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We have introduced several distinct types of fields, with actions that give their field equations. These
include scalar fields,

S =
1

2

ˆ (
∂αϕ∂αϕ−m2ϕ2

)
d4x (1)

and complex scalar fields,

S =
1

2

ˆ (
∂αϕ∗∂αϕ−m2ϕ∗ϕ

)
d4x (2)

These are often called charged scalar fields because they have a nontrivial global U(1) symmetry that allows
them to couple to electromagnetic fields. Scalar fields have spin 0 and mass m.

The next possible value of W 2 ∼ J2 is spin- 12 , which is possessed by spinors. Dirac spinors satisfy the
Dirac equation, which follows from the action

S =

ˆ
d4x ψ̄ (iγµ∂µ −m)ψ (3)

Once again, the mass is m. For higher spin, we have the zero mass, spin-1 electromagnetic field, with action

S =

ˆ
d4x

(
1

4
FαβFαβ + JαAα

)
(4)

Electromagnetic theory has an important generalization in the Yang-Mills field, FA αβ where the additional
index corresponds to an SU(n) symmetry. We could continue with the spin- 32 Rarita-Schwinger field and
the spin-2 metric field, gαβ of general relativity. The latter follows the Einstein-Hilbert action,

S =

ˆ
d4x

√
−det (gαβ)gαβRµ αµβ (5)

where Rµ ναβ is the Riemann curvature tensor computed from gαβ and its first and second derivatives, while
the Rarita-Schwinger is most consistently treated as the supersymmetric partner of the graviton.

We first turn our attention to scalar and charged scalar fields.
We need the Hamiltonian formulation of field theory to do this properly, and we will immediately see the

need for functional differentiation.

1 Hamilton’s equations for the Klein-Gordon (scalar) field
To begin quantization, we require the Hamiltonian formulation of scalar field theory. This, in turn, requires
the momentum conjugate to the field ϕ. In mechanics, this is simply ∂L

∂q̇ , but in field theory, the Lagrangian
is a functional rather than a function.

To see this explicitly, rewrite the Klein-Gordon action, eq(1), as

S =

ˆ [
1

2

ˆ (
∂αϕ∂αϕ−m2ϕ2

)
d3x

]
dt
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where we identify the term in brackets as the Lagrangian,

L =
1

2

ˆ (
∂αϕ∂αϕ−m2ϕ2

)
d3x

Therefore, to find the conjugate momentum density to ϕ, we must take a functional derivative of the
Lagrangian with respect to ϕ̇,

π ≡ δL

δ (∂0ϕ)

=
δ

δ (∂0ϕ)

1

2

ˆ (
∂αϕ∂αϕ−m2ϕ2

)
d3x′

=

ˆ (
∂0ϕ

)
δ3(x′ − x)d3x′

= ∂0ϕ(x)

= ϕ̇(x)

Notice that we treat ϕ(x) and its time derivative ϕ̇(x) as independent.
In field theory, we think of the coordinates (x, t) as parameters or labels in the same way that indices

label the components of coordinates and momentum in mechanics. Thus, the expression for the Hamiltonian
changes from the discrete sum over i, H =

∑
piq̇

i − L to an integral over the continuous parameters x

H =

ˆ
π(x)ϕ̇(x)d3x− L

or, expanding the Lagrangian,

H =

ˆ
π(x)ϕ̇(x)d3x− 1

2

ˆ (
ϕ̇(x)2 −∇ϕ ·∇ϕ−m2ϕ2

)
d3x

=
1

2

ˆ (
π2 + ∇ϕ ·∇ϕ+m2ϕ2

)
d3x

We define the Hamiltonian density,

H =
1

2

(
π2 +∇ϕ · ∇ϕ+m2ϕ2

)
(6)

Hamilton’s equations are also functional derivatives. Since the Hamiltonian is now a functional, we
replace the mechanical form of Hamilton’s equations,

q̇i =
∂H

∂pi

ṗi = −∂H
∂qi

with their functional derivative generalizations,

ϕ̇(x) =
δH

δπ(x)

π̇(x) = − δH

δϕ(x)
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and check that this reproduces the correct field equation. Taking the indicated derivative for ϕ̇ gives

ϕ̇(x) =
δH

δπ(x)

=
1

2

δ

δπ(x)

ˆ (
π2 +∇ϕ · ∇ϕ+m2ϕ2

)
d3x′

=
1

2

ˆ (
2π(x′)

δπ(x′)

