
Group theory

March 7, 2016

Nearly all of the central symmetries of modern physics are group symmetries, for simple a reason. If we
imagine a transformation of our fields or coordinates, we can look at linear versions of those transformations.
Such linear transformations may be represented by matrices, and therefore (as we shall see) even finite
transformations may be given a matrix representation. But matrix multiplication has an important property:
associativity. We get a group if we couple this property with three further simple observations: (1) we expect
two transformations to combine in such a way as to give another allowed transformation, (2) the identity
may always be regarded as a null transformation, and (3) any transformation that we can do we can also
undo. These four properties (associativity, closure, identity, and inverses) are the defining properties of a
group.

1 Finite groups
Define: A group is a pair G = {S, ◦} where S is a set and ◦ is an operation mapping pairs of elements in S

to elements in S (i.e., ◦ : S × S → S. This implies closure) and satisfying the following conditions:

1. Existence of an identity: ∃ e ∈ S such that e ◦ a = a ◦ e = a, ∀a ∈ S.

2. Existence of inverses: ∀ a ∈ S, ∃ a−1 ∈ S such that a ◦ a−1 = a−1 ◦ a = e.

3. Associativity: ∀ a, b, c ∈ S, a ◦ (b ◦ c) = (a ◦ b) ◦ c = a ◦ b ◦ c

We consider several examples of groups.

1. The simplest group is the familiar boolean one with two elements S = {0, 1} where the operation ◦ is
addition modulo two. Then the “multiplication” table is simply

◦ 0 1
0| 0 1
1| 1 0

The element 0 is the identity, and each element is its own inverse. This is, in fact, the only two element
group, for suppose we pick any set with two elements, S = {a, b}. The multiplication table is of the
form

◦ a b
a
b

One of these must be the identity; without loss of generality we choose a = e. Then

◦ a b
a a b
b b
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Finally, since b must have an inverse, and its inverse cannot be a, we must fill in the final spot with
the identity, thereby making b its own inverse:

◦ a b
a a b
b b a

Comparing to the boolean table, we see that a simple renaming, a→ 0, b→ 1 reproduces the boolean
group. Such a one-to-one mapping between groups that preserves the group product is called an
isomorphism.

2. Let G = {Z,+}, the integers under addition. For all integers a, b, c we have a + b ∈ R (closure);
0 +a = a+ 0 = a (identity); a+ (−a) = 0 (inverse); a+ (b+ c) = (a+ b) + c (associativity). Therefore,
G is a group. The integers also form a group under addition mod p, where p is any integer (Recall that
a = bmod p if there exists an integer n such that a = b+ np).

3. Let G = {R,+}, the real numbers under addition. For all real numbers a, b, c we have a + b ∈ R
(closure); 0 + a = a+ 0 = a (identity); a+ (−a) = 0 (inverse); a+ (b+ c) = (a+ b) + c (associativity).
Therefore, G is a group. Notice that the rationals, Q, do not form a group under addition because
they do not close under addition:

π = 3 + .1 + .04 + .001 + .0005 + .00009 + . . .

Exercise: Find all groups (up to isomorphism) with three elements. Find all groups (up to isomorphism)
with four elements.

Of course, the integers form a much nicer object than a group. The form a complete Archimedean field. But
for our purposes, they form one of the easiest examples of yet another object: a Lie group.

2 Lie groups
Define: A Lie group is a group which is also a manifold. Essentially, this means that a Lie group is a group

in which the elements can be labeled by a finite set of continuous labels. Qualitatively, a manifold
is a space that is smooth enough that if we look at any sufficiently small region, it looks just like a
small region of Rn; the dimension n is fixed over the entire manifold. We will not go into the details
of manifolds here, but instead will look at enough examples to get across the general idea.

The real numbers form a Lie group because each element of R provides its own label! Since only one label
is required, R is a 1-dimensional Lie group. The way to think of R as a manifold is to picture the real line.
Some examples:

1. The vector space Rn under vector addition is an n-dim Lie group, since each element of the group may
be labeled by n real numbers.

