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1 Calculation of the Hamiltonian operator
This is our first typical quantum field theory calculation. They’re a bit to keep track of, but not really that
hard. Our goal is to compute the expression for the Hamiltonian operator

Ĥ =
~
2

ˆ (
π̂2 +∇ϕ̂ · ϕ̂+m2ϕ̂2

)
d3x

in terms of the mode operators,

â (k) =

√
2ω

2 (2π)
3/2

ˆ (
ϕ̂ (x, 0)− i

ω
π̂ (x, 0)

)
eik·xd3x (1)

â† (k) =

√
2ω

2 (2π)
3/2

ˆ (
ϕ̂(x, 0) +

i

ω
π̂(x, 0)

)
e−ik·xd3x (2)

Because the techniques involved are used frequently in field theory calculations, we include all the details.
Let’s consider one term at a time. The technique is simply to substitute the mode expansions for the

field and its momentum, then perform the spatial integral to get Dirac delta functions. For the first,

Iπ =
1

2

ˆ
π̂2d3x

= − 1

2 (2π)
3

ˆ (ˆ √
ω

2
d3k

(
â(k)ei(ωt−k·x) − â†(k)e−i(ωt−k·x)

))
×

(ˆ √
ω′

2
d3k′

(
â(k′)ei(ω

′t−k′·x) − â†(k′)e−i(ω
′t−k′·x)

))
d3x

= − 1

4 (2π)
3

ˆ ˆ ˆ √
ωω′d3kd3k′d3x

×
(
â(k)ei(ωt−k·x) − â†(k)e−i(ωt−k·x)

)(
â(k′)ei(ω

′t−k′·x) − â†(k′)e−i(ω
′t−k′·x)

)
= − 1

4 (2π)
3

ˆ ˆ ˆ √
ωω′d3kd3k′d3x

(
â(k)â(k′)ei((ω+ω

′)t−(k+k′)·x) − â(k)â†(k′)ei((ω−ω
′)t−(k−k′)·x)

− â†(k)â(k′)e−i((ω−ω
′)t−(k−k′)·x) + â†(k)â†(k′)e−i((ω+ω

′)t−(k+k′)·x)
)

= −1

4

ˆ ˆ ˆ √
ωω′d3kd3k′

(
â(k)â(k′)δ3 (k+ k′) ei(ω+ω

′)t − â(k)â†(k′)δ3 (k− k′) ei(ω−ω
′)t

− â†(k)â(k′)δ3 (k− k′) e−i(ω−ω
′)t + â†(k)â†(k′)δ3 (k+ k′) e−i(ω+ω

′)t
)

where we have used
1

(2π)
3

ˆ
d3x eik·x = δ3(k)
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in the final step. Now, integrate over d3k′, using the Dirac deltas. This replaces each occurrence of k′ with
either +k or −k, but always replaces ω′ with ω,

1

2

ˆ
π̂2d3x = −1

4

ˆ
ωd3k

(
â(k)â(−k)e2iωt − â(k)â†(k)− â†(k)â(k) + â†(k)â†(−k)e−2iωt

)
Now we press on to the remaining terms. Substitution into the second term gives

I∇ϕ =
1

2

ˆ
∇ϕ̂ · ∇ϕ̂d3x

=
1

4 (2π)
3

ˆ ˆ ˆ
1√
ωω′

d3kd3k′d3x (−ik) · (−ik′)

×
(
â(k)ei(ωt−k·x) − â†(k)e−i(ωt−k·x)

)(
â(k′)ei(ω

′t−k′·x) − â†(k′)e−i(ω
′t−k′·x)

)
As before, the d3x integrals of the four terms give four Dirac delta functions and the d3k′ integrals become
trivial. The result is

I∇ϕ = −1

4

ˆ
k · k
ω

d3k
(
−â(k)â(−k)e2iωt − â(k)â†(k)− â†(k)â(k)− â†(k)â†(−k)e−2iωt

)
It is not hard to see the pattern that is emerging. The k·k

ω term will combine nicely with the ω = ω2
ω from

the π̂2 integral and a corresponding m2 term from the final integral to give a cancellation. The crucial thing
is to keep track of the signs.

