
= / Pz ip (=70 — imy)
_ / B 1) (70, — im) ¢
= i / Pz 7° (17'0; — m) (1245)

Once again, we are struck by the absence of time derivatives in the energy. This is somewhat
illusory, since we may rewrite H using the field equation as

H = z'/d?’x 70 (i’yi@ — m) ()
= / &’z 7" (7"0p) ¥
_ / P 7o (1246)

As we show below, only the first form of the Hamiltionian is suitable for deriving the field
equations, since we used the field equations to write this simplified form. However, eq.(1246)
is useful for computing the operator form of the Hamiltonian from solutions.
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We can check the field equation using either form of H. Thus, we have
G = {H, 9}
= [ (5H (2) d(x) _ OH(x) ) <m>)
om(a’) 59(a’) 09 (a’) om(a)
= Z‘/di’)xl 70 (27281 _m) w(x/) 53(1'—33'/)
= (70, = m) ¥(2) (1247)

Multiplying by 4" this becomes

N0y = — (iv'0; —m) Y(x) (1248)
(17%0q —m)¢(xz) = 0 (1249)

Notice that, had we used eq.(1246) for the Hamiltonian, we find only an identity:

[ (SHE) 00(n)  SH() dv(a)

o = [d (wx') 50() 5¢<x/>6w<x'>> (1250)
= /d3x'(80w(x’))(53(x—x') (1251)
i) (1252)

As already noted, the identity occurs because we have already used the field equation to
write the Hamiltonian in the simplified form.
For the momentum we find the conjugate field equation:

Oor = {H,7} (1253)
B s , (0H(z) dm(x) B 0H (x) ém(x)
- o (ne - e e) i
_ [ gy (@) om(2)
- [e(-Fme) 1299
_ / (= (i (=0 — 17m)) 8 (x — o)) (1256)
= i (107" + 7°m) (1257)
= in(z)y° (m’%z + m) (1258)

where the arrow to the left over the derivative is standard notation indicating that the
derivative acts to the left on 7. This lets us write the final result more compactly. Replacing
7y° = i1) and inserting 7’4" = 1 on the left, we find:

0oy’ = —¢ (271%1 m) (1259)

+
00" = —b (m i+m> (1260)



and therefore gathering terms

10007 + (W‘&» + m) — 0 (1261)
W <i7"%a - m) — 0 (1262)

thereby arriving at the conjugate Dirac equation. Once again, if we use H as given in
eq.(1246), we find only an identity.
Finally, we write the fundamental Poisson brackets,

{ma(x, 1), 0%(x', 1)}, = 056° (x = X) (1263)

Before we can proceed, we need to solve the classical Dirac equation.

4.2 Solution to the free classical Dirac equation

As with the scalar field, we can solve using a Fourier integral. First consider a single value
of the momentum. Then we can write two plane wave solutions with fixed, positive energy
4-momentum p® in the form

B, 1) = u(p)e P g o(pt)ee (1264)

where u(p®) and v(p®) are spinors, p* = (E,p')and p, = (E,p;) = (E, —p"). Substituting,

0 = (17"0a —m)(x,1) (1265)
= (i7*0a —m) (u(p®)e" """ + v(p*)eP"") (1266)
= (7"Pa —m)u(p®)e™ " — (¥pa + m) v(p®)eP (1267)
we find the pair of equations
(1°D0 — m)u(p®) = 0 (1268)
(Y*pa +m)v(p?) = 0 (1269)

for the u(p®) and v(p®) modes, respectively.
We'll begin by writing out the equation using the Dirac matrices as given in eqs.(707),

p(* )5 0)

and solve first for u(p®) . If we set

[u(pa)]” = ( gggz; ) (1271)
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where A = 1,2, 3,4, then we get the matrix equation

0= 0% —mul’) (1272)
) < Lo B ) ( B ) (1273)

which gives the set of 2 X 2 equations

(E —m)a(ps) +'pif(pa) = 0 (1274)
_Uipia(pa> —(E+m)B(pa) = 0 (1275)

Since E > 0, the quantity F -+ m is nonzero so the second equation may be solved for 5(p,)
and substituted into the first:

o) = = (F2 ) ato) (1276)

E+m
(E-malpn) = o'n (7L ) at) (1217
(B —=p*—=m?) alp,) = 0 (1278)

where we use (0'p;)° = (—p')(—p') = p? in the last line. This just gives the usual relativistic
expression relating mass, energy and momentum, with positive energy solution

E =+/p?+m? (1279)

This determines the energy; now we need the eigenstates. These must satisfy

) = — (L) ate) (1250)

0 = E*—p*—m? (1281)

with no further constraint on «a(p,). We are free to choose any convenient independent
2-spinors for a(p,). Therefore, let

a1(pa) = ( (1) ) ;2 (Pa) = ( (1] ) (1282)

For a;(pa), (remembering that p; = —p’) we must have

O.’L

Bilpa) = pi )oq(pa) (1283)

P _pﬁpy ) ( (1) ) (1284)

i ) (1285)

|—t/—\

~+

(i
o (]
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while for as(p,) we find

Bolpa) = —( 7 )cm(pa) (1286)

_ ( o px__pjpy ) ( ; ) (1287)
_ E+m<p ‘”’y) (1288)

These relations define two independent, normalized, positive energy solutions, which we
denote by u,(p*):

1
E+m 0

2m E+m
p*+ip¥
E+m

0

E+m 1
A

o — T _ipY 1290
[ug(p )] om pE+ ; ( )
Fim

s () = (1289)

Exercise: Show that u;(p®) and ugs(p®) are orthonormal, where the inner product of two
spinors is given by

() = xTh (1291)

with h given by eq.(775). Notice that this inner product is Lorentz invariant, so our
spinor basis remains orthonormal in every frame of reference.

For the second set of mode amplitudes, we solve

0 = (¥*pa+m)v(p") (1292)
_ (E+m  o'p a(pa)
- (S ) G (1268)
for a(py) first instead: '
ape) =~ B(pa) (1204)

Once again this leads to £? — p? — m? = 0, so that £ = \/p? + m2. There are again two
solutions. Since f(p,) is arbitrary and a(p,) is given by eq.(1294), we choose

Bi(pa) = ( é ) ; Ba(pa) = ( (1) > (1295)
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leading to two more independent, normalized solutions, v,(p®),

z

y4
[ ()] = Btm (1296)

[wa(p™)]* = Btm (1297)

The entire set of four spinors, u,(p®), v.(p®), is a complete, pseudo-orthonormal basis.

Exercise: Check that vy (p®) and vy (p®) satisfy

(va(P™), vo(p)) = —dap (1298)
(ua(p®), vp(p™)) = 0 (1299)

Exercise: Prove the completeness relation,

2

S (1) [0 = [0 [0 ) = 0 (1300)

a=1

where A, B =1,...,4 index the components of the basis spinors.

Using this basis, we now have a complete solution to the free Dirac equation. Using O(F)
to enforce positive energy condition, we have

1 - 4 2 2 _ 2 o ay,~FPar”
Y(x,t) = W;/d k.é (E —p°—m )@(E) (ag(p Jws(p*)e n (1301)
+ ()t (1302)
=y / d3k\/% (bi(k)u, (k)e @ik 4 dj(k)vi(k)ei(“’t_k'x)> (1303)

where we introduce the conventional normalization for the Fourier amplitudes, a;(k) =
\/%w b;(k) and ¢! (k) = \/%w di(k) and set w = +v/k% + m? as before. Before turning to
quantization, let’s consider the spin.
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4.3 The spin of spinors

The basis spinors (uy(p®),v,(p®)) may be thought of as eigenvectors of the operator p,v*.