2. Let’s move to something more interesting. The set of non-degenerate linear transformations of a real,
n-dimensional vector space form a Lie group. This one is important enough to have its own name:
GL(n;R), or more simply, GL(n) where the field (usually R or C) is unambiguous. The GL stands for
General Linear. The transformations may be represented by n×n matrices with nonzero determinant.
Since for any A ∈ GL(n;R) we have detA 6= 0, the matrix A is invertible. The identity is the identity
matrix, and it is not too hard to prove that matrix multiplication is always associative. Since each A
can be written in terms of n2 real numbers, GL(n) has dimension n2. GL(n) is an example of a Lie
group with more than one connected component. We can imagine starting with the identity element
and smoothly varying the parameters that define the group elements, thereby sweeping out curves in
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the space of all group elements. If such continuous variation can take us to every group element, we
say the group is connected If there remain elements that cannot be connected to the identity by such
a continuous variation (actually a curve in the group manifold), then the group has more than one
component. GL(n) is of this form because as we vary the parameters to move from element to element
of the group, the determinant of those elements also varies smoothly. But since the determinant of
the identity is 1 and no element can have determinant zero, we can never get to an element that has
negative determinant. The elements of GL(n) with negative determinant are related to those of positive
determinant by a discrete transformation: if we pick any element of GL(n) with negative determinant,
and multiply it by each element of GL(n) with positive determinant, we get a new element of negative
determinant. This shows that the two components of GL(n) are in 1 to 1 correspondence. In odd
dimensions, a suitable 1 to 1 mapping is given by −1, which is called the parity transformation.

3. We will be concerned with Lie groups that have linear representations. This means that each group
element may be written as a matrix and the group multiplication is correctly given by the usual form of
matrix multiplication. Since GL(n) is the set of all linear, invertible transformations in n-dimensions,
all Lie groups with linear representations must be subgroups of GL(n). Linear representations may be
characterized by the vector space that the transformations act on. This vector space is also called a
representation of the group. We now look at two principled ways of constructing such subgroups. The
simplest subgroup of GL(n) removes the second component to give a connected Lie group. In fact,
it is useful to factor out the determinant entirely, because the operation of multiplying by a constant
commutes with every other transformation of the group. In this way, we arrive at a simple group, one
in which each transformation has nontrivial effect on some other transformations. For a general matrix
A ∈ GL(n) with positive determinant, let

A = (detA)
1
n Â

Then det Â = 1. Since
det
(
ÂB̂
)

= det Â det B̂ = 1

the set of all Â closes under matrix multiplication. We also have det Â−1 = 1, and det 1 = 1, so the
set of all Â forms a Lie group. This group is called the Special Linear group, SL(n).

Frequently, the most useful way to characterize a group is by a set of objects that group transformations
leave invariant. In this way, we produce the orthogonal, unitary and symplectic groups:

Theorem: Consider the subset of GL(n;R) that leaves a fixed matrix M invariant under a similarity
transformation:

H =
{
A|A ∈ GL(n), AMAt = M

}
Then H is also a Lie group.

Proof: First, H is closed, since if

AMAt = M

BMBt = M

then the product AB is also in H because

(AB)M(AB)t = (AB)M(BtAt)

= A
(
BMBt

)
At

= AMAt

= M

The identity is present because
IMIt = M
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and if A leavesM invariant then so does A−1. To see this, notice that (At)
−1

=
(
A−1

)t because the transpose
of (A)

−1
A = I is

At
(

(A)
−1
)t

= I

Since it is easy to show (exercise!) that inverses are unique, this shows that
(

(A)
−1
)t

must be the inverse
of At. Using this, we start with

M = AMAt

and multiply on the left by A−1 and on the right by (At)
−1

:

A−1AMAt
(
At
)−1

= A−1M
(
At
)−1

M = A−1M
(
At
)−1

M = A−1M
(
A−1

)t
The last line is the statement that A−1 leaves M invariant, and is therefore in H. Finally, we still have the
associative matrix product, so H is a group, concluding our proof.