The third and final term is

1

2

ˆ
m2ϕ̂2d3x =

1

2

m2

(2π)
3

ˆ ˆ ˆ
d3k√
2ω

d3k′√
2ω′

d3x

×
(
â (k) ei(ωt−k·x) + â† (k) e−i(ωt−k·x)

)(
â (k′) ei(ω

′t−k′·x) + â† (k′) e−i(ω
′t−k′·x)

)
=

m2

4

ˆ
d3k

ω

(
â (k) â (−k) e2iωt + â (k) â† (k) + â† (k) â (k) + â† (k) â† (−k) e−2iωt

)
Now we can combine all three terms:

Ĥ =
~
2

ˆ (
π̂2 +∇ϕ̂ · ∇ϕ̂+m2ϕ̂2

)
d3x

= −~
4

ˆ
ωd3k

(
â (k) â (−k) e2iωt − â (k) â† (k)− â† (k) â (k) + â† (k) â† (−k) e−2iωt

)
−~
4

ˆ
k · k
ω

d3k
(
−â (k) â (−k) e2iωt − â (k) â† (k)− â† (k) â (k)− â† (k) â† (−k) e−2iωt

)
+
m2

4

ˆ
d3k

ω

(
â (k) â (−k) e2iωt + â (k) â† (k) + â† (k) â (k) + â† (k) â† (−k) e−2iωt

)
= −~

4

ˆ
d3k

ω

((
ω2 − k · k−m2

)
â (k) â (−k) e2iωt +

(
−ω2 − k · k−m2

) (
â (k) â† (k) + â† (k) â (k)

))
+
(
ω2 − k · k−m2

)
â† (k) â† (−k) e−2iωt

)
=

1

2

ˆ
d3k

(
â (k) â† (k) + â† (k) â (k)

)
~ω

This looks extremely close to the harmonic oscillator form,

Ĥalmost =

ˆ
d3k

(
â†(k)â(k) +

1

2

)
~ω
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when written in terms of the mode amplitudes â and â†, and this would make good sense – it is just the
energy operator for the quantum simple harmonic oscillator, summed over all modes. However, the two are
far from equal. If we use the commutator of the mode amplitudes to rearrange the products, we have

Ĥ =
1

2

ˆ
d3k

(
â (k) â† (k) + â† (k) â (k)

)
~ω

=

ˆ
d3k

(
â† (k) â (k) +

1

2
δ3 (0)

)
~ω

so we are faced with a divergent integrand. Moreover, even without δ3 (0) = ∞3, the integral
´
d3k ω also

diverges. We have encountered our first infinity.

2 Our first infinity
The form of the Hamiltonian found above displays an obvious problem – the order of the factors makes
a difference. If we used the commutator of the mode amplitudes to put the Hamiltonian in the form of
the simple harmonic oscillator, we introduce a strongly divergent term. While the constant “ground state
energy” of the harmonic oscillator, 1

2~ω, causes no probem in quantum mechanics, the presence of such an
energy term for each mode of quantum field theory leads to an infinite energy for the vacuum state.

Fortunately, a simple rule allows us to eliminate this divergence throughout our calculations. To see how
it works, notice that anytime we have a product of two or more fields at the same point, we develop some
terms of the general form

ϕ̂(x)ϕ̂(x) ∼ â(ω,k)â†(ω,k) + . . .

which have â†(ω,k) on the right. When such products act on the vacuum state, the â†(ω,k) gives a
nonvanishing contribution, and if we sum over all wave vectors we get a divergence. The solution is to
impose a rule that changes the order of the creation and annihilation operators. This is called normal
ordering, and is denoted by enclosing the product in colons. Thus, we define the Hamiltonian to be the
normal ordered product

Ĥ =
~
2

ˆ
:
(
π̂2 +∇ϕ̂ · ∇ϕ̂+m2ϕ̂2

)
: d3x

=
~
2

ˆ
d3k :

(
â(k)â†(k) + â†(k)â(k)

)
: ω

=

ˆ
d3k â†(k)â(k) ~ω

We will see that this expression gives zero for the vacuum state, and is finite for all states with a finite
number of particles. While this procedure may seem a bit ad hoc, recall that the ordering of operators in
any quantum expression is one thing that cannot be determined from the classical framework using canonical
quantization. It is therefore reasonable to use whatever ordering convention gives the most sensible results.