For u,(p®) we have:

and therefore

0 = (7*pa —m)ua(p®)
= (Y"pa +m) va(p®)

’)/Oépozua(pa) = mua<pa)
'7apava(pa) = _mva(pa>

(1304)
(1305)

This means we can construct projection operators that single out the u,(p®)- and v, (p®)-type

spinors. If we write

then

Clearly, we have

Similarly, we define

satisfying

1 1
Py =2 (1 + —vo‘pa>
2 m

1, 1 4
L+ =9 ) |1+ —7"ps

m m

2 « 1 « B
1+ —7"pa + —57"PaV"Ds

m m

2 « 1 2
1+ —9"pa +—p
m m

ORI R = e e

+

Pivg(p*) = 0
2
p+ = Zua(p(X)aa(pa)
a=1
1 1
P —=(1-=4°
(1 2m)
P_uy(p®) 0

Pua(p®) = va(p”)

Poo= > 0.(p™)0a(p")

a=1
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These projections span the spinor space since P, + P_ = 1.
Next, we seek a pair of operators which distinguishes between u; and us and between v,
and v,. Since u, and v, are pseudo-orthonormal, we can simply write

M4 g =w @ — v @0 =[] [1°] 5, [uﬂc — [ [+] 5 [Uﬂc (1311)

In the rest frame of the particle, where the 4-momentum is given by

p® = (mc,0) (1312)
we have
u (p*) = (1,0,0,0)
us (p*) = (0,1,0,0)
U1 (pa) = (0707 170)
V2 (pa) = (Oa 07 07 1) (1313)
so that
1
A 0
4" 5= 0 (1314)
1

This combination is easy to construct from the gamma matrices. With

() (L))

a® 0 —1

1

we note that

We see that all of the basis vectors, eq.(1313), are eigenvectors of v3y; :

Y ysuy Uy (1317)
’)/3’}/5’&2 = —Uy (1318)
Vv = —uy (1319)
Vysves = vy (1320)
Therefore, we have two projection operators,
1 3 1 o
My = S (1+7 %) = 5 (L+71a7%y) (1321)
1 1
L= 5 (1=7%%) = 5 (1—nay*3s) (1322)
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where n, = (0,0,0,1) . Notice that n, is spacelike, with n> = —1, and that p®n, = 0.
Now, we generalize these new projections by writing

1
M = 5 (14 s50ms) (1323)
1
. = 3 (1 —s,7"7s5) (1324)
where s, is any 4-vector. These are still projection operators provided s,s,n"" = s* = —1,
since then we have
1
I = 7 1+ 8u7"75) (14 5,7775) (1325)
1
= 7 (1425775 + 5,7"7557"7) (1326)
1
= 7 (142899 = 5u8,7"7"757%5) (1327)
1
= 5 (L2899 = susun™) (1328)
= It (1329)

and similarly for I1_. In addition, we can make these projections commute with P, and P_
. Consider

1 1 1
..P] = |=(1 o) = N 1330
1L, Py] {2(+3W%),2(+m7p)} (1330)
1 . 1, 1 o
= 1 1+ 5,7 75—|—E7 pa—i—ESupoﬁ Y5y (1331)
11+1a+ “+1 A ht (1332)
4 m7 Pa SV Vs mpasu7 7 Ys
1
= ~im (SuPaY" Y5 + PasuY Y Y5) (1333)
1
= 8Dy (A A 1334
7 SkP (Y7 + ) s (1334)
1 (0%
= g, SuPatl" (1335)

This will vanish if s* and p,, are orthogonal, s“p, = 0. Since, P, P_ =0 and II,I1_ = 0, the

set of projection operators,
{P+7P—7H+7H—} (1336)

is fully commuting and therefore simultaneously diagonalizable. Moreover, they are inde-
pendent. To see this, consider the products

(PO, PO, P.II,, P.II_} (1337)
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These are mutually orthogonal, i.e., (P.I1,) (P, I1_) = P, P, II,II_ = 0 and so on. Each
combination projects into a 1-dimensional subspace of the spinor space since

tr(PyIl) = %Ltr (1 + 5,75 + %’yo‘pa + %supa’y“”yyya) (1338)
= i(4+0+0+0) (1339)
=1 (1340)
and similarly
tr (PIIL) =tr (P_I1y) =tr (P_II_) =1 (1341)

Moreover, they span the space as we see from the completeness relation:

P+H++P+H_+P_H++P_H_ — P+ <H++H_)+P_ (H++H_) (1342)
= P, +P. (1343)
=1 (1344)

We interpret all of this as follows. The vector s, is the 4-dimensional generalization of
the spin vector, s’, and in the rest frame, u and v are eigenvectors of the z-component of
spin. We are free to choose u and v to be eigenvectors of any 3-vector s’, and therefore
eigenspinors of the corresponding IT, (s*),I1_(s*). As a result, we can label the spinors by
their 4-momentum and their spin vectors,

uq (p°, sﬂ) (1345)
va (p°, 57 (1346)
In the rest frame, with s, = (0,0,0,1) = (0,n") = n,, we have:
I, = wu (po‘,nﬁ) Uy (pa,nﬁ) — Uy (pa,nﬁ) Uy (po‘,nﬁ) (1347)
. = wu (po‘,nﬁ) Us (po‘,nﬁ) — v (po‘,nﬁ) Uy (po‘,nﬁ) (1348)

and since both sides transform in the same way under Lorentz transformations, we have

I, = wu (pa, sﬂ) Uy (po‘,nﬁ) — Vg (po‘, sﬁ) U (po‘,sﬁ) (1349)
- = u (pa, S'B) Us (pa,sﬁ) — 0 (pa, 35) ol (pa,sﬁ) (1350)

in any frame of reference and for any choice of spin direction.

Using these expressions for the spin projection operators together with the corresponding
expressions, eqs.(1308) and (1310), for the energy, we can rewrite the outer products of the
completeness relation, eq.(1300), as

PO = w (p°% 36) Uy (pa,sﬂ) (1351)
1 1 .\ 1
= 3 (1 +— pa> 5 (14 87"95) (1352)
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P Il = wy (pa,sﬁ) (p s)

= w (p, —s ) (pa—sﬂ)

= % (1 - %ﬁh) % (1 = 8,7"7s5)
PIl, = —u (pa,sﬁ) U1 (pa, 35)
. (1 - iﬁh) ! (14 s.7"7s5)
2 m 2
= —u (p" =) 0 (p7, —5")

These identities will be useful for calculating scattering amplitudes.

4.4 Quantization of the Dirac field

The fundamental commutator of the spinor field follows from the fundamental Poisson brack-
ets, eq.(1263) as

[ﬁA(x, 1), P (x, t)} — 685 (x — ) (1361)

and we can immediately turn to our examination of the commutation relations of the mode
amplitudes. The classical solution is

v(xt) = 3/2; / \/7 Jeiwtmkex) (1362)

+ d*(k) e!(wi=kx)) (1363)
Uix,t) = o= 3/2 Zl \/7 glwt—kx) (1364)
+ dy (k)] (k) e @i=kx) (1365)
T(x,t) = W; / d*k %(bl(k)aa(k)e*“”t*k"‘) (1366)
+ df (k) 0, (k) ek 40 (1367)

and we may solve for the amplitudes as usual. Notice that our writing d! (k) instead of
d;(k) in the expansion of ¢, while perfectly allowable, has no justification at this point. It
is purely a matter of definition. However, when we look at the commutation relations of the
corresponding operators, this part of the field operator z@ should create an antiparticle, and
therefore is most appropriately called dj»(k). This is consistent with C' PO symmetry of the
field.
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Setting t =t = 0, we first invert the Fourier transform:

Y(k) = %/2 / U(x,0)e" @By (1368)
= &7 Z / / d3xd3k’\/? (K)u;(K)el H= (1369)
—i—dT(k’)v](k’) —ilk/ k) ) (1370)

- Z/d?’k’ WT bi (K )ui (k)83 (K — k) (1371)

+ dl (K)o (K)6% (K + k)) (1372)

= Z\/7 k) + di(~ k)vj(—k)> (1373)

We immediately find

k) = 13/2 / Wi (x, 0)ee*dPa (1374)

_ Z[ bl (k)uf (k) + d;(—k) j(—k)) (1375)

so that
7(k) = it(k)hy° (1376)

= ﬁ/zﬂ(x, 0)hr e *dx (1377)

_ Z[ bl (Kl (K)h® + dj (K)o (— k)mo) (1378)

~ Now, we would like to use the spinor inner product to isolate b; and d;. However, since
(k) involves v;(—k) instead of v;(k), we need a modified form of the orthonormality relation.
From the form of our solution for v;(k), we immediately see that

_k*
w+m
mtw | kR
ul=k) ==, s = ek (1379)
0
kP —ikY
wj—m
m+ w e
(k) = yfg = e | =) (1380)

1
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We also need

Bi(—k) = vl (k)b = (—%0i(k))" h = =0l (K)1°h
as well as two more identities to reach our goal.