Now, fix a (nondegenerate) matrix M and consider the group that leaves M invariant. Suppose M has
no particular symmetry. We may nonethelsss separate it into its symmetric and antisymmetric parts:

M =
1

2

(
M +M t

)
+

1

2

(
M −M t

)
≡ Ms +Ma

Then, for any A in H, AMAt = M implies

A (Ms +Ma)At = (Ms +Ma) (1)

The transpose of this equation must also hold,

A
(
M t
s +M t

a

)
At =

(
M t
s +M t

a

)
(2)

A (Ms −Ma)At = (Ms −Ma) (3)

so adding and subtracting eqs.(1) and (3) gives two independent constraints on A :

AMsA
t = Ms

AMaA
t = Ma

Since the symmetric and antisymmetric parts are independently preserved, they give subgroups Hs and Ha

of G by demanding preservation of Ms or Ma alone.
If M is symmetric, then we can always choose a basis for the vector space on which the transformations

act such that M is diagonal; indeed we can go further, for rescaling the basis we can make every diagonal
element into +1 or −1. Therefore, any symmetric M may be put in the form

M
(p,q)
ij =



1
. . .

1
−1

. . .
−1


(4)
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where there are p terms +1 and q terms −1. We can use M as a pseudo-metric; in components, for any
vector vi,

〈v, v〉 = Mijv
ivj =

p∑
i=1

(
vi
)2 − p+q∑

i=p+1

(
vi
)2

Notice that this includes the O(3, 1) Lorentz metric of the previous section, as well as the O(3) case of
Euclidean 3-space. In general, the subgroup of GL(n) leaving Mp,q invariant is termed O(p, q), the pseudo-
orthogonal group in n = p + q dimensions. The signature of M is s = p − q, ocassionally simply stated as
signature (p, q).

Now suppose M is antisymmetric. This case arises in classical Hamiltonian dynamics, where we have
canonically conjugate variables satisfying fundamental Poisson bracket relations,

{qi, qj}xπ = {pi, pj}xπ = 0

{pi, qj}xπ = −{qi, pj}xπ = δij

If we define a single set of coordinates including both pi and qi, ξa = (qi, pj) where if i, j = 1, 2, . . . , n then
a = 1, 2, . . . , 2n, then the fundamental brackets may be written in terms of an antisymmetric matrix Ωab as{

ξa, ξb
}

= Ωab

where
Ωab =

(
0 −δij
δij 0

)
= −Ωba (5)

Canonical transformations are precisely the coordinate transformations that preserve the fundamental brack-
ets. At each point, canonical transformations comprise a group of transformations which preserve Ωab. In
general, the subgroup of GL(n) preserving an antisymmetric matrix is called the symplectic group. We
have a similar result here as for the (pseudo-) orthogonal groups – we can always choose a basis for the
vector space that puts the invariant matrix Ωab in the form given in eq.(5). Notice that the form given in
eq.(5) is necessarily even dimensional – in phase space there are equal numbers of position and momentum
coordinates.

Let M be antisymmetric and of odd dimension. Then, writing out the determinant and transposing each
copy of M gives

detM = εi1i2···i2k+1
εj1j2···j2k+1Mi1j1Mi2j2 . . .Mi2k+1j2k+1

= (−1)
2k+1

εi1i2···i2k+1
εj1j2···j2k+1Mj1i1Mj2i2 . . .Mj2k+1i2k+1

= (−1)
2k+1

detM

and we have detM = 0. M therefore has a zero eigenvalue, and is equivalent to an antisymmetric ma-
trix of the next lower, even dimension. Therefore, the symplectic group always has an even dimensional
representation. The notation for the symplectic groups is Sp(2n).

For either the orthogonal or symplectic groups, we can consider the unit determinant subgroups. Espe-
cially important are the resulting special orthogonal groups, SO(p, q).

We give one particular example that will be useful to illustrate Lie algebras in the next section. The very
simplest case of an orthogonal group is O(2), leaving

M =

(
1 0
0 1

)
invariant. Equivalently, O(2) leaves the Euclidean norm

〈x,x〉 = Mijx
ixj = x2 + y2
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invariant. The form of O(2) transformations is the familiar set of rotation matrices,

A(θ) =

(
cos θ − sin θ
sin θ cos θ

)
and we see that every group element is labeled by a continuous parameter θ lying in the range θ ∈ [0, 2π).
The group manifold is the set of all of the group elements regarded as a geometric object. From the range
of θ we see that there is one group element for every point on a circle – the group manifold of O(2) is the
circle. Note the inverse of A(θ) is just A(−θ) and the identity is A(0). Note that all of the transformations
of O(2) already have unit determinant, so that SO(2) and O(2) are isomorphic.

