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Until the successes of string theory, the idea of a field as a dynamical variable depending continuously
on position and time has been the most successful model for matter, and still forms the basis for general
relativity and the standard model of particle physics. The most familiar examples of fields are the electric
and magnetic fields, and the Schrödinger wave function, but there are others types of fields as well. Probably
the simplest field theory is the one that arises from Newtonian gravity. We explore the Newtonian case first,
then look at aspects of electromagnetism.

1 Newtonian gravity as a field theory

1.1 From Newton’s law to a field theory
Let the origin of our coordinates be placed at a mass M , with a second mass, m, at position x. Then
Newton’s law of universal gravitation gives the gravitational force between them as

F = −GMm

r2
r̂

where r̂ is a unit vector in the direction of x and the minus sign shows that the force is attractive. From
this, we define the gravitational field as the gravitational acceleration, or the force per unit mass produced
by M ,

g = −GM
r2

r̂

If M is at position x′ rather than the origin, we may write r = |x− x′| and r̂ = 1
r (x− x′), so that

g (x) = −GM (x− x′)

|x− x′|3

To generalize this to a field theory, we introduce a continuously varying source. Suppose matter is spread
non-uniformly throughout some region, V . In any infinitesimal region d3x′ in V about a point x′, let the
amount of mass be given by

dm (x′) = ρ (x′) d3x′

The function ρ (x′) is the mass density. The contribution to the gravitational field at x due to dm is therefore

dg (x) = −Gdm (x− x′)

|x− x′|3

and we may combine all such contributions by integrating,

g (x) = −G
ˆ

V

ρ (x′)

|x− x′|3
(x− x′) d3x′

This gives the gravitational field at any point to to an arbitrary mass density.
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Because we may write the x-dependent factor as a gradient,

∇
(

1

|x− x′|

)
= − x− x′

|x− x′|3

there exists a potential for the field,

Φ (x) = G

ˆ

V

ρ (x′)

|x− x′|
d3x′

g (x) = −∇Φ (x)

and from the Laplacian of 1
r ,

∇2 1

|x− x′|
= −4πδ3 (x− x′)

we see that the Laplacian of the potential,

∇2Φ (x) = G

ˆ

V

∇2 ρ (x′)

|x− x′|
d3x′

= −4πG

ˆ

V

ρ (x′) δ3 (x− x′) d3x′

= −4πGρ (x)

satisfies the Poisson equation,

∇2Φ (x) = −4πGρ (x)

This is now a field theory of Newtonian gravity.

1.2 An action functional for the gravitational field
In order to quantize a field theory, we generally require an action functional. The action may be any
functional whose variation gives the field equation we desire, but it is instructive to work from the particle
action to get corresponding result.

Suppose we have a fixed source mass M which produces a gravitational field g (x). Then the potential
energy of a mass m at x is just m times the gravitational potential:

V (x) = −
x̂

x0

F · dx

= −m
x̂

x0

g · dx

= m

x̂

x0

∇Φ (x) · dx

= mΦ (x)

Consider the energy required to assemble a mass distribution. After placing the first mass, m1, to position
x1 we bring a second, m2, to position x2 and so on. The energy of the first pair is

V2 = − Gm1m2

|x1 − x2|
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and adding a third we get contributions from both m1 and m2,

V3 = − Gm1m2

|x1 − x2|
− Gm1m3

|x1 − x3|
− Gm2m3

|x2 − x3|

= −G
3∑
i=1

3∑
j>i

mimj

|xi − xj |

= −1

2
G

3∑
i=1

3∑
j=1

mimj

|xi − xj |

This generalizes to VN = − 1
2G
∑N
i=1

∑N
j=1

mimj

|xi−xj | . Now let the masses be replaced by mass densities and
the sums by integrals,

