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1 Yang-Mills gauge theory
We begin with a discussion of Yang-Mills gauge theory for any special unitary group, SU(n). We will develop a
number of general properties of these theories. Then, in the next Section, we explore covariant derivatives in gauge
theories of Lie groups. Then in Section 3, will begin our discussion of the standard model.

Begin the Lie group P × SU (n), where P = IL is the Poincaré (or Inhomogeneous Lorentz) group, T the
Abelian group of translations, and L = Spin(1,3) is the Lorentz group. Form the group quotient

P×SU (n)/L ×SU (n)

This gives an L × SU (n) fiber bundle over a 4-dim base manifold. We modify this by generalizing the connection,
requiring horizontality of the resulting curvatures/field strengths.

Notice that we have chosen the spin representation of the Lorentz generators. This means that, when we write an
action with this symmetry, we can include spinor fields.

1.1 Generators for the Lie algebra
To carry this out explicitly, we require the Lie algebra of P×SU (n). Since any unitary matrix may be written as

U = eiH

where H is Hermitian, we may take arbitrary Hermitian matrices as generators. Since we require U to have unit
determinant, we restrict our attention to traceless Hermitian matrices.

Exercise: By performing a unitary transformation to diagonalize H, prove the identity detU = ei tr(H), where U is
unitary and H is Hermitian.

It is not difficult to write a basis for the Hermitian generators, which fall into three types. First, we have real, traceless,
diagonal matrices, which are spanned by the set:

Dk =


. . .

1
−1

. . .


where the 1 occurs in the kth row and column, where k runs from 1 to n−1. In components we may write

[Dk]
a
b = δ

k
b δ

a
k −δ

k+1
b δ

a
k+1

Next, consider the real, symmetric, off-diagonal matrices, with the general form

Gm
k =



0
. . . 1

0
0

1 0
. . .

0


where the only nonzero elements occur in row k, column m and in row m, column k. In components,

[Gm
k]

a
b = δ

m
b δ

a
k +δkbδ

ma

If we wish to let k,m range freely over all values we need to subtract the trace,

[Gm
k]

a
b = δ

m
b δ

a
k +δkbδ

ma−2δ
m
k δ

a
k δ

m
b
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Finally, we have pure imaginary, antisymmetric matrices of the form

G̃m
k =



0
. . . −i

0
0

i 0
. . .

0


which may be written as

[Gm
k]

a
b = i(δ m

b δ
a
k −δkbδ

ma)

Notice that Gm
k = Gk

m and G̃m
k =−G̃k

m.

Exercise: Compute the commutation relations for this choice of the generators.

Exercise: Check that these satisfy
tr (λaλb) = 2δab

Now recall that the special unitary matrices have anti-Hermitian generators. If we want to describe the real group
manifold using the structure constants, we need real structure constants, and these arise from the commutation relations
of the anti-Hermitian form of the generators. However, we have found f C

AB for the Hermitian form,

[GA,GB] = f C
AB GC

The anti-Hermitian generators are iGA, so the correct structure constants are given by multiplying both sides by i2,

[iGA, iGB] = i f C
AB (iGC)

The real-valued structure constants are therefore c C
AB = i f C

AB .
For the Poincaré group we have seen before that we may write

[Ma
b ,Mc

d ] = −1
2

(Ma
dηbc−Ma

cηbd−Mbdδ
a
c +Mbcδ

a
d )

[Ma
b ,Pc] = −1

2

(
δ

a
c Pb−ηbcη

adPd

)
[Pa,Pb] = 0

Since the groups P and SU (3) are in a direct product, the commutators between the generators from any pair of these
different subgroups commute,

[GA,Pa] = 0 = [GA,Ma
b ]

This completes the Lie algebra.

1.2 Maurer-Cartan structure equations
From the Lie algebra, we may construct the Maurer-Cartan equations. For each generator we introduce dual 1-forms,〈

GA,ωB〉 = δ
B
A

〈Ma
b ,ωc

d〉 = δ
a
d δ

c
b −η

ac
ηbd〈

Pa,eb
〉

= δ
b
a

The Maurer-Cartan equations are immediate,

dω
∆ =−1

2
c ∆

ΛΣ ω
Λ∧ω

Σ
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Substituting the different generators:

dω
α

β
= ω

µ

β
∧ω

α
µ

deα = eβ ∧ω
α

β

dω
A = − i

2
f A
BC ω

B∧ω
C

1.3 Modifying the connections
Now, we generalize the connection 1-forms. This means that the Maurer-Cartan equations will pick up extra, tensorial
2-form terms. These are the field strengths; we require them to be horizontal forms, that is, they expand in the forms
eα spanning the base manifold only. We will not generalize the Lorentz or translational generators, because we do not
yet know how to quantize gravity, and it is difficult to quantize the remaining fields if the background spacetime is
curved. Requiring the spacetime curvature and the torsion to vanish means that the solder form and spin connection
are still described by the Maurer-Cartan equations,