Exercise: Find SO (1, 1), the group of transformations leaving M =

(
1 0
0 −1

)
invariant.

3 Lie algebras
If we want to work with more complicated Lie groups, working directly with the transformation matrices
becomes prohibitively difficult. Instead, most of the information we need to know about the group is already
present in the infinitesimal transformations. Unlike group multiplication, for which the invariance condition
AMA−1 is a quadratic system, the combination of the infinitesimal transformations is linear. This is why, in
the previous section, we worked with infinitesimal Lorentz transformations. Here we’ll start with a simpler
case to develop some of the ideas further.

Let’s begin with the example of O(2). Consider those transformations that are close to the identity. Since
the identity is A(0), these will be the transformations A(ε) with ε � 1. Expanding in a Taylor series, we
keep only terms to first order:

A(ε) =

(
cos ε − sin ε
sin ε cos ε

)
≈
(

1 −ε
ε 1

)
= 1 + ε

(
0 −1
1 0

)

The only information here besides the identity is the matrix
(

0 −1
1 0

)
, but remarkably, this is enough

to recover the whole group! For general Lie groups, we get one generator for each continuous parameter
labeling the group elements. The set of all linear combinations of these generators is a vector space called
the Lie algebra of the group. We will give the full defining set of properties of a Lie algebra below.

Imagine iterating this infinitesimal group element many times. Applying A(ε) n times rotates the plane
by an angle nε :

A(nε) = (A(ε))
n

=

(
1 + ε

(
0 −1
1 0

))n
Expanding the power on the right using the binomial expansion,

A(nε) ≈
n∑
k=0

(
n

k

)(
0 −1
1 0

)k
εk1n−k

To make the equality rigorous, we must take the limit as ε → 0 and n → ∞, holding the product nε = θ
finite. Then:

A(θ) = lim
ε→0,nε→θ

n∑
k=0

(
n

k

)(
0 −1
1 0

)k
εk

= lim
ε→0

n∑
k=0

n!

k! (n− k)!

(
0 −1
1 0

)k
εk
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= lim
ε→0

n∑
k=0

n (n− 1) · · · (n− k + 1)

k!
εk
(

0 −1
1 0

)k
= lim

ε→0

n∑
k=0

1
(
1− 1

n

)
· · ·
(
1− k−1

n

)
k!

(nε)
k

(
0 −1
1 0

)k
=

∞∑
k=0

1

k!
θk
(

0 −1
1 0

)k
≡ exp

((
0 −1
1 0

)
θ

)
where in the last step we define the exponential of a matrix to be the power series in the second to last line.
Quite generally, since we know how to take powers of matrices, we can define the exponential of any matrix,
M, by its power series:

expM ≡
∞∑
k=0

1

k!
Mk (6)

Next, we check that the exponential form of A(θ) actually is the original class of transformations. To do

this we first examine powers of
(

0 −1
1 0

)
:

(
0 −1
1 0

)2

=

(
−1 0
0 −1

)
= −1(

0 −1
1 0

)3

= −
(

0 −1
1 0

)
(

0 −1
1 0

)3

= 1

The even terms are plus or minus the identity, while the odd terms are always proportional to the generator,(
0 −1
1 0

)
. Therefore, we divide the power series into even and odd parts, and remove the matrices from

the sums:

A(θ) =

∞∑
k=0

1

k!

(
0 −1
1 0

)k
θk

=

∞∑
m=0

1

(2m)!

(
0 −1
1 0

)2m

θ2m +

∞∑
m=0

1

(2m+ 1)!

(
0 −1
1 0

)2m+1

θ2m+1

= 1

( ∞∑
m=0

(−1)
m

(2m)!
θ2m

)
+

(
0 −1
1 0

) ∞∑
m=0

(−1)
m

(2m+ 1)!
θ2m+1

= 1 cos θ +

(
0 −1
1 0

)
sin θ

=

(
cos θ − sin θ
sin θ cos θ

)
The generator has given us the whole group back.