2.1 An aside: Working backwards
One might think that we could find a form for the finite Hamiltonian operator in terms of ϕ̂ and π̂ by working
backwards from

: Ĥ : =

ˆ
d3k â†(k)â(k) ~ω

However, we again encounter an infinite integral. Substituting

â (k) =

√
2ω

2 (2π)
3/2

ˆ (
ϕ̂ (x, 0)− i

ω
π̂ (x, 0)

)
eik·xd3x
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â† (k) =

√
2ω

2 (2π)
3/2

ˆ (
ϕ̂(x, 0) +

i

ω
π̂(x, 0)

)
e−ik·xd3x

into : Ĥ :,

: Ĥ : =
1

2 (2π)
3

ˆ
d3k ~ω2

(ˆ (
ϕ̂(x, 0) +

i

ω
π̂(x, 0)

)
e−ik·xd3x

)(ˆ (
ϕ̂ (x′, 0)− i

ω
π̂ (x′, 0)

)
eik·x

′
d3x′

)
=

~
2 (2π)

3

ˆ
d3k

ˆ
d3x

ˆ
d3x′ (ωϕ̂(x, 0) + iπ̂(x, 0)) (ωϕ̂ (x′, 0)− iπ̂ (x′, 0)) e−ik·(x−x

′)

=
~

2 (2π)
3

ˆ
d3k

ˆ
d3x

ˆ
d3x′

(
ω2ϕ̂(x, 0)ϕ̂ (x′, 0) + iω [π̂(x, 0), ϕ̂ (x′, 0)] + π̂(x, 0)π̂ (x′, 0)

)
e−ik·(x−x

′)

=
~

2 (2π)
3

ˆ
d3k

ˆ
d3x

ˆ
d3x′

(
ω2ϕ̂(x, 0)ϕ̂ (x′, 0) + iωiδ3(x− x′) + π̂(x, 0)π̂ (x′, 0)

)
e−ik·(x−x

′)

Consider each of the terms separately.
For the final term, we may carry out the integral over d3k,

Iππ =
~

2 (2π)
3

ˆ
d3k

ˆ
d3x

ˆ
d3x′π̂(x, 0)π̂ (x′, 0) e−ik·(x−x

′)

=
~
2

ˆ
d3x

ˆ
d3x′π̂(x, 0)π̂ (x′, 0) δ3 (x− x′)

=
~
2

ˆ
d3xπ̂(x, 0)π̂ (x, 0)

For the middle term, we have

I[π,ϕ] =
~

2 (2π)
3

ˆ
d3k

ˆ
d3x

ˆ
d3x′

(
−ωδ3 (x− x′)

)
e−ik·(x−x

′)

= − ~
2 (2π)

3

ˆ
d3k

ˆ
d3xω

which diverges. Finally, if we write the frequency as,

ω2 = k2 +m2

the first term is

Iϕϕ =
~

2 (2π)
3

ˆ
d3k

ˆ
d3x

ˆ
d3x′

(
k2 +m2

)
ϕ̂(x, 0)ϕ̂ (x′, 0) e−ik·(x−x

′)

= − ~
2 (2π)

3

ˆ
d3k

ˆ
d3x

ˆ
d3x′ϕ̂(x, 0)ϕ̂ (x′, 0)∇2e−ik·(x−x

′)

+
~m2

2 (2π)
3

ˆ
d3k

ˆ
d3x

ˆ
d3x′ϕ̂(x, 0)ϕ̂ (x′, 0) e−ik·(x−x

′)

= − ~
2 (2π)

3

ˆ
d3x

ˆ
d3x′ϕ̂(x, 0)ϕ̂ (x′, 0)∇2

ˆ
d3k e−ik·(x−x

′)

+
~
2
m2

ˆ
d3x

ˆ
d3x′ϕ̂(x, 0)ϕ̂ (x′, 0) δ3 (x− x′)

= −~
2

ˆ
d3x

ˆ
d3x′ϕ̂(x, 0)ϕ̂ (x′, 0)∇2δ3 (x− x′)

+
~
2
m2

ˆ
d3xϕ̂(x, 0)ϕ̂ (x′, 0)
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We integrate by parts in the first integral,

−~
2

ˆ
d3x

ˆ
d3x′ϕ̂(x, 0)ϕ̂ (x′, 0)∇2δ3 (x− x′) =

~
2

ˆ
d3x

ˆ
d3x′∇ϕ̂(x, 0)ϕ̂ (x′, 0) · ∇δ3 (x− x′)

then recognizing that ∇δ3 (x− x′) = −∇′δ3 (x− x′) we integrate by parts again,

−~
2

ˆ
d3x

ˆ
d3x′ϕ̂(x, 0)ϕ̂ (x′, 0)∇2δ3 (x− x′) = +

~
2

ˆ
d3x

ˆ
d3x′∇ϕ̂(x, 0) · ∇′ϕ̂ (x′, 0) δ3 (x− x′)

= +
~
2

ˆ
d3x∇ϕ̂(x, 0) · ∇ϕ̂ (x, 0)

The three non-divergent terms reconstitute the original Hamiltonian,

: Ĥ : =
~
2

ˆ
d3x

(
π̂2 +∇ϕ̂ · ∇ϕ̂+m2ϕ̂2 − 1

(2π)
3

ˆ
d3k

ˆ
d3x′ωδ3 (x− x′) e−ik·(x−x

′)

)

=
~
2

ˆ
d3x

(
Ĥ − 1

(2π)
3

ˆ
d3k

ˆ
d3x′ωδ3 (x− x′) e−ik·(x−x

′)

)
but again we see the divergent integral.