dω
α

β
= ω

µ

β
∧ω

α
µ

deα = eβ ∧ω
α

β

The first of these shows that the spin connection is pure gauge,

ω
α

β
= −dΛ

α
µ Λ̄

µ

β

where Λα

β
is a local Lorentz transformation, and Λ̄α

β
its inverse. These transformations provide coordinates on the

Lorentz part of the fiber bundle, and we may choose them constant. Then the spin connection vanishes and the equation
for the solder form reduces to

deα = 0

The solder form is thus exact. We cannot choose these forms to be zero since they must span the base manifold, but
their being exact allows us to write them as differentials of coordinate functions,

eα = dxα

The xα are the usual Cartesian coordinates on Minkowski space. If we wanted to use, say, spherical coordinates, then
the spin connection would still be pure gauge, but not zero. Since these span the base manifold, all of the (horizontal)
curvatures/field strengths must be expanded in terms of them only.

The remaining Maurer-Cartan equation now generalize to

dω
A = − i

2
f A
BC ω

B∧ω
C +FA

where FA = 1
2 FA

αβ
dxα ∧ dxβ . This equation gives the expression for the field strength. Expanding the differential

forms, we have

1
2

FA
αβ

dxα ∧dxβ = ∂α ω
A

β
dxα ∧dxβ +

1
2

f A
BC ω

B
α ω

C
β

dxα ∧dxβ

where FA
αβ

=−FA
βα

. Antisymmetrizing the right side and dropping the basis forms gives the coordinate expression for
the field strength:

FA
αβ

= ∂α ω
A

β
−∂β ω

A
α + f A

BC ω
B

α ω
C

β

Notice that for an Abelian group, f A
BC = 0, and this reduces to the same form as the Maxwell field tensor. The extra

quadratic terms gives the weak and strong interactions considerable richness absent from electromagnetism. Notice
also that there is one field for each of the n2−1 generators of SU (3).
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2 Covariant derivatives in gauge theories of Lie groups
The connection forms for the color and electroweak symmetries allow us to define two covariant derivatives. We begin
by describing the general case of a group-covariant derivative.

The results in this Section apply to any simple Lie group, so we change the notation slightly. We will work with
an arbitrary linear representation with generators GA and real structure constants c C

AB .
Suppose we have a linear representation of a simple Lie non-Abelian group G with generators GA and Lie algebra

[GA,GB] = c C
AB GC

A linear representation of a Lie group is defined by specifying a vector space, V , on which the group acts. The group
elements may then be written as matrices.

Let hA be 1-forms dual to the generators, 〈
GA,hB〉 = δ

B
A

and define

h = hAGA

For functions over the group manifold, we simply define D f = d f . Now let v ∈ V ×G be a vector field over the group
manifold. Then the covariant derivative of v is defined as

Dv = dv+hv

where v and the connection transform under the action of g ∈ G , according to

v′ = gv

h′ = ghg−1−dgg−1

We define the covariant derivative on higher rank tensors by requiring D to satisfy the Leibnitz property.
We have three things to prove:

1. To be a derivation, D must be linear and Leibnitz. We have made it Leibnitz by definition, but need to show
linearity.

2. We must show that the Leibnitz property uniquely defines D on any rank of tensor.

3. We must prove that D is covariant with respect to the action of G .

Linearity is immediate. Let w = au+bv, where u,v,w ∈ V and a,b are real numbers.

Dw = dw+hw

= d(au+bv)+h(au+bv)
= adu+bdv+ahu+bhv

= aDu+bDv

For the Leibnitz property, we need the additivity of tensorial ranks. If we denote the outer product of u,v ∈ V by
w = uv, then the rank of w is the sum of the ranks of u and v (in this case, we specified that u and v are in V and
therefore rank 1, so w is rank 2, but we can then iterate the procedure to arbitrary higher ranks). It is easiest to see
what is happening here if we include the matrix indices. Requiring the Leibnitz product rule for the outer product of
two vectors, we have

D
(
uAvB) =

(
DuA)vB +uADvB

6



Rewriting this in terms of wAB = uAvB, we have

DwAB = D
(
uAvB)

=
(
DuA)vB +uADvB

=
(
duA +hA

CuC)vB +uA (dvB +hB
CvC)

=
(
duA)vB +uAdvB +hA

CuCvB +hB
CuAvC

= d
(
uAvB)+hA

CuCvB +hB
CuAvC

= dwAB +hA
CwCB +hB

CwAC

which is the usual expression for a covariant derivative. Since any second rank tensor may be written as a linear
combination of outer products of vectors, the linearity of the derivative implies this form for the covariant derivative
of arbitrary second rank tensors.