To begin to see the power of this technique, let’s look at O(3), or the subgroup of SO(3) of elements with
unit determinant. A matrix is an element of O(3) if and only if AtA = 1, so we have

det
(
At
)

det (A) = det (1)

(det (A))
2

= 1
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so detA = ±1. Defining the parity transformation to be

P =

 −1
−1

−1

 (7)

and let B be any element of O (3) with detB = −1. Then detPB = 1, so that A = PB is an element
of SO (3). Conversely, for every element, A, of SO(3), B = PA is a corresponding element of O (3) with
determinant −1. Therefore, every element of O (3) is of the form A or PA, where A is in SO(3). Because P
is a discrete transformation and not a continuous set of transformations, O(3) and SO(3) have the same Lie
algebra.

The generators of O(3) (and SO(3)) may be found from the property of leaving the Euclidean metric

gij =

 1
1

1


invariant:

gijA
i
mA

j
n = gmn

Just as in the Lorentz case in the previous chapter, this is equivalent to preserving the proper length of
vectors. Thus, the transformation yi = Ai mx

m is a rotation if it preserves Euclidean length,

gijy
iyj = gijx

ixj

Substituting, we get

gmnx
mxn = gij

(
Ai mx

m
) (
Aj nx

n
)

=
(
gijA

i
mA

j
n

)
xmxn

Since xm is arbitrary, we can turn this into a relation between the transformations and the metric, gmn, but
we have to be careful with the symmetry since xmxn = xnxm. It is not a problem here because both sets of
coefficients are also symmetric,

gmn = gnm

gijA
i
mA

j
n = gjiA

j
mA

i
n

= gjiA
i
nA

j
m

= gijA
i
nA

j
m

Therefore, we can strip off the xs and write

gmn = gijA
i
mA

j
n (8)

This is the most convenient form of the definition of the group to use in finding the Lie algebra. For future
reference, we note that the inverse to gij is written as gij ; it is also the identity matrix.

As in the 2-dimensional case, we look at transformations close to the identity. Let

Ai j = δij + εi j

where all components of εi m are small. Then

gmn = gij
(
δim + εi m

) (
δjn + εj n

)
=

(
gijδ

i
m + gijε

i
m

) (
δjn + εj n

)
=

(
gmj + gjiε

i
m

) (
δjn + εj n

)
= (gmj + εjm)

(
δjn + εj n

)
= gmjδ

j
n + εjmδ

j
n + gmjε

j
n + εjmε

j
n

= gmn + εnm + εmn +O(ε2)
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Dropping the second order term and cancelling gmn on the left and right, we see that the generators εmn
must be antisymmetric:

εnm = −εmn (9)

We are dealing with 3× 3 matrices here, but note the power of index notation! There is actually nothing in
the preceeding calculation that is specific to n = 3, and we could draw all the same conclusions up to this
point for O (p, q). For the 3× 3 case, every antisymmetric matrix is of the form

A(a, b, c) =

 0 a −b
−a 0 c
b −c 0


= a

 0 1 0
−1 0 0
0 0 0

+ b

 0 0 −1
0 0 0
1 0 0

+ c

 0 0 0
0 0 1
0 −1 0


and therefore a linear combination of the three generators

J1 =

 0 1 0
−1 0 0
0 0 0


J2 =

 0 0 −1
0 0 0
1 0 0


J3 =

 0 0 0
0 0 1
0 −1 0

 (10)

Notice that any three independent, antisymmetric matrices could serve as the generators. We begin to see
why the Lie algebra is defined as the entire vector space

v = v1J1 + v2J2 + v3J3

In fact, the Lie algebra has three defining properties.

Define: A Lie algebra is a finite dimensional vector space V together with a bilinear, antisymmetric (com-
mutator) product satisfying

1. For all u, v ∈ V, the product [u, v] = −[v, u] = w is in V.

2. All u, v, w ∈ V satisfy the Jacobi identity

[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0

These properties may be expressed in terms of a basis. Let {Ja|a = 1, . . . , n} be a vector basis for V. Then
we may compute the commutators of the basis,

[Ja, Jb] = wab

where for each a and each b, wab is some vector in V. We may expand each wab in the basis as well,
wab = c c

ab Jc for some constants c c
ab . The c c

ab = −c c
ba are called the Lie structure constants. The basis

then satisfies,
[Ja, Jb] = c c

ab Jc
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which is sufficient, using linearity, to determine the commutators of all elements of the algebra,

[u, v] =
[
uaJa, v

bJb
]

= uavb [Ja, Jb]

= uavbc c
ab Jc

= wcJc

= w

Exercise: Show that the commutation relations of the three O(3) generators, Ji, given in eq.(10) are given
by

[Ji, Jj ] = ε k
ij Jk (11)

where ε k
ij = gkmεijm, and εijm is the 3-dimensional version of the totally antisymmetric Levi-Civita

tensor,

ε123 = ε231 = ε312 = 1

ε132 = ε321 = ε213 = −1

with all other components vanishing. See our discussion of invariant tensors in the section on special
relativity for further properties of the Levi-Civita tensors. In particular, you will need εijkεimn =
δjmδ

k
n − δjnδkm.

