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When we work with linear representations of Lie groups and Lie algebras, it is important to keep track
of the objects on which the operators act. These objects are always the elements of a vector space. In the
case of O(3), the vector space is Euclidean 3-space, while for Lorentz transformations the vector space is
spacetime. As we shall see in this section, the covering groups of these same symmetries act on other, more
abstract, complex vector spaces. The elements of these complex vector spaces are called spinors.

1 Spinors for O(3)

Let’s start with O(3), the group which preserves the lengths, x2 = x2 + y2 + z2 = gijx
ixj of Euclidean

3-vectors. We can encode this length as the determinant of a matrix,

X =

(
z x− iy

x+ iy −z

)
detX = −

(
x2 + y2 + z2

)
This fact is useful because matrices of this type are easy to characterize. Let

M =

(
α β
γ δ

)
be any matrix with complex entries and demand hermiticity, M = M† :

M = M†(
α β
γ δ

)
=

(
α∗ γ∗

β∗ δ∗

)
Then α → a is real, δ → d is real, and β = γ∗. Only γ = b + ic remains arbitrary. If we also require M to
be traceless, then M reduces to

M =

(
a b− ic

b+ ic −a

)
just the same as X. Therefore, rotations may be characterized as the set of transformations of X → X ′

preserving the following properties of X :

1. Determinant: detX ′ = detX

2. Hermiticity: X† = X

3. Tracelessness: tr (X) = 0

To find the set of such transformations, recall that matrices transform by a similarity transformation

X → X ′ = AXA†
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Here we use the adjoint instead of the inverse because we imagine X to be doubly covariant, Xij . For the
mixed form, Xi

j we would write X → AXA−1). From this form, we have:

detX ′ = det
(
AXA†

)
= (detA) (detX)

(
detA†

)
so we demand

|detA|2 = 1

detA = eiϕ

We can constrain this determinant further, because if we write A = eiϕ/2U where detU = 1, then

X ′ = AXA†

= eiϕ/2UXe−iϕ/2U†

= UXU†

This means that a pure phase has no effect onX, so without loss of generality (and as required by uniqueness)
we take the determinant of A to be one.

Next, notice that hermiticity is automatic. Whenever X is hermitian we have

(X ′)
†

=
(
AXA†

)†
= A††X†A†

= AXA†

= X ′

so X ′ is hermitian.
Finally, we impose the trace condition. Suppose tr(X) = 0. Then

tr(X ′) = tr(AXA†)

= tr(A†AX)

For the final expression to reduce to tr(X) for all X, we must have A†A = 1. Therefore, A† = A−1 and the
transformations must be unitary. Using the unit determinant unitary matrices, U, we see that the group is
SU(2). This shows that SU(2) can be used to write 3-dimensional rotations. In fact, we will see that SU(2)
includes two transformations corresponding to each element of SO(3).

The exponential of any anti-hermitian matrix is unitary matrix because if U = exp (iH) with H† = H,
then

U† = exp
(
−iH†

)
= exp (−iH) = U−1

Conversely, any unitary matrix may be written this way. Moreover, since detA = etr(lnA) the transformation
U = exp (iH) has unit determinant whenever H is traceless. Since every traceless, hermitian matrix is a
linear combination of the Pauli matrices,

σm =

((
1

1

)
,

(
−i

i

)
,

(
1
−1

))
(1)

we may write every element of SU(2) as the exponential

U(wm) = eiw
mσm

where the three parameters wm are real and the Pauli matrices are mixed type tensors, σm = [σm]
a
b ,

because U is a transformation matrix.
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There is a more convenient way to collect the real parameters wm. Define a unit vector n̂ so that

w =
ϕ

2
n̂

Then
U(ϕ, n̂) = exp

(
iϕ

2
n̂ · σ

)
(2)

is a rotation through an angle ϕ about the n̂ direction.