δπi(x)

)
d3x′

=

ˆ
π(x′)δ3(x′ − x)d3x′

= π(x)

while for π̇,

π̇(x) = − δH

δϕ(x)

= −1

2

δ

δϕ(x)

ˆ (
π2 +∇ϕ · ∇ϕ+m2ϕ2

)
d3x′

= −
ˆ (
∇ϕ · ∇δϕ(x′)

δϕ(x)
+m2ϕ

δϕ(x′)

δϕ(x)

)
d3x′

=

ˆ (
∇2ϕ · δϕ(x′)

δϕ(x)
−m2ϕ

δϕ(x′)

δϕ(x)

)
d3x′

=

ˆ (
∇2ϕδ3(x′ − x)−m2ϕδ3(x′ − x)

)
d3x′

= ∇2ϕ−m2ϕ

But substituting π̇ = ∂0ϕ̇ = ϕ̈ for π̇,

ϕ̈ = ∇2ϕ−m2ϕ

�ϕ = −m2ϕ

we recover the Klein-Gordon field equation.

2 Functional Poisson brackets
We move toward quantization by writing the field equations in terms of functional Poisson brackets. Here
too, we expect dynamical variables f and g to be functionals so the bracket becomes

{f(ϕ, π), g(ϕ, π)} ≡
ˆ (

δf

δπ(x)

δg

δϕ(x)
− δf

δϕ(x)

δg

δπ(x)

)
d3x

where we replaced the sum over all pi and qi by an integral over all x. The bracket is evaluated at a constant
time. Then we have

{π(x′), ϕ(x′′)} =

ˆ (
δπ(x′)

δπ(x)

δϕ(x′′)

δϕ(x)
− δπ(x′)

δϕ(x)

δϕ(x′′)

δπ(x)

)
d3x

=

ˆ
δ3(x′ − x)δ3(x′′ − x)d3x

= δ3(x′′ − x′)

while
{π(x′), π(x′′)} = {ϕ(x′), ϕ(x′′)} = 0

3



Hamilton’s equations work out correctly using the functional Poisson brackets,

ϕ̇(x) = {H(ϕ, π), ϕ(x′)}

=

ˆ (
δH(ϕ, π)

δπ(x)

δϕ(x′)

δϕ(x)
− δH

δϕ(x)

δϕ(x′)

δπ(x)

)
d3x

=

ˆ
δH(ϕ, π)

δπ(x)
δ3(x− x′)d3x

=
δH(ϕ(x), π(x))

δπ(x)

and

π̇(x) = {H(ϕ, π), π(x′)}

=

ˆ (
δH(ϕ, π)

δπ(x)

δπ(x′)

δϕ(x)
− δH

δϕ(x)

δπ(x′)

δπ(x)

)
d3x

= −
ˆ
δH(ϕ, π)

δϕ(x)
δ3(x− x′)d3x

= −δH(ϕ(x), π(x))

δϕ(x)

Now we quantize, canonically. The field and its conjugate momentum become operators and the funda-
mental Poisson brackets become commutators,

{π(x′), ϕ(x′′)} = δ3(x′′ − x′)⇒ [π̂(x′), ϕ̂(x′′)] = iδ3(x′′ − x′)

(where ~ = 1) while
[ϕ̂(x′), ϕ̂(x′′)] = [π̂(x′), π̂( x′′)] = 0

These are the fundamental commutation relations of the quantum field theory. Because the commutator of
the field operators π̂(x) and ϕ̂(x) are evaluated at the same value of t, these are called equal time commutation
relations. More explicitly,

[π̂(x′, t), ϕ̂(x′′, t)] = iδ3(x′′ − x′)

[ϕ̂(x′, t), ϕ̂(x′′, t)] = [π̂(x′, t), π̂(x′′, t)] = 0 (7)

This completes the canonical quantization. The trick, of course, is to find some solutions that have the
required quantized properties.