V = −1

2
G

ˆ
d3x

ˆ
d3y

ρ (x) ρ (y)

|x− y|

= − 1

8πG
G

ˆ
d3x

ˆ
d3y
∇2Φ (x) ρ (y)

|x− y|

= − 1

8πG
G

ˆ
d3x

ˆ
d3y

∇x ·∇xΦ (x) ρ (y)

|x− y|

= − 1

8πG
G

ˆ
d3x

ˆ
d3yρ (y)

[
∇x ·

(
∇xΦ (x)

|x− y|

)
−∇xΦ (x) ·∇x

(
1

|x− y|

)]
The divergence term integrates to the boundary at infinity and vanishes, and we integrate by parts again,

V = − 1

8π

ˆ
d3x

ˆ
d3yρ (y)

[
−∇xΦ (x) ·∇x

(
1

|x− y|

)]
= − 1

8π

ˆ
d3x

ˆ
d3yρ (y)

[
−∇x ·

(
Φ (x)∇x

(
1

|x− y|

))
+ Φ (x)∇2

x

(
1

|x− y|

)]
= − 1

8π

ˆ
d3x

ˆ
d3yρ (y) Φ (x)∇2

x

(
1

|x− y|

)
The Laplacian gives a Dirac delta function, so

V = 4π
1

8π

ˆ
d3x

ˆ
d3yρ (y) Φ (x) δ3 (x− y)

=
1

2

ˆ
d3xρ (x) Φ (x)

Using the field equation, we may express this in terms of the gravitational field only. Replacing ρ,

V =
1

2

ˆ
d3xΦ∇2Φ

This takes a more symmetrical form if we integrate by parts. Discarding the surface term,

V =
1

2

ˆ
d3xΦ∇2Φ

= − 1

8πG

ˆ
d3x∇Φ (x) ·∇Φ (x)

= − 1

8πG

ˆ
d3xg2
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and we identify the field energy density

w = − g2

8πG

This energy may be thought of as existing even in the free space between matter, as energy of the field. In
addition, if we move a mass m into the region, it will have potential energy mΦ. Therefore, the potential
energy of the matter together with the potential energy of the field is given by

V =

ˆ
d3x

[
− 1

8πG
∇Φ (x) ·∇Φ (x) + ρ (x) Φ (x)

]
Since Newtonian gravity is not dynamical, there is no kinetic energy associated with Φ, and the Lagrangian
is just L = −V . The action is therefore

S =

ˆ
dt

ˆ
d3x

[
1

8πG
∇Φ (x) ·∇Φ (x)− ρ (x) Φ (x)

]
We find the field equation by varying the field. It is always the dynamical variable that is varied, whether

it describes a curve, x (t), or a field Φ (x, t). In the present case,

0 = δS

= δ

ˆ
dt

ˆ
d3x

[
1

8πG
∇Φ (x) ·∇Φ (x)− ρ (x) Φ (x)

]
=

ˆ
dt

ˆ
d3x

[
1

8πG
2∇δΦ ·∇Φ− ρ (x) δΦ (x)

]
=

ˆ
dt

ˆ
d3x

[
1

4πG

[
∇ · (δΦ∇Φ)− δΦ∇2Φ

]
− ρδΦ

]
=

1

4πG

ˆ
dt

ˆ
d3x∇ · (δΦ∇Φ)−

ˆ
dt

ˆ
d3x

[
1

4πG
∇2Φ + ρ

]
δΦ

=
1

4πG

ˆ
dt

ˆ
d2x n̂ · (δΦ∇Φ)−

ˆ
dt

ˆ
d3x

[
1

4πG
∇2Φ + ρ

]
δΦ

= −
ˆ
dt

ˆ
d3x

[
1

4πG
∇2Φ + ρ

]
δΦ

Since δΦ is arbitrary the term in brackets must vanish, and we recover the field equation,

∇2Φ = −4πGρ

2 Dynamical gravity
One, but not the only, failing of Newtonian gravity is its instantaneous propagation. It is not difficult to
write a theory of gravity in which gravitational waves propagate with speed v. Taking inspiration from the
equation