Exercise: Let n̂ = (0, 0, 1) and show that the relation between (x, y, z) and (x′, y′, z′) given by

X ′ =

(
z′ x′ − iy′

x′ + iy′ −z′
)

= UXU†

= exp

(
iϕ

2
n̂ · σ

)(
z x− iy

x+ iy −z

)
exp

(
− iϕ

2
n̂ · σ

)
is a rotation by ϕ about the z axis.

Exercise: By expanding the exponential in a power series and working out the powers of n̂ · σ for a general
unit vector n̂, prove the identity

exp

(
iϕ

2
n̂ · σ

)
= 1 cos

ϕ

2
+ in̂ · σ sin

ϕ

2
(3)

Also, show that U(2π, n̂) = −1 and U(4π, n̂) = 1 for any unit vector, n̂. From this, show that U(2π, n̂)
gives X ′ = X.

Now let’s consider what vector space SU(2) acts on. We have used a similarity transformation on matrices
to show how it acts on a 3-dimensional subspace of the 8-dimensional space of 2× 2 complex matrices. But
more basically, SU(2) acts the vector space of complex, two component spinors:

χ =

(
α
β

)
χ′ = Uχ

Exercise: Using the result of the previous exercise, eq.(3) find the most general action of SU(2) on χ. Show
that the periodicity of the mapping is 4π, that is, that

U(4πm, n̂)χ = χ

for all integers m, while U(2πm, n̂)χ = −χ 6= χ for odd m.

The vector space of spinors χ is the simplest set of objects that Euclidean rotations act nontrivially
on. These objects are familiar from quantum mechanics as the spin-up and spin-down states of spin-1/2
fermions. It is interesting to observe that spin is a perfectly classical property arising from symmetry. It
was not necessary to discover quantum mechanics in order to discover spin. Apparently, the reason that
“classical spin” was not discovered first is that its magnitude is microscopic. Indeed, with the advent of
supersymmetry, there has been some interest in classical supersymmetry – supersymmetric classical theories
whose quantization leads to now-familiar quantum field theories.
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2 Spinors for the Lorentz group
Next, we extend this new insight to the Lorentz group. Recall that we defined Lorentz transformations as
those preserving the Minkowski line element,

s2 = t2 − (x2 + y2 + z2)

or equivalently, those transformations leaving the Minkowski metric invariant. Once again, we write a matrix
that contains the invariant information in its determinant. Let

X =

(
t+ z x− iy
x+ iy t− z

)
noting that X is now the most general hermitian 2×2 matrix, X† = X, without any constraint on the trace.
The determinant is now

detX = t2 − x2 − y2 − z2 = s2

and we only need to preserve two properties: Hermiticity and unit determinant.
Let X ′ = AXA†. Then Hermiticity is again automatic and all we need is |detA|2 = 1. As before,

an overall phase does not affect X, so we can fix detA = 1. There is no further constraint needed, so
Lorentz transformations is given by the special linear group in two complex dimensions, SL(2,C). Let’s
find the generators. First, it is easy to find a set of generators for the general linear group, because every
non-degenerate matrix is allowed. Expanding a general matrix infinitesimally about the identity gives

G = 1 +

(
α β
γ δ

)
for small-normed complex numbers α, β, γ, δ. Since the deviation from the identity is small, the determinant
will be close to one. Dropping quadratic terms, we explicitly compute,

1 = detG

= det

(
1 + α β
γ 1 + δ

)
= (1 + α) (1 + δ)− βγ
≈ 1 + α+ δ

so the unit determinant is achieved by making the generators traceless, setting δ = −α. A complete set of
generators for SL(2,C) is therefore

Ki ≡ σi =

[(
1
−1

)
,

(
1

1

)
,

(
−i

i

)]
J i ≡ iσi =

[(
i
−i

)
,

(
i

i

)
,

(
1

−1

)]
Because any six independent linear combinations of these are an equivalently good basis, let’s choose the
Ki, J i, which have the advantage of being hermitian and anti-hermitian, respectively.