Exercise: Show that

A Ui
and
olp () [1]7 0t = =,
A A
where u}B = [u;f] hap and v]T-B (k) = [U]T] hap (k).

Continuing, we may write the Fourier transforms as

) = i\/g(bka(k)—d}(—kw%xk))

2

7(k) = ¢§:V@§(@ugunkmqo—dx—kmykyg

where we used 7°hA° = h. As a result,

w090 = 3™ (09w w09

and similarly

(1381)

(1382)

(1383)

(1384)

(1385)

(1386)
(1387)

(1388)

(1389)

(1390)

(1391)

(1392)

(1393)



while for the momentum,

and

A(k)y v () = i3 /= (b u] (1) (k)

CJw
= —iy/di(=K)
Noting that
n — 1 tk-x 73
o= o0
Tt _ 1 t ikex 73
) = o [V

we collect terms and replace the mode amplitudes by operators:

bi(k) = \/gﬁ/uZ (k) 720 (x,0)e" *d3x
di(k) = —Végzg%mi/ﬁx—kMMxﬂnékﬁfx

1 |
= ﬁzzgg;ﬁau/}%(k)70¢(x,oy¥kXd3x
1

w
7 m ik-x
0 = S [ 1 00 ) e
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(1394)
(1395)

(1396)

(1397)

(1398)
(1399)

(1400)

(1401)

(1402)
(1403)
(1404)

(1405)



_\/gﬁ / VI (x, 0)hv; (—k) e *d’x
\/%W / U1 (x, 0)hy vi(k)e > d’x

(1406)

(1407)

Next we want to find the commutation relations satisfied by these mode amplitudes. For
this it is convenient to rewrite the fundamental commutator,

ﬁwaﬁax@}:w%%x_x)

in terms of ¢) and ¥, Replacing 74(x,t) by i)' (x, t)hy° we have

1 “@/A)T(X, t)] ¢ hep [VO}D K :&(X/, t)] ’ = i656% (x — x)

4WNKQL,M@n{1[wPA — 868 (x — X))

or simply

HQZJT(X, t)]c, :«L(x’,t)]B] — [,YO]B 053 (x — )

O b D, 8)] =16 (x = x)

We are now in a position to compute the commutators of the mode operators

4.4.1 Anticommutation

Now consider the b,(K'), BZ(k) and d! (k), dj (k') commutators:

[5.(), 51|

1) //V%f’**“"dwwaD
wao 0)h) ] [7°1" 5 fus (%))

(7(

// l’d3 lzkx ik’ -x’
1°
&z

Tac (K') [1° [] [OrwamFﬁ@—xv
“ae o (K) [, Tup (k)]
_% (21 )3 / d3x%5abei(k—k/)-x

—5% (k — K') 6
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and

1
>

()] = B //fd“—mMWWWPEﬁm@

w (2m
[ (x',0)hep, ¥P (x, )} Uya (k) [VO]A B
— T(Z’ dS d3 / —zkx+zk’ ’[70}D Evf(k/)

X[v] 500 (x = x) T (k) [1°]”

= 27_[. //d3 d3 / —zkx+zk’ ’—b (k) vova(k')53 (X—X,)

= —(55 (k —K') Upa (k) [1°]
= 5ab53 (k — K

4P ()

This is just the relationship we expect for d, (k) — the mode amplitudes d,(k) and d (k) act
as annihilation and creation operators, respectively. However, commutator

~

[0a(k), B(K) | = =% (k — K) by

has the wrong sign, with b,(k) rather than b} (k) acting like the creation operator. However,
b, (k) multiplies e~i“~*%) while df (k) multiplies the CPO conjugate of e~#“—%%) This is
consistent with our identification of these modes as particles and antiparticles, respectively.
As we shall see, this pairing of particle creation with antiparticle annihilation, and vice
versa, is necessary for other reasons as well. The identification we have chosen is necessary
for conservation of charge (How could the action 1) have the potential to either create an
electron or create a positron, since these have opposite electrical charges?). In addition,
particle-antiparticle annihilation would not work correctly — every interaction that created
a particle would have to annihilate a particle. We do not observe this. What went wrong?

We have very little freedom for introducing a sign here. In particular, the bilinear form
UZT 7%v; is governed by the Lorentz invariance properties of the spinor products. An overall
sign on the field or the momentum would change the sign of thecza(k) commutator as well
as the b, (k) commutator, thereby merely displacing the problem. Moreover, since b, (k) and
I;Z(k) enter the commutator together, a relative sign in the definition of b, (k) is cancelled by
a corresponding sign from BZ(k) The only place a sign enters in a way that we could change
the outcome is in our use of the antisymmetry of the commutator. If this “bracket” of
conjugate variables were symmetric instead of antisymmetric, the proper relationship would
be restored. But recall that this bracket was imposed by fiat — it is simply a rule that says
we should take Poisson brackets to field commutators to arrive at the quantum field theory
from the classical field theory.

Of course, we know that using anticommutators for fermionic fields ¢s the right answer
— essentially all of the rigid strucuture of the world, from the discretely stacked energy
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levels of nucleons in the nucleus and electrons in atoms to the endstates of stars as white
dwarfs and neutron stars, relies on the Pauli exclusion principle. This principle states that
no two fermions can occupy the same state and it is enforced mathematically by requiring
fermion fields to anticommute. Here, we see the principle emerge from field theory as a
condition of chronicity invariance. Below, we will see that the same conclusion follows from
a consideration of energy.

Returning to the previous calculations, we see that nothing goes awry if we replace the
canonical quantization rule with a sign change to an anticommutator in the case of fermions.
The fundamental anticommutation relations for the Dirac field are then:

{frA(x,t),zﬂB(x’,t)} = da(x, )PP (X 1) + PP (X )7 a(x, 1) (1410)
= 6583 (x — x) (1411)

with the consequence
{0100, biK)} = 6,0 (k= K)
{dlk),dx)} = 6,6°(k—K)
All other anticommutators vanish.