Notice that most of the calculations above for O(3) actually apply to any of the pseudo-orthogonal groups
O(p, q), and some to every Lie algebra. We explore this general case in the next Section, then prove some
general properties of Lie algebras and Lie groups.

4 The special orthogonal groups

In the general case, the form of the generators is still given by eq.(9), with gmn replaced by M (p,q)
mn of eq.(4).

Dropping the (p, q) label, we have

Mmn = Mij

(
δim + εi m

) (
δjn + εj n

)
= Mmn +Mniε

i
m +Mmjε

j
n

leading to
εnm = Mniε

i
m = −εmn = Mmjε

j
n

The doubly covariant generators εnm are still antisymmetric. The only difference is that the indices are
lowered with the (p, q) metric Mmn instead of gmn. Another difference occurs when we compute the Lie
algebra because in n-dimensions we no longer have the convenient form, εijm, for the Levi-Civita tensor.
The Levi-Civita tensor in n-dimensions has n indices, and doesn’t simplify the Lie algebra expressions.
Instead, we choose the following set of antisymmetric matrices as generators:[

ε(rs)
]
mn

= (δrmδ
s
n − δrnδsm)

The (rs) indices tell us which generator we are talking about, while the m and n indices are the matrix
components. To compute the Lie algebra, we need the mixed form of the generators,[

ε(rs)
]m

n
= Mmk

[
ε(rs)

]
kn

= Mmkδrkδ
s
n −Mmkδrnδ

s
k

= Mmrδsn −Mmsδrn
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We can now compute the commutators,[[
ε(uv)

]
,
[
ε(rs)

]]m
n

=
[
ε(uv)

]m
k

[
ε(rs)

]k
n
−
[
ε(rs)

]m
k

[
ε(uv)

]k
n

= (Mmuδvk −Mmvδuk )
(
Mkrδsn −Mksδrn

)
− (Mmrδsk −Mmsδrk)

(
Mkuδvn −Mkvδun

)
= MmuMvrδsn −MmuMvsδrn −MmvMurδsn +MmvMusδrn

−MmrMsuδvn +MmsMruδvn +MmrMsvδun −MmsMrvδun

= MvrMmuδsn −MvsMmuδrn −MurMmvδsn +MusMmvδrn

−MsuMmrδvn +MruMmsδvn +MsvMmrδun −MrvMmsδun

Rearranging to collect the terms as generators, and noting that each must have the free m and n indices, we
get [[

ε(uv)
]
,
[
ε(rs)

]]m
n

= Mvr (Mmuδsn −Mmsδun)−Mvs (Mmuδrn −Mmrδun)

−Mur (Mmvδsn −Mmsδvn) +Mus (Mmvδrn −Mmrδvn)

= Mvr
[
ε(us)

]m
n
−Mvs

[
ε(ur)

]m
n
−Mur

[
ε(vs)

]m
n

+Mus
[
ε(vr)

]m
n

Finally, we can drop the matrix indices. It is important that we can do this, because it demonstrates that the
Lie algebra is a relationship among the different generators that does not depend on whether the operators
are written as matrices or not. The result, valid for any O (p, q)) is[

ε(uv), ε(rs)
]

= Mvrε(us) −Mvsε(ur) −Murε(vs) +Musε(vr) (12)

We will need this result when we study the Dirac matrices.

Exercies: Show that the O(p, q) Lie algebra in eq.(12) reduces to the O(3) Lie algebra in eq.(11) when
(p, q) = (3, 0). (Hint: Multiply eq.(12) by εuvwεrst and use Ji = 1

2εijkε
(jk). Notice that Mmn is just

gmn).