When we exponentiate Jm and Km (with real parameters) to recover the various types of Lorentz trans-
formation, the anti-hermitian generators Jm give SU(2) as before. We already know that these preserve
lengths of spatial 3-vectors, so we see again that the 3-dimensional rotations are part of the Lorentz group.
Since the generatorsKm are hermitian, the corresponding group elements are not unitary. The corresponding
transformations are hyperbolic rather than circular, corresponding to boosts.
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Exercise: Recalling the Taylor series

sinhλ =

∞∑
k=0

λ2k+1

(2k + 1)!

coshλ =

∞∑
k=0

λ2k

(2k)!

show that K1 =

(
1

1

)
generates a boost in spacetime.

The Lie algebra of SL(2,C) is now easy to calculate. Since the Pauli matrices multiply as (exercise!

σmσn = δmn1 + iεmnkσk (4)

their commutators are [σm, σn] = 2iεmnkσk, we compute the the Lie algebra, identifying the resultant
generator as Ji or Ki so as to keep the structure constants real. Thus,

[Jm, Jn] = [iσm, iσn]

= −2iεmnkσk

= −2εmnk (iσk)

= −2εmnkJk

[Jm,Kn] = [iσm, σn]

= i (2iεmnkσk)

= −2εmnkKk

[Km, Jn] = [σm, iσn]

= i (2iεmnkσk)

= −2εmnkKk

[Km,Kn] = [σm, σn]

= 2iεmnkσk

= 2εmnkJk

gives the complete Lie algebra of the Lorentz group,

[Jm, Jn] = −2εmnkJk

[Jm,Kn] = −2εmnkKk

[Km, Jn] = −2εmnkKk

[Km,Kn] = 2εmnkJk (5)

This is an important result. It shows that while the rotations form a subgroup of the Lorentz group (because
the Jm commutators close into themselves), the boosts do not – two boosts applied in succession produce
a rotation as well as a change of relative velocity. This is the source of a noted correction to angular
momentum, the Thomas precession (see Jackson, pp. 556-560; indeed, see Jackson’s chapters 11 and 12 for
a good discussion of special relativity in a context with real examples).

There is another convenient basis for the Lorentz Lie algebra. Consider the six generators

Lm =
1

2
(Jm + iKm)

Mm =
1

2
(Jm − iKm)
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These satisfy

[Lm, Ln] =

[
1

2
(Jm + iKm) ,

1

2
(Jn + iKn)

]
=

1

4
([Jm, Jn] + i [Jm,Kn] + i [Km, Jn]− [Km,Kn])

=
1

4
(−2εmnkJk − 2iεmnkKk − 2εnmkiKk − 2εmnkJk)

= −εmnk (Jk + iKk)

= −εmnkLk

[Lm,Mn] =

[
1

2
(Jm + iKm) ,

1

2
(Jn − iKn)

]
=

1

4
([Jm, Jn]− i [Jm,Kn] + i [Km, Jn] + [Km,Kn])

=
1

4
(−2εmnkJk + 2iεmnkKk − 2iεnmkKk + 2εmnkJk)

= 0

[Mm,Mn] =

[
1

2
(Jm − iKm) ,

1

2
(Jn − iKn)

]
=

1

4
([Jm, Jn]− i [Jm,Kn]− i [Km, Jn]− [Km,Kn])

=
1

4
(−2εmnkJk + 2iεmnkKk + 2iεnmkKk − 2εmnkJk)

= −εmnk (Jk − iKk)

= −εmnkMk

showing that the Lorentz group actually decouples into two commuting copies of SU(2). Extensive use of
this fact is made in general relativity (see, eg., Penrose and Rindler, Wald). In particular, we can use this
decomposition of the Lie algebra sl(2, C) to introduce two sets of 2-component spinors, called Weyl spinors,

χA, χ̄Ȧ

with the first set transforming under the action of exp (umLm) and the second set under exp (vmMm) . For
our study of field theory, however, we will be more interested in a different set of spinors – the 4-component
Dirac spinors.