4.4.2 The Dirac Hamiltonian

Next, consider the Hamiltonian. We wish to express it as a quantum operator in terms of
the creation and annihilation operators. It is now convenient to use the simplified form of
the Dirac Hamiltonian, eq.(1246):

H=i / Pz m° (iv'0; — m) ¥ = / d*z Oy (1412)

so that
H= z'/d3x 7™° (i7'0; — m) ¢ = /d3x wOt) (1413)

We begin by substituting the field operator expansions,

h(x,t) = 3/2 Z / &’k \/7 Jeiwt—kx) (1414)

+ dT(k)vZ(k) it kx>) (1415)
Of(x,t) = 7 /2 Z / &k \/7 bl (k )eilwt=kx) (1416)
+ dy (k)] (k)e‘l(“’t kX) (1417)
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T(x,t) = zzﬂ(x t)hy

= 3/2 Z / d’k \/ (k)hr e/ etmkx) (1418)

+ bi(k)ui(k)fw e’(“t‘k"‘)) (1419)

into the integral for the Hamiltonian,

H = / &P 7000 (1420)

Fiw! cz,ﬁ(kf) (K )i 1K x >) : (1421)

Collecting terms we have

. 2 .y,
S e e
m

ww'

1
by (K )0 (K) hy Py (K )e i etk x
NVl (K)hyPup (K ) et )itk x
+dy (K)d] (K)o} (K)hr oy (K ) e oItk
o B} () (K o] (1) Oy (I et (1422)

x : (dy(K)by (K0l (K)hyuy (K')6° (k + k') e~ 2t
+07 (k) by (K uf, (k) 7y "y (K')6° (k — k')
—do(K)d} (K)ol (k)hy vy (K)8° (k — k')
— b (K)d] (K ) (K)hry Py ()8 (k + K) e%wt) : (1423)

:
)



—d, (k) ()0 (k) oy (K)
— B ()} (—K)uf (k)h oy () ) (1424)
Finally, we replace the inner products using
va(—k) = —7%,(k) (1425)
ua(—k) = Yu,(k) (1426)

_ mii / Pk (509500 20 — du()d) (1) ) -

= i @k w (B (K)ba(k) = da(K)dl () ) (1427)

This would be a troubling result if it weren’t for the anticommutation relations. If we
simply used the normal ordering procedure, the second term would be negative and the
energy indefinite. However,

{dh10). dy(1)} = dL k) () + do(K)dL () = 66 (k — K) (1428)
so the normal ordering prescription is taken to mean
: dy()d () := —d () dy(K) (1429)

We then can write the normal ordered Hamiltonian operator as

= 2 / & w (Bg<k)zsa(k) + d;(k)cza(k)> (1430)

This convention preserves the anticommutativity, while still eliminating the infinite delta
function contribution to the vacuum energy.
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4.5 Symmetries of the Dirac field

We’d now like to find the conserved currents of the Dirac field. There are two kinds — the
spacetime symmetries, including Lorentz transformations and translations, and a U(1) phase
symmetry. We’ll discuss the spacetime symmetries first. We put off our study of the phase
symmetry to the next chapter, where it leads us systematically to Quantum Electrodynamics:

QED.

4.5.1 Translations

Under a translation, z¢ — x® + a®, the Dirac field changes by

o (x) B

(%) = (@ +a%) =P (2%) + — 5—a

so we identify A of eq.() as

The four conserved currents form the stress-energy tensor, given by eq.():

T =

6 (Oat))

0zh

A = (9s¢)d”

0L 3ﬁw _ /377“5

= Wy 0% — 11?7 (in"9, —m)
— 0%
since the Lagrangian density vanishes when the field equation is satisfied. For the conserved
charges, we therefore find that the conserved energy is the Hamiltonian,

PO

while the conserved momentum is

= i/d?’m/_wo@ow
= z/d?’mﬁvoc%w

P = —i: /d?’m/_wo&djz
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(1434)
(1435)

(1436)

(1437)
(1438)

(1439)

(1440)

(1441)

(1442)
(1443)



— da(K)di (k) : vT(k)m%b(k)) (1444)

= > [ (3100000 - 092100 (1419
= 22: / @ K (B k)ba (k) + df () da(K) (1446)

This is just what we expect.

5 Gauging the Dirac action

The action for the Dirac equation is

S = / d*z 1) (iy"0, — m) Y (1447)

and we note that in addition to the Poincaré symmetry, it has a global phase symmetry.
That is, if we replace

b o e (1448)

b o g (1449)

for any constant phase 7, the action S remains unchanged. This leads immediately to a
conserved current. For an infinitesimal phase change,

A = (I +in) -y =in (1450)
A = (1+in) - =—inY (1451)
SO
N oc .
JU = P (a%l/]) (“72/)) (1452>
= — Y (1453)

In terms of creation and annihilation operators the conserved charge is thererfore

Q = /J0d3:z: =— n/de RIRE (1454)

- Y / (- )l ) Py ) (1) (1455)
a=1 b=1

+b (K)uf, (k)™ hny*d} (k) v, (—k) (1456)

+dq (k)v! (K)e 2 hyOby (—k)up (—k) (1457)
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+ da(K)! (K)hy0df (k) v (K) :) (1458)

- — ?72; / Pk (0] (K)ba(k)+ : do(k)d] (k) :) (1459)

= - 772: / d’k (b} (k)ba (k) — df,(k)du(k)) (1460)

Therefore, the total conserved charge @) is proportional to the difference between the number
of particles and the number of antiparticles. The most straightforward interpretation of this
conservation law is a conservation of electrical charge and (with some slight modification
for the electroweak theory) this interpretation is correct.

5.1 The covariant derivative

We could now take the electromagnetic current of the spinor field,

Jo = — iy (1461)

as the source for the Maxwell field by including J*A, with the Maxwell action. However,
gauging provides a more systematic way to come up with the same action in a way that
immediately generalizes to other types of interactions. The procedure is as follows. Suppose
we try to write a revised version of the Dirac action which is invariant under local phase
transformations,

o= Y = e (1462)
o= = pem ) (1463)

Clearly, this must be a different action, because if we substitute these expressions into the
Dirac action we find

S = /d4a: e~ X (1419, — m) et (1464)
= S =" (9up (%)) (1465)

In order to build a new action which is invariant, we somehow need to cancel this extra term.

The key to a solution is that an extra, undesired piece occurs whenever we take a deriva-
tive. We can fix the problem by introducing a different kind of derivative, D,, called a
covariant derivative. For local phase symmetry, we say that the derivative must be made
covariant with respect to phase transformations. All this means is that it should commute
with the phase change, in the sense that

Dl = ¥ tX) (D gah) (1466)
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We just demand that the derivative D, should transform in the same way as v itself. If
we can find such a covariant derivative, then

Slocal = /d4l’ 1; (ZV“D,LL - m) 2/) (1467>
is the action we need because

Slocal = / d'z (i)' D" —my'y') (1468)

= / d'z (ipe Xyt D )y — mihh) = Spoear (1469)

The only trick is to find a suitable generalization of the derivative.
To generalize the derivative, we need to know the properties that make an operator a
derivation. We define

Define: A derivation is an operator D which is linear and Leibnitz:

1. Linear: D (af 4+ 8g) = aDf + BDg

2. Leibnitz: D (fg) = (Df)g+ f (Dg)

Notice that these two conditions together require D to vanish when acting on constants.
The Leibnitz property gives D (af) = (Da) f+aD f, while linearity requires D (af) = aDf.
These are consistent only if (D«a) f = 0 for any function f. Choosing f(x) = 1 gives the
result.

Next, consider how two derivations may differ. If D, is a derivation and we define

Dy = Dy + F(x) (1470)
then D, is also linear

Dy(af+Bg) = (Di+F)(af +B9) (1471)
= Di(af +Bg)+ F(af + Bg) (1472)
= aDyf+ pDig+aFf+ (Fg (1473)
= a(Di+F)f+B8(Di+F)g (1474)
= a(Dyf) + B (Dag) ( )

but the Leibnitz property fails:

Dy (fg) = Di(fg)+Ffg (1476)
= (Dif)g+f(Dig)+Ffg (1477)
# (D2f) g+ f(D2g) (1478)

142



We can fix this problem by introducting additive weights for functions. If f,, has weight n,
and g,, has weight m, then we require the product, h,,+, = fn.gm to have weight m +n. Now
we can define

Dsg, = D1gm + mF g, (1479)

and the Leibnitz rule is satisfied:
Dy (fagm) = Di(fagm)+ (n+m)F fogm (1480)
= (D2fn) gm + fo (D2gm) (1482)

The use of weights is consistent with phase transformations, because if we have a product of
two spinors and each changes by a phase, we get a doubled phase factor:

XY — (Xei‘p) (1&6“") = e (1483)

Thus, each spinor would be assigned a weight of one.