− 1

v2

∂2u

∂t2
+

∂u

∂x2
= 0

for waves on a string, and generalizing the spatial second derivative ∂u
∂x2 to the Laplacian gives a 3-dimensional

wave equation,

− 1

v2

∂2u

∂t2
+∇2u = 0

This has immediate wave solutions,
u (x, t) = Aei(k·x−ωt)
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Newtonian gravity will also have wave solutions if we generalize it to

− 1

v2

∂2Φ

∂t2
+∇2Φ = −4πGρ

or, if we wish it to be consistent with special relativity,

− 1

c2
∂2Φ

∂t2
+∇2Φ = −4πGρ

Any static solution agrees with the usual Newtonian result, but now we will show that the gravitational
influence propagates at the speed of light. To do this, we compute the Green function for the field equation.

2.1 The Helmholz equation
Our propagating gravity equation has the form

�Φ = −4πGNρ (x, t)

where the d’Alembertian, �, is the wave operator, given by

� = − 1

c2
∂2

∂t2
+∇2

and ∇2 is the usual 3-dimensional Laplacian. We write GN for Newton’s graviatational constant so as not
to confuse it with the Green function. We wish to solve this equation in the absence of boundaries. This
means the boundary conditions reduce to regularity at the origin and vanishing at infinity.

There are three steps to solving. First we solve the homogeneous equation,

�φ = 0

Then, we use homogeneous solutions together with a boundary condition to solve for the empty space Green’s
function,

�G (x, t;x′, t′) = −4πGNδ
3 (x− x′) δ (t− t′)

Finally, we construct the full solution for Φ by integrating the source with the Green’s function,

Φ (x, t) =

ˆ
G (x, t;x′, t′) ρ (x′, t′) d3x′dt′

It is immediate that applying the d’Alembertion to Φ, interchanging primed integrations with the unprimed
derivatives of the d’Alembertion, then integrating over the resulting delta functions reproduces the equation
we wish to solve.

We vary this procedure in one significant way, by performing a Fourier transformation on the time
coordinate. This is a practical consideration, since it immediately puts things in terms of electromagnetic
waves, a topic we will consider in detail. The Fourier transformation is the replacement in the original
equation of Φ and ρ by integrals over frequency,

Φ (x, t) =
1√
2π

∞̂

−∞

Φ (x, ω) e−iωtdω

ρ (x, t) =
1√
2π

∞̂

−∞

ρ (x, ω) e−iωtdω
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Substituting these into the wave equation we have

�

 1√
2π

∞̂

−∞

Φ (x, ω) e−iωtdω

 = −4πGN

 1√
2π

∞̂

−∞

ρ (x, ω) e−iωtdω


∞̂

−∞

(
− 1

c2
∂2

∂t2
+∇2

)(
Φ (x, ω) e−iωt

)
dω = −4πGN

∞̂

−∞

ρ (x, ω) e−iωtdω

∞̂

−∞

(
−Φ (x, ω)

1

c2
∂2

∂t2
e−iωt + e−iωt∇2Φ (x, ω)

)
dω = −4πGN

∞̂

−∞

ρ (x, ω) e−iωtdω

∞̂

−∞

(
ω2

c2
Φ (x, ω) +∇2Φ (x, ω)

)
e−iωtdω = −4πGN

∞̂

−∞

ρ (x, ω) e−iωtdω

We see that the result is just the Fourier transform of the equation(
∇2 + k2

)
Φ (x, ω) = −4πGNρ (x, ω) (1)

where we define k ≡ ω
c . It is the completeness relation for Fourier transforms that guarantees we can invert

the transform. See my notes on Complex analysis for a proof of the completeness relation.
The resulting equation is the Helmholz equation.