Exercise Generalize this result to products of tensors of arbitrary rank.

Finally, we turn to covariance. We have

D′v′ = dv′+h′v′

= d(gv)+
(
ghg−1−dgg−1)gv

= dgv+gdv+ghv−dgv

= g(dv+hv)
= gDv

Exercise Rewrite this derivation, putting in all of the indices.

We will also need the special case of an Abelian group, since U (1) is Abelian. Here the notion of weight (or charge)
replaces the rank, and even functions may have arbitrary weight. Under the action of G , any field (scalar, vector,
tensor) of weight w transforms as

φ
′ = gw

φ

that is, g acts w times on φ . Then the covariant derivative is defined as

Dφ = dφ +whφ

Linearity and the Leibnitz property are immediate, provided we only perform sums of fields of equal weight, and
define the weight of a product of two fields to be the sum of the weights of the two fields separately. Then:

D(aφ +bχ) = d(aφ +bχ)+wh(aφ +bχ)
= adφ +bdχ +awhφ +bwhχ

= aDφ +bDχ

and for fields φ ,ψ of weights wφ ,wψ we have

D(φψ) = d(φψ)+wφψ hφψ

= (dφ)ψ +φdψ +
(
wφ +wψ

)
hφψ

=
(
dφ +wφ hφ

)
ψ +φ

(
dψ +wψ hψ

)
= (Dφ)ψ +φDψ

Now consider covariance. For an Abelian group, the transformation of the connection by a group element g = eβ AGA

reduces to

h′ = ghg−1−dgg−1

= h−d
(

eβ AGA
)

e−β AGA

= h−dβ
AGA
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Checking covariance, we have

D′φ ′ = dφ
′+wh′φ ′

= d(gw
φ)+w

(
h−dβ

AGA
)

gw
φ

= d
(

ewβ AGA φ

)
+whgw

φ −w
(
dβ

A)GAgw
φ

= ewβ AGAdφ +w
(
dβ

A)GAewβ AGAφ +whgw
φ −w

(
dβ

A)GAgw
φ

= gwdφ +w
(
dβ

A)GAgw
φ +whgw

φ −w
(
dβ

A)GAgw
φ

= gw (dφ +whφ)
= gwDφ

so that the covariant derivative of the field transforms with the same weight as the field.
Finally, suppose the Lie group is a direct product of Lie groups, G = G1×G2. The the Lie algebra is the direct

sum of the Lie algebras of G1 and G2. The generators involved in the connection commute, so the covariant derivative
is found by just adding the two connections,

Dv = dv+h1v+h2v

We conclude the section by expanding these results into components. For generators GA and gauge 1-forms
hA = hA

α dxα , we expand the forms to find the component expression,

Dα va = ∂α va +hA
α [GA]a b vb

For unitary groups, it is convenient to write the generators as GA = i
2 gHA, where HA is Hermitian and the factor g

2
introduces a coupling constant g with a conventional factor of 1

2 . Ultimately, g is the unit of charge of the field –
electric charge, color charge, weak hypercharge, etc. Then the covariant derivative becomes

Dα va = ∂α va +
i
2

ghA
α [HA]a b vb

The gauge transformations

h̃ = ghg−1−dgg−1

h̃A
β

GA = hA
β

(
gGAg−1)− (∂β gg−1)A

GA

are not simple, but for an infinitesimal gauge transformation we have g≈ 1+ εAGA

δhA
β

GA = hA
β

(
1+ ε

BGB
)

GA
(
1− ε

CGC
)
−∂β ε

AGA−hA
β

GA

= hA
β

ε
B [GB,GA]−∂β ε

AGA

= c A
BC ε

BhC
β

GA−∂β ε
AGA

δhA
β

= c A
BC ε

BhC
β
−∂β ε

A

3 Yang-Mills action and conserved currents
Once we have the field strengths and curvatures of the gauge theory, we can identify the relevant tensor fields, and
write an action. From the action we can find the field equations and any conserved quantities.

3.1 Group tensors
The action may be constructed from any of the spacetime tensors

ηαβ ,δ α

β
,eαβ µν
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and any of the SU(n)-invariant tensors,

KAB = tr (GAGB) ,δab,FA
αβ

We may also use any representations of the gauge group, that is, tensors under Spin(3,1) and SU(n). The basic vector
spaces that define our representations tell us what we can use. Since we chose the spinor representation of the Lorentz
group, we may use Dirac spinors, ψ , and any tensors constructible from them. Our representation of SU(n) allows us
to use any complex, n-dim vectors and the tensors built from them.