At the very least, we can see that states for which : Ĥ : is finite are different from states on which Ĥ is
finite.

3 States of the Klein-Gordon field
The similarity between the field Hamiltonian and the harmonic oscillator makes it easy to interpret this
result. We begin the observation that the expectation values of Ĥ are bounded below. This follows because
for any normalized state |α〉 we have

〈α| Ĥ |α〉 = 〈α|
ˆ
ω :

(
â† (k) â (k) +

1

2

)
: d3k |α〉

=

ˆ
ω d3k 〈α| â† (k) â (k) |α〉

But if we let |β〉 = â (k) |α〉 , then 〈β| = 〈α| â† (k) , so

〈α| Ĥ |α〉 =

ˆ
ω d3k 〈α| â† (k) â (k) |α〉

=

ˆ
ω d3k 〈β|β〉

> 0

since the integrand is positive definite. However, we can show that the action of â (k) lowers the eigenvalues
of Ĥ. For consider the commutator[

Ĥ, â (k)
]

=

[ˆ
ω′ :

(
â† (k′) â (ω′,k′) +

1

2

)
: d3k′, â (k)

]
=

ˆ
ω′
[
â† (k′) , â (k)

]
â (k′) d3k′

= −
ˆ
ω′δ3 (k− k′) â (k′) d3k′

= −ωâ (k)
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Therefore, if |α〉 is an eigenstate of Ĥ with Ĥ |α〉 = α |α〉 then so is â (k) |α〉 because

Ĥ (â (k) |α〉) =
[
Ĥ, â (k)

]
|α〉+ â (k) Ĥ |α〉

= −ωâ (k) |α〉+ â (k)α |α〉
= (α− ω) (â (k) |α〉)

Moreover, the eigenvalue of the new eigenstate is lower than α. Since the eigenvalues are bounded below,
there must exist a state such that

â (k) |0〉 = 0 (3)

for all values of k. The state |0〉 is called the vacuum state and the operators â (k) are called annihilation
operators. From the vacuum state, we can construct the entire spectrum of eigenstates of the Hamiltonian.
First, notice that the vacuum state is a minimal eigenstate of Ĥ:

Ĥ |0〉 =

ˆ
ω′ :

(
â† (k′) â (k′) +

1

2

)
: |0〉 d3k′

=

ˆ
ω′â† (k′) â (k′) |0〉 d3k′

= 0

Now, we act on the vacuum state with â† (k) to produce new eigenstates.

Exercise: Prove that |k〉 = â† (k) |0〉 is an eigenstate of Ĥ.

We can build infinitely many states in two ways. First, just like the harmonic oscillator states, we can apply
the creation operator â† (k) as many times as we like. Such a state contains multiple particles with energy
ω. Second, we can apply creation operators of different k,

|k′,k〉 = â† (k′) â† (k) |0〉 = â† (k) â† (k) |0〉

This state contains two particles, with energies ω and ω′.
As with the harmonic oscillator, we can introduce a number operator to measure the number of quanta

in a given state. The number operator is just the sum over all modes of the number operator for a given
mode,

N̂ ≡
ˆ

:
(
â† (k) â (k)

)
: d3k

=

ˆ
â† (k) â (k) d3k

Exercise: By applying N̂ , compute the number of particles in the state

|k′,k〉 = â†(k′)â†(k) |0〉

Notice that creation and annihilation operators for different modes all commute with one another, e.g.,[
â†(k′), â(k)

]
= 0

when k′ 6= k.
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4 Poincaré transformations of Klein-Gordon fields
Now let’s examine the Lorentz transformation and translation properties of scalar fields. For this we need
to construct quantum operators which generate the required transformations. Since the translations are the
simplest, we begin with them.