2.2 The homogeneous equation
With the sole boundary at infinity and no sources, the equation

�φ = 0

is not hard to solve. After the Fourier transform, we have the homogeneous Helmholz equation,(
∇2 + k2

)
φ (x, ω) = 0

Now, since there are no sources or boundaries, the system is spherically symmetric. As a result, there can
be no angular dependence in ψ and the equation reduces to

1

r2

∂

∂r

(
r2 ∂φ

∂r

)
+ k2φ = 0

∂2ψ

∂r2
+

2

r

∂φ

∂r
+ k2φ = 0

1

r

∂2

∂r2
(rφ) + k2φ = 0

∂2

∂r2
(rφ) + k2 (rφ) = 0

and this last is just the one dimensional harmonic equation for the product, rφ, with solution

rφ = Aeikr +Be−ikr

Finally, dividing by r,

φ =
Aeikr

r
+
Be−ikr

r
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which holds everywhere except r = 0. In fact, we already know that the 1
r gives us the electrostatic Green’s

function. Since eikr approaches unity at r = 0, and the same happens here. Specifically, we compute(
∇2 + k2

) e±ikr
r

= ∇ ·
(
±ike±ikr

r
r̂ + e±ikr∇1

r

)
+
k2e±ikr

r

= ∇ ·
(
±ike±ikr

r
r̂

)
+ ∇e±ikr ·∇1

r
+ e±ikr∇2 1

r
+
k2e±ikr

r

= −k
2e±ikr

r
− ±ike

±ikr

r2
+
±2ike±ikr

r2
− ±ike

±ikr

r2

+e±ikr∇2 1

r
+
k2e±ikr

r

= e±ikr∇2 1

r

= −4πe±ikrδ3 (x)

where we have used ∇ · () = r̂ · ddr () everywhere except for

∇ · r̂ =

(
î
∂

∂x
+ · · ·

)
îx+ · · ·√
x2 + y2 + z2

=
3√

x2 + y2 + z2
− 1

2

x

r3
·
(

2̂ix+ · · ·
)

=
3

r
− x

r3
·
(̂
ix+ · · ·

)
=

3

r
− r2

r3

=
2

r

Notice that e±ikrδ3 (x) is the same as δ3 (x) since the Dirac delta forces r = 0. Therefore,(
∇2 + k2

) e±ikr
r

= −4πδ3 (x)

2.3 Green’s function for the d’Alembertian
Now we need the Fourier transform of the equation for the Green function,

�G (x, t;x′, t′) = −4πGNδ
3 (x− x′) δ (t− t′)

Because we have spherical symmetry, G (x, t;x′, t′) can depend only on

R = |x− x′|
τ = |t− t′|

and we use the Fourier transform of the τ -dependence,

G (R, τ) =
1√
2π

∞̂

−∞

G (R,ω) e−iωτdω

We also need the Fourier transform of the δ-function source. Using the completeness relation for the Fourier
modes,

δ (t) =
1

2π

∞̂

−∞

e−iωtdω
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and substituting, the equation becomes

�

 1√
2π

∞̂

−∞

G (R,ω) e−iωτdω

 = −4πGNδ
3 (x− x′)

1

2π

∞̂

−∞

e−iωτdω

1√
2π

∞̂

−∞

(
∇2 + k2

)
G (R,ω) e−iωτdω = −4πGNδ

3 (x− x′)
1

2π

∞̂

−∞

e−iωτdω

1√
2π

∞̂

−∞

[(
∇2 + k2

)
G (R,ω) +

4πGN√
2π

δ3 (x− x′)

]
e−iωτdω = 0

Inverting the transform, we need(
∇2 + k2

)
G (R,ω) = −4πGN

[
1√
2π
δ3 (x− x′)