Of particular interest are the bispinor combinations involving the Dirac matrices. From any spinor, ψ , and its
conjugate, ψ̄ = ψ†γ0, we have the Lorentz covariant combinations,

ψ̄ψ scalar
ψ̄γα ψ vector

ψ̄σαβ ψ tensor
ψ̄γα γ5ψ pseudovector

ψ̄γ5ψ pseudoscalar

We may also take higher order combinations,

ψ1⊗ψ2⊗ . . .⊗ψk

though these are rarely needed or used.
For SU(n), we may use multiplets of any of the Lorentz covariant objects. Each of the quantities above transforms

as a scalar under SU(n), but we can make n-tuples of any of them. The simplest cases, and the ones we will use, are n
complex scalars,

φ
a

and n spinor fields,
ψ

a

called scalar and spinor multiplets, respectively. But we could also take, say, n tensor fields

f c
ab ψ̄aσ

αβ
ψ

b

or an SU(n) tensor like
T abα = ψ̄aγ

α
γ5ψ

b

This object transforms as a pseudovector under Lorentz transformations and as a second rank tensor under SU(n).
We will restrict our attention to the simplest possibilities.

3.2 The Yang-Mills action
A typical Yang-Mills action consists of a kinetic term for the gauge fields, built quadratically from the field strength
and the SU(n) Killing metric KAB = δAB, and an n-tuple of spinor fields. The two are coupled through the covariant
derivative. The action is then

S =
∫ 1

4
KABη

αµ
η

βν FA
αβ

FB
µν +δabψ̄a (iD/−m)ψ

b

=
∫ 1

4
FA

αβ
FAαβ + ψ̄a (iD/−m)ψ

a

Historically, these gauge theories were built the other way around. One started with, say, the Dirac action for a
multiplet,

∫
ψ̄a (i∂/−m)ψa. Then noting that it has a global SU(n) symmetry, a systematic extension to a locally

SU(n) invariant theory leads to S above. The present approach is better suited to gauge theories which include gravity,
since gravitational gauge theory requires the construction of the base manifold.
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3.3 Conserved currents
Now that we have an action invariant under P×SU(n), we can apply Noether’s theorem to find conserved quantities.
The spacetime symmetries lead to the usual energy-momentum tensors,

Tαβ = η
µν FA

αµ FA
βν
− 1

4
ηαβ FA

µν FAµν

Sαβ =
i
2

gµβ ψ̄e µ

b γ
b←→D α ψ− 1

4
gαβ

(
iψ̄γ

be β

b Dβ ψ−mψ̄ψ

)
where the second applies to a single spinor field. For a multiplet, we simply sum over all spinors in the multiplet.

Exercise: Derive these expressions for the energy-momentum tensors by first writing the action using general coordi-
nates (so that ηαβ is replaced by a general metric, gαβ , and the volume form d4x is replaced by

√
−gd4x), then

varying the metric. For the spinor case, the action may be written using the solder form instead

S =
∫

d4x e (iψ̄γ
ae α

a Dα ψ−mψ̄ψ)

where e =
√
−g, and correcting the indices at the end.

We write the action in the symmetric form,

S =
∫ 1

4
FA

αβ
FAαβ +

i
2

ψ̄aγ
α (Dα ψ

a)− i
2

(Dα ψ̄a)γ
α

ψ
a−mψ̄aψ

a

For SU(n), a general SU(n) variation of the action gives

δS =
∫ 1

2
δFA

αβ
Fαβ

A +
i
2

δψ̄aγ
α (Dα ψ

a)+
i
2

ψ̄aγ
α (δDα ψ

a)+
i
2

ψ̄aγ
α (Dα δψ

a)

− i
2

(δDα ψ̄a)γ
α

ψ
a− i

2
(Dα δψ̄a)γ

α
ψ

a− i
2

(Dα ψ̄a)γ
α

δψ
a−mδψ̄aψ

a−mψ̄aδψ
a

=
∫

Dα δBA
β

Fαβ

A +
i
2

δψ̄aγ
α (Dα ψ

a)+
i
2

ψ̄γ
β

(
δBA

β
GAψ

)
+

i
2

Dα (ψ̄aγ
α

δψ
a)− i

2
Dα (ψ̄aγ

α)δψ
a

− i
2

δBA
β

GAψ̄aγ
β

ψ
a− i

2
Dα (δψ̄aγ

α
ψ

a)+
i
2

δψ̄aγ
α Dα ψ

a

− i
2

(Dα ψ̄a)γ
α

δψ
a−mδψ̄aψ

a−mψ̄aδψ
a

which finally rearranges into surface terms and field equation terms:

δS =
∫

Dα

(
δBA

β
Fαβ

A +
i
2

ψ̄aγ
α

δψ
a− i

2
δψ̄aγ

α
ψ

a
)

−δBA
β

(
Dα Fαβ

A − i
2

ψ̄γ
β GAψ +

i
2

GAψ̄aγ
β

ψ
a
)