The additive term in a covariant derivative is called a connection.

We're now in a position to find a suitable covariant derivative. Since we are in four
dimensions, we may add one function for each derivation:

Dy = 0y — iy (1484)

where the factor of —i is simply a convenient convention. This definition is sufficient. The
condition we require is

Dl = e (Dy1p) (1485)
where
Y= ¥y (1486)
D, = 9,—iA, (1487)
Combining these expressions,
DLy = (9, —iA,) (%) (1488)
= i (Dap) Y + €0 — i AL ey (1489)

This must reduce to a phase times the original covariant derivative,
et (D) = €O — €' A1)
SO
i€ (Oup) Y + €P0,0) — iALe) = €0, — i Ayt (1490)
i€ (Oup) Y — 1AL e = —ieP Az (1491)
Since this must hold for all 1) we see that A, must change according to
Al = Ay + Oy (1492)

Other than this necessary transformation property, A, is an arbitrary vector field.
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5.2 Gauging

Given the preceeding construction, the action

Slocal = /d4l’ QE (i’yaDa - m) 1/} (1493)

where D, = 0, — iA,, is invariant under local phase transformations.

Exercise: Demonstrate the invariance of Sj,.; under the simultaneous transformations

W — Y = et (1494)
) = = pe ) (1495)
Ay = Ao + 0up (t,x) (1496)

by explicit substitution.

This procedure, of making a global symmetry into a local symmetry by introducing a
covariant derivative, is called gauging the symmetry.

We are left with a question: what is the new field A,7 As it stands, it doesn’t matter
much because A, has no interesting physical properties. Since no derivatives of A, appear
in Si,car, Ao cannot propagate. In fact, we can’t even vary Sy, with respect to A, because
it forces the current to vanish:

= 9y (1497)

We can fix this by adding a term built from derivatives of the connection A,, but because
A, obeys an inhomogeneous transformation property we need some way to tell what parts
of A, are physical. For example, we could not just write

OA, =0 (1498)

as a field equation for A, because under a phase transformation the simple wave equation

changes to
A, +0(0ap) =0 (1499)

Which equation would we solve?

Fortunately, there is a standard way to find physical fields associated with a connection.
It depends on the fact that, unlike partial derivatives, covariant derivatives do not commute.
Consider our case first. The commutator of two covariant derivatives on an arbitrary spinor
gives

[Da, Dl = Do (951 — iAgth) — Dg (Oat) — iAa?)
= 02089 — i (0aAp) b — iAp (0a¥) — iAs (Op¢ — iAgy))
— 080, + 1 (0sAa) ¥ + 1A, (05Y¢) — iAp (00 — iA,)
= i (0uAy — DAL Y

144



Several important things have happened here. The result is proportional to
Fop = 0,A3 — 034, (1504)

times the same spinor — all of the derivatives of 1 cancelled. This is characteristic, and
allows unambiguous identification of the new object F,3. Fi5 is called the curvature of the
connection A,. Because it is defined from a commutator, we know immediately that under
a gauge transformation,

—iFlg0 = [Dh,Dj] v/ (1505)

= D, (Ds') — Dy (D) (1506)

= D/, (e¥Dg) — Dj (¢*Dat)) (1507)

= €D, (Dsb) — €Dy (Dy1)) (1508)

= €% [Da, Dg| ¥ (1509)

= —ie" o1 (1510)

and therefore the curvature is invariant:

Fop = Fap (1511)

This is also a characteristic property — the curvature of a connection is always a tensor : it
transforms linearly and homogeneously under a gauge transformation.

For phase transformations it is easy to see why the curvature is independent of ¢. Since
the connection A, changes by a gradient, and the curl of a gradient vanishes, the curl of A,
is gauge invariant.

We can use the curvature to write an action for A,. Any Lorentz invariant quantity built
purely from F,z3 is a possible term in the action. There are two possible terms:

FLsF? P E oF,, (1512)

However, the second of these does not contribute to the field equations for A, because it is
a total divergence:

P F, = " (9,A5 — 05A0) Fu
= 2P0, AsF,,
= 0O, (26" AgF,,) — 2e°P 430, F,,
= 0, (26" AF,,)

where the last term vanishes because

1
P NgDoF, = gga/ﬂWAﬁ (OaFy + 0uFye + 0, F ) (1517)
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and

OuF oy + 0uFye + 0yFay = 0a (0,4, — 0,A,) + 0, (0,Aq — OaAy) (
+0, (0aA, — 0,A4) (

= 00,4, — 0.0,A, + 0,0, Aq (1
— 0,004y + 0,004, — 0,0, A4 (
= 0 (

(@)
[\
@)
~— ~— ~— ~— ~—

Therefore, the only gauge invariant action up to second order in the curvature is
— 1
Siocal = /d% (w (1v*Dy — m) ) — ZFaﬁFaﬁ) (1523)
- - 1
= /d4az (2/1 (17% 00 — m) Y + Py  Agth — ZFQBFO‘B) (1524)

This is the result of U(1) gauge theory, since U(1) is the group of possible phase transfor-
mations. The procedure is readily generalized to other symmetry groups.

6 Quantizing the Maxwell field

We have quantized spin zero and spin 1/2 fields; we now come to the most important spin
1 case, the Maxwell field. The free Maxwell theory is described by the action

1
S = - / d*r F,sF*° (1525)
Fop = Aap— Apa (1526)

Notice that the field A, is necessarily massless, because mass term in the action would be
of the form m2?A®A,, and this term is not gauge invariant.

6.1 Hamiltonian formulation of the Maxwell equations
We immediately hit a problem when we try to write the Hamiltonian formulation, because

05

ol — 152
() 300 A, () (1527)
_ _1 3l Clh ) BU / 0 AN /
= 5 [ ) s (e — Apale’)) (1528)
1
= -3 / d*x’ 0’ F,, (0505 — 6500) 0% (z — ) (1529)
= FO (1530)
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and therefore the conjugate momentum to A, vanishes:

= FY=0 (1531)
7Ti = FOi = — (AO,i — Ai,O) (1532)
= —0;A° — 9 A’ (1533)
= E' (1534)

We should expect this. Since A, is gauge dependent, not all of its components are physical.
There are several ways to deal with this problem. First, let’s see what happens if we just
ignore it. Then the Hamiltonian is

H = — / dPr (a0 A* — %FOi (Ap: — Aip) (1535)

111(14” Ay (A9 — Aj,i)) (1536)

= / Pz (FpdpA' — %FOZ (Ao — Aip) (1537)

i(A Ay (A Aj,i)) (1538)

= / dx (FU9yA" — %FOi (Ao + BoAY) (1539)

(A - Ay (49 - A“’)) (1540)

— / &z ( FOig Al — %FOiAo,i (1541)

i(A A (A — Aj,i)) (1542)

_ / P ( ~ Ao (1543)

i(A s )(A” Aj,i)) (1544)

_ /ds (;ﬂﬁ + Ay + le<_5ijk,Bk> (_5iijm)) (1545)

= /d3x (%’Niﬂi + 7 Ay + %BiBi> (1546)
where we have defined the magnetic field as

B™ = ™ (A~ Aj) (1547)

B = VxA (1548)
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When the field equations are satisfied, we have V - £ = 0. Then the middle term becomes a
surface term which does not contribute to the field equations,

/ P (Tidy) = / Pr (E'A) (1549)

= / &Pz (9; (E'Ag) — (V- E) Ay) (1550)
- ElAO ‘ boundary (155 1)
and final expression is simply
1
H = / I’z (E* 4+ B?) (1552)
In fact, throwing out the surface term, we can write the Hamiltonian in general as
3 L i Lo
H= [ d 57T7T—(8¢7T)A0+§BB (1553)