]
and this is exactly the result we have for the homogeneous solution if we set

G± (R,ω) =
GN√

2π

e±ikr

r

We now just need to take the Fourier transform,

G± (R, τ) =
GN√

2π

∞̂

−∞

G (R,ω) e−iωτdω

=
GN√

2π

∞̂

−∞

1√
2π

e±ikR

R
e−iωτdω

=
GN
2πR

∞̂

−∞

e−iωτ±ikRdω

=
GN
2πR

∞̂

−∞

e−iω(τ∓R
c )dω

=
GN
R
δ

(
τ ∓ R

c

)
where we have used k = ω

c . Replacing R and τ , we have the retarded and advanced Green functions,

G± (x, t;x′, t′) =
GN
|x− x′|

δ

(
|t− t′| ∓ |x− x′|

c

)
The retarded Green function is

G+ (x, t;x′, t′) =
GN
|x− x′|

δ

(
|t− t′| − |x− x′|

c

)
=

GN
|x− x′|

δ

(
t− |x− x′|

c
− t′

)
=

GN
|x− x′|

δ

(
t′ −

(
t− |x− x′|

c

))
This includes a time delay by the amount of time it takes a wave to propagate from x′ to x.
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3 Solutions with sources
Finally, suppose we have a localized source, ρ (x′, t′) and we wish to solve the full equation,

�Φ = −4πGNρ (x, t)

This has the immediate solution

Φ =

ˆ
G (x, t;x′, t′) ρ (x′, t′) d3x′dt′

= −4πGN

ˆ
1

|x− x′|
δ

(
t′ −

(
t− |x− x′|

c

))
ρ (x′, t′) d3x′dt′

= −4πGN

ˆ ρ

(
x′,

(
t− |x−x

′|
c

))
|x− x′|

d3x′dt′

which is just like our static solution except that the effect of ρ (x′) on the field at x and time t, is not ρ (x′, t)

but instead it is what ρ was at the earlier time t − |x−x
′|

c . The effect is delayed by the time |x−x
′|

c that it
takes light to propagate from x′ to x. For simplicity, for any source f (x′, t′), we define the retarded time
notation,

[f (x′, t′)]ret ≡ f
(
x′, t− |x− x′|

c

)

4 Electromagnetism

4.1 Energy and momentum
These originate as abstractions from electromagnetic forces as given by the Lorentz force law, but develop
measurable properties of their own. The most notable is the propagation of electromagnetic energy and
momentum as radiation. The fields satisfy the Maxwell equations,

∇ ·E =
ρ (x, t)

ε0
∇ ·B = 0

∇×E +
∂B

∂t
= 0

∇×B− ∂E

∂t
= µ0J (x, t)

Rather than dynamical variables parameterized only by time such as x (t) and p (t), the Maxwall fields
depend on position as well

E = E (x, t)

B = B (x, t)

We start by comparing these to particle properties, then develop some generalizations.
To understand the relationship of a particle described by x (t) and p (t) to fields described by E (x, t) and

B (x, t) it is important to realize that x (t) is not the same as the coordinate x = (x, y, z) or x = (r, θ, ϕ).
This becomes clear when we write the action functionals for the two cases. For a particle, we have

S =

ˆ

C

[
1

2
mẋ2 (t)− V (x (t))

]
dt
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Here the integral is over the curve C = {x (t)}, which is the entire collection of points occupied by the
physical system.

For the electromagnetic field, we work in terms of the potentials. Rewriting the electric and magnetic
fields in terms of the scalar and vector potentials, Φ (x, t) and A (x, t),

E = −∇Φ− ∂A

∂t
B = ∇×A

the homogeneous Maxwell equations are automatically satisfied, while the remaing two equations become
wave equations

− 1

c2
∂2Φ

∂t2
+ ∇2Φ = − ρ

ε0

− 1

c2
∂2A

∂t2
+ ∇2A = −µ0J

provided we choose the potentials to satisfy the Lorentz gauge condition, ∂Φ
∂t + ∇ ·A = 0. This choice does

not exhaust the gauge freedom since we may add the gradient of any function with vanishing Laplacian. We
may choose this function to eliminate Φ, so the only degrees of freedom are those of A with ∇ ·A = 0.