+δψ̄a (iD/ψ
a−mψ

a)

−
(

iψ̄a←−D/γ
α +mψ̄a

)
δψ

a

Now impose the field equations,

Dα Fαβ

A =
i
2

δabψ̄
a
γ

β [GA]bc ψ
c− i

2
δab [GA]ac ψ̄

c
γ

β
ψ

b

= iψ̄γ
β GAψ

c

iD/ψ
a−mψ

a = 0

iψ̄a←−D/γ
α +mψ̄a = 0
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and restrict the variation to a global gauge change,

δBA
β

= −
(

∂β ε
A + c A

BC BB
β

ε
C
)

= −Dβ ε
A

= 0
δψ

a = iεA (GAψ)a

δψ̄a = −iεA (ψ̄GA)a

Then the variation, δS, vanishes identically, and we are left with the conserved current,

Jβ = −
(

δBA
β

Fαβ

A +
i
2

ψ̄aγ
α

δψ
a− i

2
δψ̄aγ

α
ψ

a
)

= ε
A

ψ̄γ
α GAψ

Since εA is arbitrary, we get one conserved current for each generator,

Jβ

A = ψ̄γ
α GAψ

and this is exactly the collection of source currents for the Yang-Mills field.
This concludes our general remarks on Yang-Mills theories and covariant derivatives. We now turn to the Standard

Model.

4 SU(3) x SU(2) x U(1) gauge theory
Begin the Lie group P×SU (3)×SU (2)×U (1), where P = T ×L is the Poincaré group, T the Abelian group
of translations, and L = Spin(1,3) the Lorentz group. Form the group quotient

P×SU (3)×SU (2)×U (1)/L ×SU (3)×SU (2)×U (1)

This gives an L ×SU (3)×SU (2)×U (1) fiber bundle over a 4-dim base manifold. We modify this by generalizing
the connection, requiring horizontality of the resulting curvatures/field strengths.

Notice that we have chosen the spin representation of the Lorentz generators. This means that when we write an
action with this symmetry, we can include spinor fields.

4.1 Generators for the Lie algebra
To carry this out explicitly, we require the Lie algebra of P× SU (3)× SU (2)×U (1). For UY (1) there is only one
generator, Y , called hypercharge. We know that SU (2) is generated by the Pauli matrices, which satisfy

[τi,τ j] = 2iεi jkτk

For SU (3), the usual basis is the set of Gell-Mann matrices

λ1 =

 0 1 0
1 0 0
0 0 0

 ;λ2 =

 0 −i 0
i 0 0
0 0 0

 ;λ3 =

 1 0 0
0 −1 0
0 0 0


λ4 =

 0 0 1
0 0 0
1 0 0

 ;λ5 =

 0 0 −i
0 0 0
i 0 0

 ;λ6 =

 0 0 0
0 0 1
0 1 0


λ7 =

 0 0 0
0 0 −i
0 i 0

 ;λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2


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Exercise: Check that these satisfy
tr (λaλb) = 2δab

We will write the commutation relations for the SU (3) generators as

[λa,λb] = 2i f c
ab λc

Exercise: Find the commutation relations (i.e., find f c
ab ) for the Gell-Mann matrices.

Exercise: Antisymmetry of f c
ab on the first two indices is automatic, but in fact fabc = δcd f c

ab is totally antisym-
metric. Prove this.

Finally, for the Poincaré group we have seen before that we may write

[Ma
b ,Mc

d ] = −1
2

(Ma
dηbc−Ma

cηbd−Mbdδ
a
c +Mbcδ

a
d )

[Ma
b ,Pc] = −1

2

(
δ

a
c Pb−ηbcη

adPd

)
[Pa,Pb] = 0

Since the groups P,SU (3) ,SU (2) ,U (1) are in a direct product, the commutators between the generators from any
pair of these different subgroups commute.

4.2 Maurer-Cartan structure equations
From the Lie algebra, we may construct the Maurer-Cartan equations. For each generator we introduce dual 1-forms,

〈Y,B〉 = 1〈
τi,B j〉 = δ

j
i〈

λa,gb
〉

= δ
b
a

〈Ma
b ,ωc

d〉 = δ
a
d δ

c
b −η

ac
ηbd〈

Pa,eb
〉

= δ
b
a

The Maurer-Cartan equations are immediate,

dω
A =−1

2
c A

BC ω
B∧ω

C

Substituting the different generators:

dω
α

β
= ω

µ

β
∧ω

α
µ

deα = eβ ∧ω
α

β

dga = −1
2

f a
bc gb∧gc

dBi = −1
2

ε
i

jk B j ∧Bk

dB = 0

4.3 Modifying the connections
Now, we generalize the connection 1-forms. This means that the Maurer-Cartan equations will pick up extra, tensorial
2-form terms. These are the field strengths; we require them to be horizontal forms, that is, they expand in the forms
eα spanning the base manifold only. We will not generalize the Lorentz or translational generators, because we do not
yet know how to quantize gravity, and it is difficult to quantize the remaining fields if the background spacetime is