Then Ay appears as a Lagrange multiplier, enforcing V - £ = 0 as a constraint. Since H is
independent of mg, we have Aqg = {H, Ag} = 0.
Now we check Hamilton’s equations:

5H _

DAY = 5. 0 (1554)
QA" = oH (1555)
o,
_ 0 / d*x (lﬂiﬂi—i—wiAg—i—lBiBi) (1556)
ot 2 2
= — (' + Ap) (1557)

The first expression is a gauge choice. Something about the formalism has forced this upon
us. The second expression gives

E' = —9yA" — 9; A" (1558)
For the momentum we have
6H
0
_ o 1
dom A (1559)
U ‘iAo + BB (1560)
T oA, ) CT \ gt T T ATy
= O (1561)

and
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0H

8[)77'] = —57 (1562)
J
_ 0 do [ Lr A »+1BiBi (1563)
T oA, ) CT gt T ATy
. / i (La, =4, (amn — nmy (1564)
514]‘ 4 m,n n,m
1 3./ mm __ An,m 0 _
- - / P’ (A" = A7) S (A = A (1565)
1 3./ m,n n,m 6 6
1 .
= 3 / &z’ (0, (A™" — A™™) 87 (1567)
— O (A™" — A™™) 67 6% (z — o) (1568)
= 0, (A" — A™) (1569)
= (="™d,B,,) (1570)
= (VxBY (1571)
which we may write as
V-E =0 (1572)
OE
W—VxB =0 (1573)

using 7 = 0. The final Maxwell equation follows automatically from our definition of the
magnetic field as the curl of the potential, B = V x A. Notice that in order to get the
complete set of equations we had to use all four conjugate momenta even though 7° = 0. So
far, the only thing that has gone wrong is the emergence of the condition 9yA° = 0, which
is not a necessary consequence of Maxwell theory.

Now let’s check the fundamental Poisson brackets. Normally we would expect

{ma, A%}, = 006° (x — ') (1574)

but we immediately see an inconsistency with 7y = 0. Setting o = 5 = 0, the right side does
not vanish, but the right side does. Let’s check it explicitly:

omg 6A°  Omy 6A°
0 _ 3./ 0 N 0
{WO’A }P.B, - /d L (57Ta SA®  §A« 57Ta) (1575)
§(0)5A°
_ 3./
- /dw (5% Ma) (1576)
=0 (1577)
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Putting in zero explicitly for 7% means that A° has vanishing bracket with all of the other
variables. One resolution of the dilemma is to choose a gauge in which A° also vanishes.
Though such a gauge choice breaks manifest Lorentz covariance of the formulation, it is al-
ways possible. Suppose we begin with a generic form of the 4-potential A,. Then performing
a gauge transformation to a new potential A, we have

Ay = Ay + 00 (t,%) (1578)
and in particular we demand )
0= AQ = AQ + 80g0 (t, X) (1579)
Therefore, we need only choose
Doy (t,x) = — / Ay (t,x) dt (1580)

to eliminate Ag. Notice that this does not use all of the gauge freedom. If we choose, we
can make another gauge transformation (say, by a function ¢’) as long as dyp¢’ = 0. This
just means that we can still adjust the gauge using an arbitrary function of the spatial
coordinates, ¢ (x) .

Now the problem has been shifted to a different location. By eliminating A° and g
from our list of independent variables, we have lost the ability to derive one of the Maxwell
equations, V - E = 0. This equation remains as a constraint that must be satisfied by hand.
The remaining (equal time) Poisson brackets are

{m; (t,x), A" (t,x)},, , = 056° (x — ) (1581)
Since momentum is given by the electric field, 7* = E, the divergence constraint requires
9 i i 0
B {7 (t,x),A; (t,x)},, = 5]»%6 (x — x') (1582)
so that P
0={V -E(x),4;(x)},p =0 e 5 (x — x') (1583)

and once again we have an inconsistency.

6.2 Handling the constraint

The differential condition that the divergence of the electric field vanish, V - E = 0, may
be turned into an algebraic condition by parameterizing our fields by wave number rather
than position. Thus, our fields A’ (x) and 7; (x) at any time ¢ may be recast as Fourier
transforms,

Ai(x t) 1 d3]{} <Ai(k>€ikax"‘ + AiT(k)e—ikaﬂca> (1584)
’ @2m)?*? ) Vow
ml(x,t) = —0yA’ (1585)

_ ﬁ/d% \/g(;li(k)eikaza _AiT(k)efikax") (1586)
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where w is an as yet unspecified function of k?. We also easily find the inverse transforms,

1

(2m)>2 (2m)” V!
d?)k/ i1t ’LUJ 't <3 / 7 N, —iw't £3 !
- vﬁiﬁ4&) 5 (k —K) + Af(K)e 5<k+k0

= ———Q4m>W%+AM k)”“)

é‘

(A%maW-.@u—kk4M)

Solving for the transforms,

Alk) = W\/g/dsx (Ai(x, t)+ éﬂi(x, t)) ¢ har® (1592)
Af(—k) = §E§5§5/lﬁx(vﬁZA%x¢)—¢V@§ﬂ@go>eﬂhﬂmam (1593)
Jitk) = @ﬁﬁ?¢§/d%(mu¢y—£w@¢06%ﬂ (1594)

from which can directly show that the change to new variables, A’(k) and —iAif(k), is
canonical. To see this we compute the Poisson bracket,

Vo it = [y [(SAR SATA) 04K 6AT(K)
{A(k),—zAT(k)}A’7T = _Z/dy<57rk( ) 5AF (y) 6Ak(y) 57Tk( ))

d3 d3 dS /

Carrying out the functional derivatives and integrating over the resulting delta functions, we
have

(A, -idw)} - / iy / i / d3'(\f 5 (x —y) 195° (x' —y)
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/d?’.’L‘AZ(X, t)e_”“’"x _ /dgfL‘/ d’k (Az(k/) ikl x —zk:ma: —FAZT(k/) —ikl,x e—z TS@?

(1588)

(1589)

/d3 /d3 \/7 Az lkafb A,LT(k) —tkax® ) —tkmax™ (1590)
27r

(1591)



- \/ 2/63 (X - Y) 5;153 (X/ — y) njk) o~ haz Fikgz'
= d3 < A [ — W/ \/7 ) k’ ):c
. ( ,—6 i(w—w')t \/7 (w—w’ ) 53 k — k,)

= 196% (k — K)

Therefore, A'(k) and —iA" (k) are just as good as A’(x,t) and m;(x,t) for describing the
fields. We can equally well think of x or k as a continuous index for the “coordinates”
A'(x,t), and we can write our Poisson brackets in terms of either set. However, in the new
canonical variables the constraint V - E (x) = 0 becomes

0 = Vi (x,1) (1595)
_ i dSk, g k,Az k i(wt—k-x) k’/IZT k —i(wt—k-x) 1596
e 3 (ki ke T hidT (ke (1596)

Inverting the Fourier transform shows that we must have

kAK) = 0 (1597)
kAT (K) = 0 (1598)

We have therefore succeeded in finding a set of canonical variables in which the constraint
equation is algebraic. The algebraic constraint simply says the the field A* and its momentum
are transverse, a fact which we already knew about electromagnetic waves.

Defining the projection operator

P; =4 — k2J (1599)
we can finally isolate the physical degrees of freedom:
e = PAK) (1600)
S P'A (k) (1601)
These automatically satisfy
ke'(k) = 0 (1602)
kef(k) = 0 (1603)

because Pjk; = 0.
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Finally, we compute the Poisson bracket of ¢'(k) and —ic®’(k). Since £!(k) and —ig'f(k)
span the physical subspace, these are our fundamental Poisson brackets. To do this, we
simply project the brackets we have already found for the transforms of the fields:

(£, )}, = {PAK), —iPL A" (k) }
o A
= PRI (k— K)
P985 (k — K)

Now the bracket is consistent: if we dot k% into both sides we get zero, while on the two
dimensional subspace spanned by &, the bracket, P¥ reduces to a Kronecker delta.