When we consider the effect of electromagnetic fields on the energy and momentum of charges, we find
an extension of the conservation of energy by including an energy density

w =
1

8π

(
E2 + B2

)
for the fields, and momentum density

S =
c

4π
E×B

Energy-momentum density 4-vector:

(w,S) =
1

4π

(
1

2

(
E2 + B2

)
, c (E×B)

)
4.2 Relativistic action for a particle
The relavitistic action for a particle in a potential V may be written as

S =
1

c

ˆ
eV/mc

2

(−uαuα)
1/2

dτ

(see Dynamics in special relativity). For a free particle, this is proportional to the magnitude of the 4-velocity.
For electromagnetism, we have a current density instead,

Jα = (w,S) =
1

4π

(
1

2

(
E2 + B2

)
, c (E×B)

)
but we may still take its magnitude. The norm of the current density is

JαJα =
1

16π2

(
−c

2

4

(
E2 + B2

)2
+ c2 (E×B) · (E×B)

)
= −1

4

c2

16π2

((
E2E2 + 2E2B2 + B2B2

)
− 4B · ((E×B)×E)

)
=

c2

16π2

(
E2E2 + 2E2B2 + B2B2 − 4B ·

(
B
(
E2
)
−E (E ·B)

))
=

c2

16π2

(
E2E2 + 2E2B2 + B2B2 − 4B2E2 − (E ·B)

2
)
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For freely propagaging electromagnetic fields, E ·B = 0, so

1

c

√
JαJα =

1

4π

√
(E2E2 − 2E2B2 + B2B2)

=
1

4π

(
E2 −B2

)
This has units of energy density, so we may take Lagrangian to be

L =
1

2

ˆ (
E2 −B2

)
d3x

Finally, integrating over time, we find the action

S =
1

2

ˆ (
E2 −B2

)
d4x

Notice that this expression depends only on the fields and therefore is independent of the gauge choice.

4.2.1 Variation in the Lorentz gauge

To see that this resembles T − V , expand in terms of the potentials. Remembering that our gauge choice
gives ∂Φ

∂t = 0,

S =
1

2

ˆ (
∂A

∂t
· ∂A
∂t
− (∇×A) · (∇×A)

)
d4x

We may think of the time derivatives, ∂A∂t ·
∂A
∂t , as giving the kinetic part and the spatial terms, (∇×A) ·

(∇×A) as the potential. To include the source current, J, we look at the potential energy density. The
energy of a charge q in a scalar potential Φ is just qΦ. As a density, this generalizes to

ρΦ + J ·A

which reduces to J ·A when Φ = 0. Subtracting this contribution to the potential, we have

S =

ˆ (
1

2

∂A

∂t
· ∂A
∂t
− 1

2
(∇×A) · (∇×A)− J ·A

)
d4x

Now vary the potential.

0 = δS

=

ˆ (
∂A

∂t
· ∂δA
∂t
− (∇×A) · (∇× δA)− J · δA

)
d4x

=

ˆ (
∂A

∂t
· ∂δA
∂t
− (∇×A) · (∇× δA)− J · δA

)
d4x

We may write the first term as

∂A

∂t
· ∂δA
∂t

=
∂

∂t

(
∂A

∂t
· δA

)
− ∂2A

∂t2
· δA

The second term takes a little more work,

− (∇×A) · (∇× δA) = −εijkεimn∂jAk∂mδAn
= ∂m

(
−εijkεimn∂jAkδAn

)
−
(
−εijkεimn (∂m∂jAk) δAn

)
= ∂m

(
εmin (∇×A)i δAn

)
+
(
δjmδkn − δjnδkm

)
(∂m∂jAk) δAn

= ∇ · ((∇×A)× δA) +
((
∇2A

)
· δA− δA ·∇ (∇ ·A)

)
11



The total time derivative may be integrated to the timelike boundary, while the divergence may be integrated
to the spatial boundary. The gauge condition lets us drop the ∇ ·A term. This leaves us with

0 =

ˆ (
−∂

2A

∂t2
· δA +

(
∇2A

)
· δA− J · δA

)
d4x

=

ˆ (
−∂

2A

∂t2
+∇2A− J

)
· δAd4x

and therefore we recover the field equation,

−∂
2A

∂t2
+∇2A = J

This is a common form of bosonic wave equation.