12



curved. Requiring the spacetime curvature and the torsion to vanish means that the solder form and spin connection
are still described by the Maurer-Cartan equations,

dω
α

β
= ω

µ

β
∧ω

α
µ

deα = eβ ∧ω
α

β

The first of these shows that the spin connection is pure gauge,

ω
α

β
= −dΛ

α
µ Λ̄

µ

β

where Λα

β
is a local Lorentz transformation, and Λ̄α

β
its inverse. These transformations provide coordinates on the

Lorentz part of the fiber bundle, and we may choose them constant. Then the spin connection vanishes and the equation
for the solder form reduces to

deα = 0

The solder form is thus exact. We cannot choose these forms to be zero since they must span the base manifold, but
their being exact allows us to write them as differentials of coordinate functions,

eα = dxα

The xα may be taken as our usual Cartesian coordinates on Minkowski space. Since these span the base manifold, all
of the (horizontal) curvatures/field strengths must be expanded in terms of them only.

The remaining Maurer-Cartan equations now generalize to

dga = −1
2

f a
bc gb∧gc +Ga

dBi = −1
2

ε
i

jk B j ∧Bk +Fi

dB = H

These equations give the usual expressions for the field strengths. For the gluon fields we have

Ga = dga +
1
2

f a
bc gb∧gc

1
2

Ga
αβ

dxα ∧dxβ = ∂α g a
β

dxα ∧dxβ +
1
2

f a
bc g b

α g c
β

dxα ∧dxβ

where Gαβ =−Gβα . Antisymmetrizing the right side and dropping the basis forms,

Ga
αβ

= ∂α g a
β
−∂β g a

α +
1
2

f a
bc g b

α g c
β

Notice that for an Abelian group, f a
bc = 0, and this reduces to the same form as the Maxwell field tensor. The extra

quadratic terms give the weak and strong interactions considerable richness absent from electromagnetism. Notice
also that there is one field for each generator of SU (3).

Exercise: Write the field strengths for the electroweak interaction.

5 The cast of characters
Next, we would like to write an action functional for the standard model. The action we write will require some
modification before it can successfully describe the experimental results of particle physics. The first step is to identify
possible tensors from which to build the model.

We have the curvatures, Fαβ ,F i
αβ

and Ga
αβ

, the solder form, eα , the metric ηαβ and the Levi-Civita tensor, eαβ µν .
We also have representations of the groups L ,SU (3) ,SU (2) ,U (1). By representations, we mean any tensors of the
vector spaces that these groups act on. We have already chosen these.

13



We have the spinor representation of the Lorentz group, so L acts on scalars (φ ), Dirac spinors (ψA), bispinors
(for example, Xα = ψ̄γα ψ,T αβ = ψ̄σαβ ψ) or higher rank tensors such as SABC = ψAχBξC.

For SU (3), we have chosen a 3-dimensional representation, and the group can therefore act on the corresponding
tensors, φ ,va,T ab,Sabc and so on, where indices ci = (red,blue,green) range over colors ci = r,b,g.

The group SU (2) is in a 2-dimensional representation, so we will have tensors built from doublets, φ ,ξ d1 =(
α

β

)
,Sd1d2 , and higher rank tensors, where di = 1,2 for each relevant i.

Finally, U (1) recognizes only the hypercharge, Y , of a field. A group element g acts on a field, ψ , of hypercharge
Y as ψ → (g)Y

ψ .
Since each of these four groups requires two types of index (one ranging over the group generators and one over

the components of the matrix representation), we quickly run out of alphabets. Therefore, wherever possible, we will
suppress the matrix/vector indices.

The notation becomes tricky because one object may have any or all of these labels. For example, the up and down
quark together form an SU (2) doublet, (

ψu
ψd

)
Each component of this doublet is a Lorentz spinor of definite color,

u = ψ
A
c1

;d = χ
B
c2

and has an associated hypercharge Y = 1
3 .

6 A trial action
The most straightforward action we can write is to include Yang-Mills type terms for the field strengths, and multiplets
for the spinors and leptons. If we want to be fancy, we can write the Yang-Mills action as

S =
1
8

∫
tr (G∗G)

where
G = Ga

αβ
[λa]

and the trace is taken over the product of the λ s. Substituting gives

Sgluons =
1
4

∫
Ga

αβ
Gaαβ d4x

as the action for the color gauge bosons, called gluons. Here we sum on the a index, even though both are written
up. We can get away with this because the metric is just δab, so there is no difference between raised and lowered a
indices.