3 Classical solution for the free Klein-Gordon field
Having written commutation relations for the field, we still have the problem of finding solutions and inter-
preting them. To begin, we look at solutions of the classical theory. The field equation

�ϕ = −m
2

~2
ϕ

(where we have replaced h, but retain c = 1) is not hard to solve as a superposition of plane waves. Consider
the conjugate plane waves,

ϕ(x, t) = Ae
i
~ (pαx

α) +A†e−
i
~ (pαx

α)

= Ae
i
~ (Et−p·x) +A†e−

i
~ (Et−p·x)
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where at this point, A† is simply the complex conjugate, A∗. Substituting into the field equation we have

A

(
i

~

)2

pαp
α exp

i

~
(pαx

α) = −m
2

~2
A exp

i

~
(pαx

α)

so we need the usual mass-energy-momentum relation pαp
α = m2. Solving for the energy, we keep both

solutions,

E+ =
√
p2 +m2

E− = −
√
p2 +m2

then construct the general solution by Fourier superposition. To keep the result manifestly relativistic, we use
a Dirac delta function to impose pαpα = m2. We also insert a unit step function, Θ(E), to insure positivity
of the energy. This insertion may seem a bit ad hoc, and it is – we will save discussion of the negative energy
solutions and antiparticles for later. Then, integrating over all energies and momenta,

ϕ(x, t) =
1

(2π)
3/2

ˆ √
2E
(
a (E,p) e

i
~pαx

α

+ a† (E,p) e−
i
~pαx

α
)
δ
(
pαp

α −m2
)

Θ (E) ~−4d4p

where A =
√

2E a(E,p) is the arbitrary complex amplitude of each wave mode and 1
(2π)3/2

is the conventional
normalization for Fourier integrals.

Recall that for a function f(x) with zeros at xi, i = 1, 2, . . . , n, δ(f) gives a contribution at each zero:

δ(f) =

n∑
i=1

1

|f ′(xi)|
δ(x− xi) (8)

so the quadratic delta function can be written as

δ
(
pαp

α −m2
)

= δ
(
E2 − p2 −m2

)
=

1

2|E|
δ
(
E −

√
p2 +m2

)
+

1

2|E|
δ
(
E +

√
p2 +m2

)
Exercise: Prove eq.(8).

Exercise: Argue that Θ (E) is Lorentz invariant.

The integral for the solution ϕ (x, t) becomes

ϕ (x, t) =
1

(2π)
3/2

ˆ √
2E
(
ae

i
~pαx

α

+ a†e−
i
~pαx

α
) 1

2|E|
δ
(
E −

√
p2 +m2

)
Θ(E)~−4d4p

+
1

(2π)
3/2

ˆ √
2E
(
ae

i
~pαx

α

+ a†e−
i
~pαx

α
) 1

2|E|
δ
(
E +

√
p2 +m2

)}
Θ(E)~−4d4p

=
1

(2π)
3/2 ~4

ˆ
d4p√
2|E|

(
ae

i
~pαx

α

+ a†e−
i
~pαx

α
)
δ
(
E −

√
p2 +m2

)
Performing the energy integral using the delta function,

ϕ (x, t) =
1

(2π)
3/2 ~4

ˆ
d4p√
2|E|

(
a (pα) e

i
~pαx

α

+ a† (pα) e−
i
~pαx

α
)
δ
(
E −

√
p2 +m2

)
=

1

(2π)
3/2 ~3

ˆ
d3p√

2|E (p) |

(
a (p) e

i
~ (E(p)t−p·x) + a† (p) e−

i
~ (E(p)t−p·x)

)
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Notice that we may write a (p) for a (E (p) ,p). Define the 4-vector,

kµ = (ω,k)

k =
p

~

ω =
1

~
√

p2 +m2 =

√
k2 +

(m
~

)2
Then

ϕ(x, t) =
1

(2π)
3/2

ˆ
d3k√

2ω

(
a(k)ei(ωt−k·x) + a†(k)e−i(ωt−k·x)

)
(9)

This is the general classical solution for the Klein-Gordon field. Again, the amplitudes a and a† depend only
on k.

To check that our solution satisfies the Klein-Gordon equation, we need only apply the wave operator
to the right side. This pulls down an overall factor of (ikµ)(ikµ) = − 1

~2

(
E2 − p2

)
= −m

2

~2 . Since this is
constant, it comes out of the integral, giving −m

2

~2 ϕ as required.
To quantize this form of the solution, ϕ becomes an operator. Within the Fourier expansion, the only

way to achieve this is to allow the mode amplitudes to become operators, â(k), â†(k). We need to find the
commutation relations satisfied by these amplitudes.

4 Quantization of the solution
Classically, the full evoltion of the field is determined by the initial field and initial momentum. These are
sufficient to determine the amplitudes a and a† in terms of initial conditions, and these are the relationships
we require. Since we know the commutation relations that ϕ̂ and π̂ satisfy as operators, knowing the
amplitudes â and â† in terms of (ϕ, π) lets us find their commutation relations.