4.2.2 Gauge independent variation

We can do the same calculation without choosing a gauge. Adding sources to the action we have

S =

ˆ (
1

2

(
E2 −B2

)
− ρΦ− J ·A

)
d4x

where

E = −∇Φ− ∂A

∂t
B = ∇×A

Expanding the action in terms of the potentials, we have

S =

ˆ (
1

2

(
E2 −B2

)
− ρΦ− J ·A

)
d4x

=

ˆ (
1

2

(
−∇Φ− ∂A

∂t

)
·
(
−∇Φ− ∂A

∂t

)
− 1

2
(∇×A) · (∇×A)− ρΦ− J ·A

)
d4x

Variation of Φ and A gives

0 = δS

=

ˆ (
1

2
2

(
−∇Φ− ∂A

∂t

)
·
(
−∇δΦ− ∂δA

∂t

)
− 1

2
2 (∇×A) · (∇× δA)− ρδΦ− J · δA

)
d4x

=

ˆ (
∇ ·

[(
∇Φ +

∂A

∂t

)
δΦ

]
−
[
∇ ·

(
∇Φ +

∂A

∂t

)]
δΦ

)
d4x

+

ˆ (
∂

∂t

[(
∇Φ +

∂A

∂t

)
· δA

]
−
[
∂

∂t

(
∇Φ +

∂A

∂t

)]
· δA

)
d4x

+

ˆ
(− (∇×A) · (∇× δA)− ρδΦ− J · δA) d4x

=

ˆ [
∇ ·

[(
∇Φ +

∂A

∂t

)
δΦ

]
+
∂

∂t

[(
∇Φ +

∂A

∂t

)
· δA

]]
d4x

+

ˆ (
−
[
∇ ·

(
∇Φ +

∂A

∂t

)]
δΦ−

[
∂

∂t

(
∇Φ +

∂A

∂t

)]
· δA

)
d4x

+

ˆ (
∇ · ((∇×A)× δA) +

(
∇2A

)
· δA− δA ·∇ (∇ ·A)− ρδΦ− J · δA

)
d4x
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=

ˆ [
∇ ·

[(
∇Φ +

∂A

∂t

)
δΦ + (∇×A)× δA

]
+
∂

∂t

[(
∇Φ +

∂A

∂t

)
· δA

]]
d4x

+

ˆ (
−∇ ·

(
∇Φ +

∂A

∂t

)
− ρ
)
δΦd4x

+

ˆ (
− ∂

∂t

(
∇Φ +

∂A

∂t

)
+∇2A−∇ (∇ ·A)− J

)
· δAd4x

The first terms may be integrated to the boundary, where the variations vanish. The arbitrariness of δΦ and
δA then gives

−∇ ·
(
∇Φ +

∂A

∂t

)
− ρ = 0

− ∂

∂t

(
∇Φ +

∂A

∂t

)
+∇2A−∇ (∇ ·A)− J = 0

Recalling that ∇ × (∇×A) = −∇2A + ∇ (∇ ·A), and replacing the potentials with the fields, the first
becomes

∇ ·E = ρ

∂E

∂t
−∇×B = J

5 Matter waves
As we have seen, various forms of the relativistic wave equation,

− 1

c2
∂2Φ

∂t2
+∇2Φ = −J

arise frequently in classical field theory. The wave operator,

� ≡ − 1

c2
∂2

∂t2
+∇2

called the d’Alembertian is the natural generalization of the Laplacian to the 4-spacetime dimensions.
It was natural for the ideas of wave-particle duality in the early 20th century to make use of the

d’Alembertian. These efforts lead naturally to the Klein-Gordon equation.