The quarks are spin- 1
2 Dirac particles, so their action should be

Squarks = ∑
c

∑
q

∫
ψ̄q (iD/−m)ψq

where the sum on c runs over colors and the sum on q runs over the set of quarks, (u,d,c,s, t,b, . . .) and the derivative
operator, D, is covariant with respect to the relevant symmetries.

Later, we will discuss an approximate unitary symmetry – flavor symmetry – among the different quarks. This
symmetry allows the interchange of one quark for another, producing a distinct particle state. It has been very success-
ful at making sense of the many possible states of bound quarks. But for now, we restrict attention to color symmetry.

For the weak interaction, we start with the free action for the electroweak gauge bosons,

Sγ,W±,Z0 =
1
4

∫ (
F i

αβ
F iαβ +Hαβ Hαβ

)
d4x
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To this, we add the action for the leptons,

Sleptons = ∑
leptons

∫
ψ̄ (iD/−m)ψ

where the l ∈
(
e,νe,µ,νµ ,τ,ντ , . . .

)
and the derivative is again covariant.

There are several things wrong with this simple picture:

1. Three of the electroweak gauge bosons are massive. This problem is particularly acute, since adding an ordinary
mass term would break the SU (2)×U (1) gauge symmetry. This leads to the introduction of the Higgs particle,
a complex pair of Lorentz scalar fields transforming as an electroweak doublet.

2. The weak interaction violates parity, but the interaction term in Sleptons does not. The electromagnetic interaction
preserves parity.

3. The fermions all must have the same mass, or the unitary symmetries between fermions are lost.

4. The (u,d,c,s, t,b) quarks in the quark action are not the states that couple to the weak interaction. Instead,
certain linear combinations of these spinor fields couple to the weak gauge bosons.

Since these difficulties involve the weak interaction only, we treat the strong interaction first.

7 Strong interactions
The action for the strong interaction is the sum of the parts for the gauge bosons and the quarks:

Sstrong =
1
4

8

∑
a=1

∫
Ga

αβ
Gaαβ d4x+ ∑

c=r,g,b
∑
q

∫
ψ̄q (iD/−m)ψq

where for each q ∈ {u,d,c,s, t,b}, ψq is an SU(3) triplet of spinor fields. The covariant derivative is

Dψq = dψq−gsga
λaψq + electroweak

where the strong coupling constant, gs, characterizes the strength of the strong interaction and we specify the elec-
troweak part of the connection in the next section. The gluon field strength is

Ga
αβ

= ∂α g a
β
−∂β g a

α +gs f a
bc g b

α g c
β

Now consider the various generators of SU (3). They act on color triplets of the form

ψq =

 ψq,r
ψq,g
ψq,b


For example, consider the interaction term in the Lagrangian containing the generator g1λ1,

ψ̄q
(
ig/1

λ1
)

ψq = ig1
α ψ̄qγ

α (λ1ψq)

= ig1
α ψ̄qγ

α

 0 1 0
1 0 0
0 0 0

 ψq,r
ψq,g
ψq,b


= ig1

α

(
ψ̄q,r ψ̄q,g ψ̄q,b

)
γ

α

 ψq,g
ψq,r

0


= ig1

α (ψ̄q,rγ
α

ψq,g + ψ̄q,gγ
α

ψq,r)
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When the spinors are expanded in the usual way, the term

ig1
α ψ̄q,rγ

α
ψq,g

can create an antigreen quark or annihilate a green quark, while creating a red quark or annihilating an antired quark.
The gluon described by the vector field g1

α therefore carries off one unit of green and one unit of antired, and may
be called a green/antired gluon. The second term, ig1

α ψ̄q,gγα ψq,r, has the opposite effects and therefore describes a
red/antigreen gluon – the antiparticle of the green/antired.

There are three distinct types of interaction determined by the gluon term in the action. Expanding the first term
of the Lagrangian gives

1
4

8

∑
a=1

Ga
αβ

Gaαβ =
1
4

8

∑
a=1

η
αµ

η
βν

(
∂α g a

β
−∂β g a

α +g f a
bc g b

α g c
β

)(
∂µ g a

ν −∂ν g a
µ +g f a

bc g b
µ g c

ν

)
=

1
4

8

∑
a=1

η
αµ

η
βν

(
∂α g a

β
−∂β g a

α

)(
∂µ g a

ν −∂ν g a
µ

)
+g

8

∑
a=1

(
η

αµ
η

βν f a
bc

)
g b

α g c
β

∂µ g a
ν

+
g2

4

8

∑
a=1

(
η

αµ
η

βν f a
bc f a

de

)
g b

α g c
β

g d
µ g e

ν

The first term on the right is just like the free electromagnetic field, and describes an uncoupled gluon. Its quantization
leads to the gluon propagator.