4.1 Solving for the mode amplitudes
To this end, multiply ϕ(x, t) by 1

(2π)3/2
d3xeik

′·x and integrate. On the left this gives the Fourier transform
of the field, while the right side gives a combination of the amplitudes,

1

(2π)
3/2

ˆ
ϕ (x, 0) eik

′·xd3x =
1

(2π)
3

ˆ
d3k√

2ω

(
a (k) ei(k

′−k)·x + a† (k) ei(k
′+k)·x

)
d3x

=

ˆ
d3k√

2ω

(
a (k) δ3 (k′ − k) + a† (k) δ3 (k′ + k)

)
=

1√
2ω

(
a (k′) + a† (−k′)

)
We also need to invert the expression for the conjugate momentum, given by the time derivative of π,

π (x, t) = ∂0ϕ (x, t)

=
i

(2π)
3/2

ˆ √
ω

2
d3k

(
a (k) ei(ωt−k·x) − a† (k) e−i(ωt−k·x)

)
Taking the Fourier transform of the momentum density we find

1

(2π)
3/2

ˆ
π (x, 0) eik

′·xd3x =
i

(2π)
3

ˆ √
ω′

2
d3k

(
a (k) ei(k

′−k)·x − a† (k) ei(k
′+k)·x

)
d3x
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= i

ˆ √
ω′

2
d3k

(
a (k) δ3 (k′ − k)− a† (k) δ3 (k′ + k)

)
= i

√
ω′

2

(
a (k′)− a† (−k′)

)
Now we solve for the amplitudes,

a (k′) + a† (−k′) =

√
2ω′

(2π)
3/2

ˆ
ϕ (x, 0) eik

′·xd3x

a (k′)− a† (−k′) = − i

ω′

√
2ω′

(2π)
3/2

ˆ
π (x, 0) eik

′·xd3x

Adding gives a(k′) :

a(k′) =

√
2ω′

2 (2π)
3/2

ˆ (
ϕ (x, 0)− i

ω′
π (x, 0)

)
eik

′·xd3x (10)

while subtracting then changing the sign of k′ gives the adjoint:

a†(k′) =

√
2ω′

2 (2π)
3/2

ˆ (
ϕ(x, 0) +

i

ω′
π(x, 0)

)
e−ik

′·xd3x (11)

This gives the amplitudes in terms of the field and its conjugate momentum. So far, this result is classical.

4.2 Quantization of the amplitudes
Next, we check the consequences of quantization for the amplitudes. Clearly, once ϕ and π become operators,
the amplitudes do too. From the commutation relations for ϕ and π we can compute those for a and a†.

[
â (k) , â† (k′)

]
=

ω′

2 (2π)
3

ˆ
eik·xd3x

ˆ
e−ik

′·x′
d3x′

[
ϕ̂ (x)− i

ω
π̂ (x) , ϕ̂ (x′) +

i

ω
π̂ (x′)

]
We need the commutator[

ϕ̂ (x)− i

ω
π̂ (x) , ϕ̂ (x′) +

i

ω
π̂ (x′)

]
= −2i

ω
[π̂ (x) , ϕ̂ (x′)]

=
2

ω
δ3 (x− x′)

Therefore,

[
â(k), â†(k′)

]
=

√
ωω′

2 (2π)
3

ˆ ˆ
eik·xe−ik

′·x′
d3x d3x′

2

ω
δ3(x− x′)

=
1

(2π)
3

√
ω′

ω

ˆ
ei(k−k

′)·xd3x

= δ3 (k− k′)

Notice that the delta function makes the frequencies equal, ω = ω′. The commutator is reminiscent of the
raising and lowering operators of the simple harmonic oscillator, and serve a similar function.

Exercise: Show that [â (k) , â (k′)] = 0.

Exercise: Show that
[
â† (k) , â† (k′)

]
= 0.
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Finally, we summarize by the field and momentum density operators in terms of the mode amplitude oper-
ators:

ϕ̂ (x, t) =
1

(2π)
3/2

ˆ
d3k√

2ω

(
â (k) ei(ωt−k·x) + â† (k) e−i(ωt−k·x)

)
(12)

π̂ (x, t) =
i

(2π)
3/2

ˆ √
ω

2
d3k

(
â (k) ei(ωt−k·x) − â† (k) e−i(ωt−k·x)

)
(13)

Next, we turn to a study of states. We will begin with the Hamiltonian operator, which requires a bit of
calculation.
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