5.1 The Klein-Gordon equation
The deBroglie wavelength and the Planck relation, together with the relativistic relationship between energy
and momentum, relate the particle properties of energy and momentum to the wave properties of frequency
and wavelength,

E = ~ω
p = ~k

The 4-momentum of a particle is given by

pα = muα

= mγ (c,v)

=

(
E

c
,p

)

13



and the invariant norm of the four momentum is

ηαβp
αpβ = pαpα

= −
(
p0
)2

+ p2

= −E
2

c2
+ p2

By construction, this quantity is invariant under Lorentz transformations. We see this explicityly by using
the norm of the 4-velocity, uαuα = −c2 to writh

ηαβp
αpβ = m2uαuα

= −m2c2

which is clearly independent of inertial frame of reference. Equating the two expressions gives the mass-
energy relation,

E2 = p2c2 +m2c4

Now suppose the electron is described by a plane wave,

ψ = Aei(k·x−ωt)

Then we may recover the wave number and frequency by differentiation,

∇2ψ = ∇2
[
Aei(k·x−ωt)

]
= −k2ψ

∂2

∂t2
ψ =

∂2

∂t2

[
Aei(k·x−ωt)

]
= −ω2ψ

Multiplying each derivative by i~, we have the energy and momentum,

(i~∇)
2
ψ = ~2k2ψ

= p2ψ(
i~
∂

∂t

)2

ψ = ~2ω2ψ

= E2ψ

Substituting these operators,

pα =

(
−E
c
,p

)
= −i~

(
1

c

∂

∂t
,∇
)

= −i~ ∂

∂xα

into the energy-momentum relation,

E2 = p2c2 +m2c4(
i~
∂

∂t

)2

= (i~∇)
2
c2 +m2c4
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and allowing this operator relationship to act on a “wave function”, ψ,

−~2 ∂
2ψ

∂t2
= −~2c2∇2ψ +m2c4ψ

− 1

c2
∂2ψ

∂t2
+ ∇2ψ =

m2c2

~2
ψ

Writing this in terms of the d’Alembertian,

�ψ =
m2c2

~2
ψ

we have the Klein-Gordon equation. Because of the Planck and deBroglie relationships, it also describes
particle-like energy and momentum. Indeed, the plane-wave solutions may be written as

ψ = Ae
i
~ (p·x−Et)

The Klein-Gordon equation first appears in Schrödinger’s notes in 1925 before being published the next
year first by Oskar Klein and Walter Gordon, but also the same year by Vladimir Fock, Johann Kudar,
Théophile de Donder and Frans-H. van den Dungen, and Louis de Broglie. It is the obvious relativistic
generalization of the Schrödinger equation but fails to describe electron spin. Additionally, because the
equation is second order in time derivatives, it requires both initial position and velocity specifications, and
this is forbidden by the uncertainty principle. Finally, the equation leads to negative probability states.

5.2 The Schrödinger equation
In 1925, Schrödinger took a different approach. The problems arising from the second order time derivatives
may be avoided by first solving for the energy, then taking a non-relativistic approximation. We may then
also add a potential to the energy

E =
√
p2c2 +m2c4 + V

= mc2
√

1 +
p2

m2c2
+ V

For v � c we may expand
√

1 + p2

m2c2 in a Taylor series,√
1 +

p2

m2c2
= 1 +

p2

2m2c2
+ · · ·

≈ 1 +
p2

2m2c2

so the non-relativistic version is

E = mc2
(

1 +
p2

2m2c2

)
+ V

Making the same operator substitutions that led us to the Klein-Gordon equation, and allowing it to operate
on a function, φ, gives

i~
∂φ

∂t
= mc2φ− ~2

2m
∇2φ+ V φ

The constant mass term may be removed by the replacement

φ = ψe−
i
~mc

2t
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Then we find

i~
∂

∂t

(
ψe−

i
~mc

2t
)

= mc2ψe−
i
~mc

2t − ~2

2m
∇2
(
ψe−

i
~mc

2t
)

+ V ψe−
i
~mc

2t

i~
(
∂ψ

∂t
e−

i
~mc

2t − i

~
mc2ψe−

i
~mc

2t

)
=

(
mc2ψ − ~2

2m
∇2ψ + V ψ

)
e−

i
~mc

2t

resulting in the familiar form of the Schrödinger equation,

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + V ψ
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