5 The relationship between Lie algebras and Lie groups
The infinitesimal generators of any Lie group form a Lie algebra, and conversely, the properties of a Lie
algebra guarantee that exponentiating the algebra gives a Lie group. To see this, let’s work from the group
side. We have group elements that depend on continuous parameters, so we can expand g (a, b, . . . , c) near
the identity in a Taylor series,

g(x1, . . . , xn) = 1 +
∂g

∂xa
xa +

1

2

∂2g

∂xaxb
xaxb + . . .

≡ 1 + Jax
a +

1

2
Kabx

axb + . . .

Here the coefficient matrices Ja are the generators of the group and give a basis for the Lie algebra. Next
we look at the consequences of each of the group properties on the infinitesimal generators, Ja.

Closure First, there exists a group product, which must close:

g(xa1)g
(
xb2
)

= g(xa3)

(1 + Jax
a
1 + . . .) (1 + Jax

a
2 + . . .) = 1 + Jax

a
3 + . . .

1 + Jax
a
1 + Jax

a
2 + . . . = 1 + Jax

a
3 + . . .

so that at linear order,
Jax

a
1 + Jax

a
2 = Jax

a
3

This requires the generators to combine linearly under addition and scalar multiplication, so they form the
basis for a vector space.
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Identity Next, the group must have an identity operator. This just means that the zero vector lies in the
space of generators, since g(0, . . . , 0) = 1 = 1 + Ja0a.

Inverse For inverses, we have

g(xa1)g−1
(
xb2
)

= 1

(1 + Jax
a
1 + . . .) (1 + Jax

a
2 + . . .) = 1

1 + Jax
a
1 + Jax

a
2 = 1

so that xa2 = −xa1 , guaranteeing an additive inverse in the space of generators. These properties together
make the set {xaJa} a vector space.

Exercise: Show to second order that the inverse of g ≡ 1 + Jax
a + 1

2Kabx
axb + . . . is

g−1 = 1− Jbxb +
1

2
(JaJb + JbJa −Kab)x

axb + . . .

Using closure and the existence of inverses, we can derive the commutation relations for the Lie algebra.
For this, consider the (closed!) product of group elements

g1g2g
−1
1 g−12 = g3

We compute each side of this equality in a Taylor series to second order. For the individual group elements
we write

g1 = 1 + Jax
a +

1

2
Kabx

axb

g−1 = 1− Jbxb +
1

2
(JaJb + JbJa −Kab)x

axb

g2 = 1 + Jb y
b +

1

2
Kbcy

byc

g−12 = 1− Jbyb +
1

2
(JaJb + JbJa −Kab) y

ayb

g3 = 1 + Jaz
a(x, y) +

1

2
Kabz

a(x, y)zb(x, y)

For the multiple product, to second order,

g1g2g
−1
1 g−12 =

(
1 + Jax

a +
1

2
Kabx

axb
)(

1 + Jb y
b +

1

2
Kbcy

byc
)

×
(

1− Jcxc +

(
JcJd −

1

2
Kcd

)
xcxd

)(
1− Jdyd +

(
JdJe −

1

2
Kde

)
ydye

)
=

(
1 + Jbx

b + Jby
b + JaJbx

ayb +
1

2
Kbcy

byc +
1

2
Kabx

axb
)

×
(

1− Jdxd − Jdyd + JdJey
dye + JcJdx

cyd + JcJdx
cxd − 1

2
Kdey

dye − 1

2
Kcdx

cxd
)

= 1− Jdxd − Jdyd + JdJey
dye + JcJdx

cyd + JcJdx
cxd

−1

2
Kdey

dye − 1

2
Kcdx

cxd + Jbx
b + Jby

b − JbJdxdxb − JbJdxdyb

−JbJdydxb − JbJdydyb + JaJbx
ayb +

1

2
Kbcy

byc +
1

2
Kabx

axb

12



Collecting terms,

g1g2g
−1
1 g−12 = 1− Jdxd + Jbx

b + Jby
b − Jdyd

+JcJdx
cxd − JbJdxbxd

+JcJdx
cyd − JbJdybxd − JbJdxbyd + JaJbx

ayb

+JdJey
dye − JbJdybyd

+
1

2
Kbcy

byc − 1

2
Kdey

dye +
1

2
Kabx

axb − 1

2
Kcdx

cxd

= 1 + JcJdx
cyd − JbJdybxd

= 1 + [Jc, Jd]x
cyd

and equating to g3 = 1 + Jaz
a(x, y) + · · ·, the identity cancels and we are left with