3 Dirac spinors and the Dirac equation
There is a systematic way to develop spinor representations of any pseudo-orthogonal group, O(p, q). How-
ever, Dirac arrived at this representation when he sought a relativistic form for quantum theory. We won’t
look at the full historical rationale for Dirac’s approach, but will use a similar construction. Dirac wanted
to build a relativistic quantum theory, and recognizing that relativity requires space and time variables to
enter on the same footing, sought an equation linear in both space and time derivatives:

i
∂ψ

∂t
=
(
−iαi∂i +mβ

)
ψ (6)

where the γµ and β are constant. A quadratic equation, the Klein-Gordon equation,

�φ = −m2φ (7)

had already been tried and discarded by Schrödinger because the second order equation requires two initial
conditions and the uncertainty principle allows us only one. To determine the coefficients, Dirac demanded
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that the linear equation should imply the Klein-Gordon equation. Acting on our version of Dirac’s equation
with the same operator again,

−∂
2ψ

∂t2
=

(
−iαi∂i +mβ

) (
−iαi∂i +mβ

)
ψ

=
(
−αiαj∂i∂j − imαiβ∂i − imβαi∂i +m2β2

)
ψ

we reproduce the Klein-Gordon equation provided

−αiαj∂i∂j = −∇2

m
(
αiβ + βαi

)
∂i = 0

m2β2 = m2

or equivalently,

αiαj + αiαi = 2δij

αiβ + βαi = 0

β2 = 1

We can put these conditions into a more systematic and relativistic form by defining

γµ =
(
β, βαi

)
Then the constraints on γµ become

γiγj + γjγi = −2δij

γiγ0 + γ0γi = 0(
γ0
)2

= 1

which may be neatly expressed as

{γµ, γν} ≡ γµγν + γνγµ = 2ηµν (8)

where the curly brackets denote the anti-commutator. This relationship is impossible to achieve if γµ is a
vector. To see this, note that we can always perform a Lorentz transformation that brings γµ to one of the
forms

γµ = (α, 0, 0, 0)

γµ = (α, α, 0, 0)

γµ = (0, α, 0, 0)

depending on whether γµ is timelike, null or spacelike. Then, since ηµν is Lorentz invariant, we have the
possibilities:

{γµ, γν} =


α2

0
0

0



{γµ, γν} =


α2 α2

α2 α2

0
0



{γµ, γν} =


0

α2

0
0


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none of which equals ηµν . Therefore, γµ must be a more general kind of object. It is sufficient to let γµ be
a set of four, 4× 4 matrices, and it is not hard to show that this is the smallest size matrix that works.

Exercise: Show that there do not exist four, 2× 2 matrices satisfying {γµ, γν} = 2ηµν

Here is a convenient choice for the Dirac matrices, or gamma matrices:

γ0 =


1

1
−1

−1

 =

(
1
−1

)

γi =

(
0 σi

−σi 0

)
(9)

where the σi are the usual 2× 2 Pauli matrices.

Exercise: Show that these matrices satisfy {γµ, γν} = 2ηµν .

Substituting γµ into eq.(6), we have the Dirac equation,

(iγµ∂µ −m)ψ = 0 (10)

This equation gives us more than we bargained for. Since the γµ are 4× 4 Dirac matrices, the object ψ that
they act on must also be a 4-component vector. The complex vector ψ transforms as a spinor representation
of the Lorentz group.

4 The Dirac action
The Dirac equation is the field equation for a spin- 12 field. Since we have an invariant inner product, we can
write an invariant action as

S =

ˆ
d4x ψ̄ (iγµ∂µ −m)ψ (11)

The action is to be varied with respect to ψ and ψ̄ independently

0 = δS =

ˆ
d4x

(
δψ̄ (iγµ∂µ −m)ψ + ψ̄ (iγµ∂µ −m) δψ

)
The ψ̄ variation immediately yields the Dirac equation,

(iγµ∂µ −m)ψ = 0

while the δψ requires integration by parts,

0 =

ˆ
d4x ψ̄ (iγµ∂µδψ −mδψ)

=

ˆ
d4x

(
−i∂µψ̄γµδψ − ψ̄m

)
δψ

Thus
i∂µψ̄γ

µ +mψ̄ = 0

which is sometimes written as
ψ̄
(
iγµ
←−
∂ µ +m

)
= 0

This is the conjugate Dirac equation.
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5 Casimir Operators
Casimir operators give us a way to classify representations of groups.