We have observed that the spacetime translation generators forming a basis for the Lie algebra of trans-
lations (and part of the basis of the Poincaré Lie algebra) resemble the energy and momentum operators of
quantum mechanics. Moreover, Noether’s theorem tells us that energy and momentum are conserved as a
result of translation symmetry of the action. We now need to bring these insights into the quantum realm.

From our discussion in Chapter 1, using the Klein-Gordon Lagrangian density we have the conserved
stress-energy tensor,

Tµν =
∂L

∂ (∂µφ)
∂νφ− Lηµν

= ∂µϕ∂νϕ− 1

2
ηµν

(
π2 −∇ϕ · ∇ϕ−m2ϕ2

)
which leads to the conserved charges,

Pµ =

ˆ
Tµ0d3x

and the natural extension of this observation is to simply replace the products of fields in Tµ0 with normal-
ordered field operators. We therefore define

P̂µ ≡
ˆ

: T̂µ0 : d3x

First, for the time component,

P̂ 0 =

ˆ
: T̂ 00 : d3x

=

ˆ
: ∂0ϕ̂∂0ϕ̂− 1

2
η00
(
π̂2 −∇ϕ̂ · ϕ̂−m2ϕ̂2

)
: d3x

=
1

2

ˆ
: π̂2 +∇ϕ̂ · ∇ϕ̂+m2ϕ̂2 : d3x

= Ĥ

This is promising!
Now let’s try the momentum,

P̂ i =

ˆ
: T̂ i0 : d3x

=

ˆ
: ∂iϕ̂∂0ϕ̂− 1

2
ηi0
(
π̂2 −∇ϕ̂ · ϕ̂−m2ϕ̂2

)
: d3x

=

ˆ
: ∂iϕ̂ π̂ : d3x

Exercise: By substituting the field operators,

ϕ̂ (x, t) =
1

(2π)
3/2

ˆ
d3k√
2ω

(
â (k) ei(ωt−k·x) + â† (k) e−i(ωt−k·x)

)
(4)

π̂ (x, t) =
i

(2π)
3/2

ˆ √
ω

2
d3k

(
â (k) ei(ωt−k·x) − â† (k) e−i(ωt−k·x)

)
(5)
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into the integral for P̂ i, show that

P̂ i =
1

2

ˆ
ki
{
−â (k) â (−k) e2iωt + â (k) â† (k)

+â† (k) â (k)− â† (k) â† (−k) e−2iωt
}
d3k

The calculation is similar to the computation of the Hamiltonian operator above, except there is only
one term to consider.

We can simplify this result for P̂ i using a parity argument. Consider the effect of parity on the first integral.
Since the volume form together with the limits is invariant under k→ −k,

ˆ ∞
−∞

ˆ ∞
−∞

ˆ ∞
−∞

d3k →
ˆ −∞
∞

ˆ −∞
∞

ˆ −∞
∞

(−1)3 d3k =

ˆ ∞
−∞

ˆ ∞
−∞

ˆ ∞
−∞

d3k

and ω (−k) = ω (k) , we have

I1 =
1

2

ˆ
d3k ki â (k) â (−k) e2iωt

=
1

2

ˆ
d3k (−ki) â (−k) â (k) e2iωt

= −1

2

ˆ
d3k ki â (k) â (−k) e2iωt

= −I1

and therefore I1 = 0. The final term in the same way, so the momentum operator reduces to

P̂ i =

ˆ
: ∂iϕ̂ π̂ : d3x

=
1

2

ˆ
ki:
(
â (k) â† (k) + â† (k) â (k)

)
: d3k

=

ˆ
ki â (k) â† (k) d3k

Once again, this makes sense; moreover, they are suitable for translation generators since they all commute.
We may write all four in the same form,

P̂α =

ˆ
~kα â (k) â† (k) d3k

In a similar way, we can compute the operators M̂αβ , and show that the commutation relations of the
full set reproduce the Poincaré Lie algebra,[

M̂αβ , M̂µν
]

= ηβµM̂αν − ηβνM̂αµ − ηαµM̂βν − ηανM̂βµ[
M̂αβ , P̂µ

]
= ηµαP̂ β − ηµβP̂α[

P̂α, P̂ β
]

= 0

The notable accomplishment here is that we have shown that even after quantization, the symmetry algebra
not only survives, but can be built from the quantum field operators. This is far from obvious, because the
commutation relations for the field operators are simply imposed by the rules of canonical quantization and
have nothing to do, a priori, with the commutators of the symmetry algebra. One consequence, as noted
above, is that the Casimir operators of the Poincaré algebra may be used to label quantum states.
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