[Jc, Jd]x
cyd = Jaz

a(x, y)

Since xc and yd are arbitrary, za must be bilinear in them,

za = xcydc a
cd

and we have derived the presence of a commutator product for the Lie algebra,

[Jc, Jd] = c a
cd Ja

Associativity Finally, the Lie group is associative: if we have three group elements, g1, g2 and g3, then

g1 (g2g3) = (g1g2) g3

Expanding to first order, this simply implies associativity for the generators themselves

Ja (JbJc) = (JaJb) Jc

together with a weaker condition, the Jacobi identity, for the commutator product. First expand

[Ja, [Jb, Jc]] = [Ja, JbJc − JcJb]
= Ja (JbJc)− Ja (JcJb)− (JbJc) Ja + (JcJb) Ja

Now, permuting abc cyclically and collecting terms gives

[Ja, [Jb, Jc]] + [Jb, [Jc, Ja]] + [Jc, [Ja, Jb]] = Ja (JbJc)− (JaJb) Jc

−Ja (JcJb) + (JaJc) Jb

− (JbJc) Ja + Jb (JcJa)

+ (JcJb) Ja − Jc (JbJa)

−Jb (JaJc) + (JbJa) Jc

+Jc (JaJb)− (JcJa) Jb

≡ 0

From the final arrangement of the terms, we see that the Jacobi relation is satisfied identically as a conse-
quence of the associativity of the group multiplication.

Therefore, the definition of a Lie algebra is a necessary consequence of being built from the infinitesimal
generators of a Lie group. Conversely, we may build a Lie group from any Lie algebra as a limit of infinitely
many infinitesimal transformations. To prove this, start with an infinitesimal but otherwise arbitrary element
of the Lie algebra,

g (ε, wa) = 1 + εwaJa
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and take the limit
lim
ε→0

(1 + εwaJa)
n

while holding λ = nε equal to 1. Then the argument we used for O (2) still goes through. Using the binomial
expansion,

lim
ε→0

(1 + εwaJa)
n

=

n∑
k=0

(
n
k

)
1n−k (εwaJa)

k

=

n∑
k=0

n!

(n− k)!k!
εk (waJa)

k

=

n∑
k=0

1

k!

n (n− 1) (n− 2) · · · (n− k + 1)

nk
(nε)

k
(waJa)

k

=

n∑
k=0

1

k!
1 ·
(

1− 1

n

)(
1− 2

n

)
· · ·
(

1− k − 1

n

)
(1)

k
(waJa)

k

Taking the limit, the product of a finitie number k of terms, each approaching 1 is 1, so

lim
ε→0

(1 + εwaJa)
n

=

∞∑
k=0

1

k!
(waJa)

k
= exp (waJa)

and each infinitesimal element of the Lie algebra exponentiates to give a finite transformation,

g (wa) = ew
aJa

It may be shown that the properties of the Lie algebra are sufficient to guarantee that g (wa) is an element
of a Lie group.

The correspondence between Lie groups and Lie algebras is not one to one, because in general several
Lie groups may share the same Lie algebra. However, groups with the same Lie algebra are related in a
simple way. Our example above of the relationship between O(3) and SO(3) is typical – these two groups
are related by a discrete symmetry. Since discrete symmetries do not participate in the computation of
infinitesimal generators, they do not change the Lie algebra. The central result is this: For every Lie algebra
there is a unique maximal Lie group called the covering group such that every Lie group sharing the same Lie
algebra is the quotient of the covering group by a discrete symmetry group. This result suggests that when
examining a group symmetry of nature, we should always look at the covering group in order to extract the
greatest possible symmetry. Following this suggestion for Euclidean 3-space and for Minkowski space leads
us directly to the use of spinors.

In the next Sections, we discuss spinors in three ways. The first two make use of convenient tricks that
work in low dimensions (2, 3 and 4), and provide easy ways to handle rotations and Lorentz transformations.
The third treatment is begins with Dirac’s development of the Dirac equation, which leads us ultimately to
the introduction of Clifford algebras.
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