For any Lie algebra, G, with generators Ga and commutators

[Ga, Gb] = c c
ab Gc

we can consider composite operators found by multiplying together two or more generators, G1G2, G3G9G17, . . .
and taking linear combinations,

A = αG1G2 + βG3G9G17 + . . .

The set of all such linear combinations of products is called the free algebra of G. Among the elements of
the free algebra are a very few special cases called Casmir operators, which have the special property of
commuting with all of the generators. For example; the generators Ji of O(3) may be combined into the
combination

~J2 = δijJiJj =
∑

(Ji)
2 (12)

We can compute [
Ji, ~J

2
]

=
[
Ji,
∑

(Jj)
2
]

=
∑

(Jj [Ji, Jj ] + [Ji, Jj ] Jj)

=
∑

(JjεijkJk + εijkJkJj)

= εijk (JjJk + JkJj)

= 0

where, in the last step, we used the fact that εijk is antisymmetric on jk, while the expression JjJk + JkJk
is explicitly symmetric. R is therefore a Casimir operator for O(3). Notice that since R commutes with all
of the generators, it must also commute with all elements of O(3) (Exercise!! ). For this reason, Casimir
operators become extremely important in quantum physics. Because the symmetries of our system are group
symmetries, the set of all Casimir operators gives us a list of the conserved quantities. Often, elements of a
Lie group take us from one set of fields to a physically equivalent set. Since the Casimir operators are left
invariant, we can use eigenvalues of the Casimir operators to classify the possible distinct physical states of
the system.

Let’s look at the Casimir operators that are most important for particle physics – those of the Poincaré
group. The Poincaré group is the set of transformations leaving the infinitesimal line element

ds2 = c2dt2 − dx2 − dy2 − dz2 (13)

invariant. It clearly includes Lorentz transformations,

[dx′]
α

= Λα βdx
β

but now also includes translations:

[x′]
α

= xα + aα

⇒ [dx′]
α

= dxβ

Since there are 4 translations and 6 Lorentz transformations, there are a total of 10 Poincaré symmetries.
There are several ways to write a set of generators for these transformations. One common one is to let

Mα
β = xα∂β − xβ∂α

Pα = ∂α (14)
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Then it is easy to show that[
Mα

β ,M
µ
ν

]
= [xα∂β − xβ∂α, xµ∂ν − xν∂µ]

= xα∂β (xµ∂ν − xν∂µ)− xβ∂α (xµ∂ν − xν∂µ)

−xµ∂ν (xα∂β − xβ∂α) + xν∂
µ (xα∂β − xβ∂α)

= xαδµβ∂ν − x
αηβν∂

µ − xβηαµ∂ν + xβδ
α
ν ∂

µ

−xµδαν ∂β + xµηνβ∂
α + xνη

µα∂β − xνδµβ∂
α

= δµβM
α
ν − ηβνMαµ − ηαµMβν + δανM

µ
β (15)

To compute these, we imagine the derivatives acting on a function to the right of the commutator,
[
Mα

β ,M
µ
ν

]
f(x).

Then all of the derivatives of f cancel when we antisymmetrize. Two similar but shorter calculations show
that [

Mα
β , Pν

]
= ηνβP

α − δαν Pβ (16)
[Pα, Pβ ] = 0 (17)

Eqs.(15-17) comprise the Lie algebra of the Poincaré group.

Exercise: Prove eq.(16) and eq.(17) using eqs.(14).

Exercise: Show, by a suitable identifications of the generators, that the general form of the Lie algebra case
of SO (p, q) eq.(15) agrees with the form found for the Lorentz group SO (1, 3), eq.(5).