Notice that if we transform back to the original, position-dependent variables, we get a
projective Dirac delta,

Then we have
= (2;)3 / d*k (kj - kjki{—f) gihit=a)’ (1606)
=0 (1607)

and the corresponding Poisson bracket,

{mj(x), A" (X)},, =P (x—X) (1608)
is consistent, with one further caveat. Since P¥ is symmetric in ¢ and j, we have not only
{0/ (%), A" (X))}, =P (x—x) =0 (1609)
but also must have
0

{07 (x), A (X)}, 5 = e Pl(x—x)=0 (1610)

and therefore we need an additional gauge condition,
V-A=0 (1611)

From the Fourier expansion of A?, we see that the condition already follows from k;e? = 0, but
we must also check that the condition is consistent with the gauge freedom of the potential.

To check the consistency, recall that we have some residual gauge freedom beyond what
was required to set A° = 0. Now suppose we have imposed A° = 0, and that

VA= f(x,t) (1612)
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Then changing the gauge again by ¢(x,t), we have

A" = A+ Vp(x,t) (1613)
V-A = V- (A+Ve(x,t)) (1614)
= f(x,t) + Vip(x,t) (1615)

Demanding V - A’ is always possible by choosing
1 CA(Xt
plx,t) = = / Y AXD (1616)

However, we also have to maintain A° = 0, which, in general, will change by the time
derivative of ¢ :

A = A"+ 9%(x,1) (1617)
= 0+ i/d%’aow (1618)
A |x — x/|

We are saved here by the constraint, since
0=0E"=0; (—0pA") = -0"V - A (1619)
Therefore, A = A° = 0, and we have simultaneously imposed the pair of gauge conditions,

A = 0 (1620)
V-A =0 (1621)

Notice that, as a consequence of these, A* also satisfies the Lorentz gauge condition
0, A =0 (1622)

The various gauge conditions mean that we have reduced the vector potential to two inde-
pendent components. These correspond to the two polarization states of light. We now turn
to the free solution and quantization.

6.3 Vacuum solution to classical E&M

First, we need the solutions to the classical theory. The field equation is

OE
- _ B = 162
5 V x 0 (1623)
with the constraints
A" = 0 (1624)
V-A =0 (1625)
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where the electric and magnetic fiels are defined by

E' = —gA" (1626)
B' = (A — Apy) (1627)

Substituting for E and B in the field equation gives the wave equation:

O’A
~or = V x (V xA) (1628)
= —V’A+V(V-A) (1629)
~V3A (1630)

which we immediately solve as before with a Fourier integral,

7 1 d3k 7 t(wt—k-x ) —i(wt—k-x
Al(x, t) = R m(e (k)e'@tkex) 4 i () emilwt k) (1631)

The only differences from the scalar field is that here we have a different expansion for each
component of the potential and this time the field equation gives us a simpler expression for
the frequency in terms of the wave vector,

w = Vk? (1632)

because the photon has zero mass. This condition is consistent with our earlier requirement
that w be a function of k.

Notice that the constraints are already satisfied. The first, AY = 0, is satisfied by consid-
ering only the three components A*. For the second, we still have the transversality of the
waves,

kie' (k) = 0 (1633)

and its conjugate.
The conjugate momentum, 7* = JyA?, follows immediately,

i —1 W i(wt—k-x i —i(wt—k-x
Ti(x,t) = —3/2/(131@\/;(5 (k)e!@ k) _ it () iwi—kx)) (1634)
(2)

so we are ready to quantize.

6.4 Quantization

We have shown that we may write the fundamental commutators in terms of the mode
amplitudes:

{¢'(k), —ie’" ()}, , = P76 (k—K) (1635)

so we immediately have
[€'(k), -’ (k)] = —iPY§° (k — K (1636)
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or simply A ' B
[¢'(k), &1 (k)] = P95° (k — K) (1637)
The mode amplitudes are therefore raising and lowering operators. As with scalar and spinor

fields, we could go on and define a complete set of energy eigenstates using these raising and
lowering operators.

Exercise: Define the space of states of the electromagnetic field.

The potential may now be written as an operator, by substituting the mode operators
for the mode amplitudes. It is most convenient to first rewrite each polarization/amplitude
¢'(k) as a product,

e'(k) = 6 (k)ag) (k) (1638)
where for each ¢ = 1,2, €0 (k) is a spacelike 4-vector giving one of the two polarization
directions. The k-dependent operator then gives the mode amplitude. The two vectors
e(y (k) satisfy a pair of covariant constraints, in place of kic'(k) = 0. One of the pair of
constraints expresses the transverse condition, while the additional constraint gives 5(“1.)(k) a
vanishing time component in the current frame of reference, i.e., the Lorentz reference frame
in which we fixed A° = 0. In this frame, let t* be the unit timelike vector, t* = (1,0) . This
allows us to rewrite our gauge conditions in a Lorentz invariant way,

Ay = 0 (1639)
0. A% = 0 (1640)

Exercise: Show that the two conditions

t“Aq =0 (1641)
Oa A% =0 (1642)

are equivalent to the gauge conditions

A" =0 (1643)
V-A=0 (1644)
Now, noting that £“ = (w, k), demand
tag(n(k) = 0 (1645)
Fagly(k) = 0 (1646)

The first equation reduces each £{; (k) to a purely spatial vector, f; (k) = (0,£0(k)) , and
the second then reduces to k - £(; (k) = 0, as required. We may also choose £{; (k) to be
orthonormal

ety (K)ggalk) = =0y (1647)
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Exercise: In a frame of reference where t* = (1,0, 0,0) for an electromagnetic wave in the
z direction (i.e., k% = (0,0,0,1)), find expressions for f}) (k) and e, (k).

We can now write the field operator in final form:

2

1 Bk . .

A ) = ——= ) / —— (0 (K)ag (k)™ % +efl (k)al, (k)e =)  (1648)
@2m)** =) Vow ( © )

7 Appendices

7.1 Appendix A: The Casimir operators of the Poincaré group.

The Lie algebra of the Poincaré group is:

[Mag, Mpo] = ngoMao — NgoMap — NapMpo + Nao Mg, (1649)
[M* 5, P,] = nsP*— 0} Ps (1650)
[P, Ps] = 0 (1651)

Exercise: Prove that P? and W? are Casimir operators of the Poincaré group, using eqgs.(),
where

P = n*P,P;
W2 = nWew? (1652)
and W is given by

1
WH = ngffPVMaﬁ (1653)

It is easy to show that P? is a Casimir operator. Just compute

[P, P*] = 1*’ [P, P.Py] (1654)
= naﬁpa [Pw PB] + 77&5 [P,uv Pa] PB (1655>
= 0 (1656)

and (with M, = n,aM* ),

(M, P?] = n°°[M,,, P.Ps) (1657)
= 0™ Po [Myy, Ps) + 1 [My,,,, Pa] Ps (1658)

= UQBPa (Mg P — MusPr) (1659)

+0°? (o Py — NuaP) Ps (1660)

- PP,—P,P,+P,P,—P,P, (1661)

- (1662)
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Now we turn to W2, We first look at easy case — the commutator with P, :
[P,uv WQ] = UQBWQ [P,LU Wﬁ] + naﬂ I:P,U«J Wa] Wﬁ

]‘a vpo

= 3 W [Pures "7 PyM,)
1Oc vpo
+§nﬁuy¢a 77 P,M,,] W

1
= §Wa€aup0 ([P/“ Py] Mpo + P, [P/“ Mpo’])

1
+§ ([Pu, P)) M,y + P, [P, M,,]) Wse?P?