Now we can write the Casimir operators of the Poincaré group. There are two,

P 2 = ηαβPαPβ

W 2 = ηαβW
αW β

where
Wµ =

1

2
εµναβPνMαβ

and εµναβ is the spacetime Levi-Civita tensor.
To see what these correspond to, recall from our discussion of Noether currents that the conservation

of 4-momentum is associated with translation invariance, and Pα is the generator of translations. In fact,
Pα = i∂α, the Hermitian form of the translation generator, is the usual energy-momentum operator of
quantum mechanics. We directly interpret eigenvectors of Pα as energy and momentum. Thus, we expect
that eigenvalues of P 2 will be the mass, PαPα = m2.

If we boost Pα to it’s rest frame, Pα = m (c,0), then

Wµ =
1

2
εµναβPνMαβ

=
1

2
mcεµ0αβMαβ

= −1

2
mcε0µαβMαβ

In this frame, Wµ =
(
0,W i

)
where

W i =
1

2
mcεijkMjk

= mcJ i
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where the J i are the generators of SO (3). Then

WµWµ = m2c2J2

and since m2 is separately conservec, we see that W 2 is the Casimir of SO (3), the conserved total angular
momentum.

Exercise: Using the Lie algebra of the Poincaré group, eqs.(15-17), prove that P 2 and W 2 commute with
Mαβ and Pα. (Warning! The proof for W 2 is a bit tricky!) Notice that the proof requires only the Lie
algebra relations for the Poincaré group, and not the specific representation of the operators given in
eqs.(14).

Since the Casimir operators of the Poincaré group correspond to mass and spin, we will be able to classify
states of quantum fields by mass and spin. We will extend this list when we introduce additional symmetry
groups.

Consider the action of W 2 on a Dirac spinor. Acting with WµWµ,

1

m2c2
WµWµψ = J2ψ

6 Further properties of the Dirac matrices
In four dimensions, there are 16 independent matrices that we can construct from the Dirac matrices. We
have already encountered eleven of them:

1, γµ, σµν

The remaining five are most readily expressed in terms of

γ5 ≡ iγ0γ1γ2γ3

Exercise: Prove that γ5 is hermitian.

Exercise: Prove that {γ5, γµ} = 0.

Exercise: Prove that γ5γ5 = 1.

Then the remaining five matrices may be taken as

γ5, γ5γ
µ

Any 4 × 4 matrix can be expressed as linear combination of these 16 matrices. We will need several other
properties of these matrices. First, if we contract the product of pair of gammas, we get 4,

γµγµ = ηµνγ
µγν =

1

2
ηµν {γµ, γν} = ηµνη

µν = 4

We also need various traces. For any product of an odd number of gamma matrices we have

tr (γµ1γµ2γµ2k+1) = tr
(

(γ5)
2
γµ1γµ2γµ2k+1

)
= (−1)2k+1 tr (γ5γ

µ1γµ2γµ2k+1γ5)

using the fact that γ5 commutes with any of the γµ. Now, using the cyclic property of the trace

tr (A . . . BC) = tr (CA . . . B)
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we cycle γ5 back to the front:

tr (γµ1γµ2γµ2k+1) = (−1)2k+1 tr (γ5γ
µ1γµ2γµ2k+1γ5)

= (−1)2k+1 tr (γ5γ5γ
µ1γµ2γµ2k+1)

= − tr (γµ1γµ2γµ2k+1)

= 0

Thus, the trace of the product of any odd number of gamma matrices vanishes.
Traces of even numbers are trickier. For two:

tr (γµγν) = tr (−γνγµ + 2ηµν1)

= −tr (γνγµ) + 2ηµνtr 1

or, since tr1 = 4,
tr (γµγν) = 4ηµν

Exercise: Prove that
tr
(
γαγβγµγν

)
= 4

(
ηαβηµν − ηαµηβν + ηανηβµ

)
Exercise: Prove that

γµγαγµ = −2γα

and
γµγαγβγµ = 4ηαβ
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