1 Qv po
= —§Wa5 P (B (Moule = Nou b))

1 vpo
5 (P,, (npupo - nﬂupp)) Wﬁgﬁ P

1
e _éwagaupo' (anPl/PO' - UO'HPVPP)

1 vpo
_5 (npuPI/Pa - naupupp) Wﬁgﬁ g

=0

(1663)
(1664)

(1665)
(1666)
(1667)
(1668)
(1669)
(1670)

(1671)
(1672)

Here the last expression vanishes because in each term the antissymmetric Levi-Civita tensor

is contracted on a symmetric product of momentum operators:
1
e P,P, = 556””” (P,P,+P,P,)=0
Finally, consider the commutator of W? with M,s, where
1 vafS
WH = 58“ P, VMaﬁ

To accomplish the result, let’s examine W? directly:

w2 = WHW,
1
— Zgﬂ”aﬁfyﬂ4@ﬁgﬂTpgzﬁTA4P0
1 vV S (e v vV S
:52@@£+¢$¢+£@¢
—026460 — 676001 — 6605%) P, MasPTM"

24W? = P,MysP"M*" + P,M,3P*M® + P,M,sP° M"™
—P, Mo P*M"? — P,Mos PP M® — P, M, P" M"®

Now rearrange by commuting all of the factors of P to the left, then collect terms

24W? = P, (P"Mgp + [M,s, P]) M**
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l/ (PaMOéﬁ + [MQB7POC])MBV
,,(p Mo + [Mag, P7]) M
=B, (P Map + [Mag, P*)* M*
—P, (P°Mag + [Mag, PP]) M®"
—P, (P" Mg + [Myg, P*]) M
= P’M,sM®® + P, [Mys, P") M**
+P,P*M,sM"" + P, [M,gs, P*] M""
+P, P’ MM + P, [Mog, PP] M"™
—P,P*M,sM"® — P, [M,z, P*] M"?
—P, PP MM — P, [Mag, P’] M
+P Moy M* — P, [Mg, P'] MP®

Now, substituting for the commutators,

qUW? =

P*MosM®® + P, (65P, — 64P3) M*”
+P,P*MosM™ + P, (6§ P, — 65 P5) M"
PP Mos MY + B, (03P, — 03Py ) M
—P,P*MysM"" — P, (6§ P, — 63 P3) M**
— PP Mos M = P, (8} — 30P; ) M
+P?MogM®’ — P, (84P, — 64P3) M™
2P?M,sM®® 4 (P3P, — P,Pg) M*”

+P,P*M,sMP — 3P,PsM"" + P,P®’ M, sM"

+3P,P,M"* — P,P*M_.sM"® + 3P,P;M"?

~P,P’M,sM® — 3P,P,M® — (P3P, — PnPs) M"™
2P*M,s M + 2P, P*M,s M — 2P, P* M,z M"?

2P M5 M*P

This makes our task much easier. We just need:

[Mag, W]

and therefore compute

[Mag, M7]

1
- Vs P17
1

1
= M@&PﬂMwMW+1¥ﬂM@@M@M”]

12
1
g EPZ [Maﬁ, MPO-MPU]

= [Maﬁv MPUMPU]
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= [Mag, Mpo] MP? 4 Mo [Mocﬁv M*7]

= (MspMac — Mpo Map — NapMpo + Naoc Mp,) MP”
M,y (05M, © —05M,, # —60M, © +05M, 7

= MMy 7+ MayMy * — Mg, M, ° — Mg, M, *
+Mpo M, 7 — MysM, * — Moo My * + My M,

= MooMy ©+ MapMy * — MagMy 7 — MoyMj
—MgoM,, ° — Mg, M, *+ Mg, M, °+ Mg, M, *

=0 (1687)
and therefore
[Mag, W?] =0 (1688)
7.2 Appendix B: Completeness relation for Dirac solutions
Prove the completeness relation,
2
a\1A 71— « a\14 1— o
S (1ol 0™ — a0 (76 ) = 0 (1689)
a=1
where A, B =1,...,4 index the components of the basis spinors, and the spinors are given
by
1 0
A E+m 0 A E+m 1
o _ . N4 = @ iy 1690
1 (7)) o | |0 =T | e | Go90)
prtipY —p®
E+m E+m
p* pr—ip¥
E p@j_'?gy + B E—-‘I_JQI
a4 m+ # a4 m E+
o) e Bl HCTR IRy (1691)
0 1
We have the barred spinors given by ulh and vjh :
1 0
E+m 0 [E+m 1
. o . Mo (D™ = T4 iny 1692
[@1(p™)] 4 om _Eim ; [U2(p™)] 4 om _pEii ( )
_prowp? .
E+m E+m
p* p*+ip¥
I3 S T E Etm
m + L m =
o1 (p® Etm Soa(pM)] 4 = E4m 1693
0L e B FCTR VA B (1693)
0 -1
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First, compute the individual products. For the u-type spinors,

z T _inY
1 0 B Eﬁ—m _Iﬁ
E+m 0 0 0 0
Ars — 2 2T
u u = : ? p*(p"—ip¥)
[ 1] [ 1]B 2m Eim 0 - (Eim) - (E'+m)2
prapt o _pi@tript) (04 @Y)’
E+m (E+m)? (E+m)?
0 0 0 0
p*4ip¥ p?
. E+m| 0 1 ~Ftm | Em
[ua]” [tg] p = o izt )+ pret—ip?)
2m E+m (E+m)2 (E+m)2
0 g EEE (E
+m (E4+m) +m
so the sum is
1 0 - E]-):m o p;:-?;y
1+’L Y z
A A E+4+m 0 1 — Fm
[ud]™ [t] g + [ua] ™ 2] p = P preipt  __ p? 0
2m E+m E+m (E+m)?
P;Jr’ipy ETPZ 0 __p? ,
+m +m (E+m)
For the v-type spinors, we find
z 2 z( T _; y) 7
( Ep+m ) £ (EI‘:Lm)p2 Efm 0
A m+E | 2@ tw)  @°2+e) _prtipt
[Ul] [Ul]B = (E4+m)? (E+m)? E+m
2m p° p* —ip¥ 1 0
E+m E+m
0 0 0 0
@)+ _petoipt) g _ptip
(E4m)? (E+m)22 E+m
E _pz (pz-i-ipy) pz pz
[%]A Vo] g = mt (E+m)? (E+m) 0 5
2m 0 0 0 0
P 0 -1
+m +m
with sum
B i
(E'—l—m)2 02 E+m E+m
A A m+ E 0 2 _ p+ip¥ p*
[01]” [01] p + [v2] ™ [02] g = o o (pE,ctg;f f;m Egm
P
E+m E+4+m 0 —1

The difference between the sum of the u-type and the sum of the v-type matrices is

1
2 (!~ E )
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(1695)

(1696)

(1697)

(1698)

(1699)

(1700)



so the full completeness relation is

2

> (™)) [0 = a0 ) = 02 (1701)

a=1

8 Changes since last time:

I since the 2/19/02 version I have:
1. Altered the section on functional derivation
2. Added a paragraph on the quantum Poincaré algebra
3. Developed the complex scalar field
Starting 3/10/02:
1. Further work on Dirac equation quantization
2. Changed sign convention on particular choice of Dirac matrices.
3. Insert comment on antiparticles in the KG solution.
4. New paragraph on discrete Lorentz transformations in relativity section.
5. Section on antiparticles and chronicity
6. Discussion of Lorentz invariant tensors
7. Change of notation in section “Dirac spinors and Dirac equation” (C becomes h)
8. Continuing work on quantization of the Dirac field
9. Add two appendices (solutions for two of the exercizes).
10. Brief addition to complex scalar field section.
Changes since 3/17/02
1. Minor addition to Hamiltonian formulation of Dirac
2. Substantial changes to quantization of Dirac field
3. Add section finding Dirac Hamiltonian in terms of b, d.
4. Insert missing eq. number in Spin of spinors section.

Changes, 11/13/09: Update some LeTex commands to Lyx standard.
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