The remaining two terms are interactions. The first involves three gluons and contains a derivative. When ex-
pressed in momentum space, the derivative makes the vertex contribution proportional to the momentum. The total
antisymmetry of fabc then means that the vertex contribution to the matrix element, when the gluons have momenta
pβ ,qα ,rµ is proportional to

g fabc

(
ηαβ (p−q)

µ
+ηµα (q− r)

β
+ηβ µ (r− p)

α

)
The final interaction involves four gluons and two structure constants. Letting the gluons have indices g a

α ,g b
β
,g c

µ ,g d
ν

leads to a vertex contribution of

−ig2 [ feab fecd
(
ηαµ ηβν −ηαν ηβ µ

)
+ feac fedb

(
ηαν ηµβ −ηαβ ηµν

)
+ fead febc

(
ηαβ ηνµ −ηαµ ηνβ

)]
These same vertex contributions occur for any non-Abelian Yang-Mills theory, the only difference being the value

of the coupling constant, g.

8 Electroweak Interactions
So far, we have the electroweak action

Selectroweak =
1
4

∫
F i

αβ
F iαβ d4x+ ∑

leptons

∫
ψ̄ (iD/−m)ψ

together with the coupling in the quark covariant derivative, where the l ∈
(
e,νe,µ,νµ ,τ,ντ , . . .

)
. The covariant

derivative is that for SU(2)×U(1), so

Dα ψ = ∂α ψ +
i
2

gBi
α τiψ +

i
2

g′Y Bα ψ

We need to correct three problems:

1. Three of the electroweak gauge bosons are massive, while the remaining one (the photon) is massless. This
problem is particularly acute, since adding an ordinary mass term, ∑i

(
m2

i Bi
α Biα

)
would break the SU (2)×U (1)

gauge symmetry. This leads to the introduction of the Higgs particle, a complex pair of Lorentz scalar fields
transforming as an electroweak doublet.

16



2. The weak interaction violates parity, but the interaction term in Sleptons does not.

3. The (u,d,c,s, t,b) quarks in the quark action are not the states that couple to the weak interaction. Instead,
certain linear combinations of these spinor fields couple to the weak gauge bosons.

We consider these in turn.

8.1 Massive gauge bosons
8.1.1 Spontaneous symmetry breaking

The problem of massive gauge particles can be solved by introducing additional fields. The basic idea is to introduce
a scalar field with a quartic potential of the general form

S =
∫

∂α φ∂
α

φ +αφ
2−βφ

4

Notice that S is invariant under the discrete symmetry, φ → −φ . However, the potential insures that low energy
solutions will break this symmetry, because the field will fall to a minimum of the potential, V = −αφ 2 + βφ 4. The
extrema of V occur at

0 =
dV
dφ

= −2αφ +4βφ
3

=
(
−2α +4βφ

2)
φ

We choose λ > 0 so that the extremum at φ = 0 is a local maximum; minima then occur at

φ0 =±
√

α

2β

where the potetial has the value

V (φ0) = −αφ
2
0 +βφ

4
0

= −α2

2β
+

α2

4β

= −α2

4β

For energies small relative to α2

4β
, we may expand the field about either of these minima. Thus, if we write

φ = φ0 +η

then

S =
∫

∂α η∂
α

η +m2 (φ0 +η)2−λ (φ0 +η)4

=
∫

∂α η∂
α

η +
(
αφ

2
0 −βφ

4
0
)
+
(
2αφ0−4βφ

3
0
)

η +
(
α−6βφ

2
0
)

η
2−4βφ0η

3−η
4

=
∫

∂α η∂
α

η +
α2

4β
−2αη

2∓
√

8αβη
3−η

4

and, dropping the irrelevant constant, the effective action is that of a Klein-Gordon field with mass 2α , having cubic
and quartic self-interactions.

S =
∫

∂α η∂
α

η−2αη
2∓
√

8αβη
3−η

4

This is an example of spontaneous symmetry breaking. In this case, as an action which is invariant under the replace-
ment φ →−φ finds its way to a solution which lacks this symmetry.

The usefulness of the symmetry breaking is that we can use the vacuum expectation value, φ0, of the original
field as a mass for another particle. For example, suppose we had a second, massless field, Aα , with a coupling term
φAα Aα . Then the expansion of φ about φ0 would give an effective mass term φ0Aα Aα to field Aα .

17



8.1.2 The Higgs Mechanism

Our goal now is to write a symmetry breaking term for the electroweak gauge fields in a gauge invariant way, by letting
φ have an SU(2) symmetry. We can accomplish this by making φ into a complex SU(2) doublet,

φ
a =

(
φ1
φ2

)
and assigning it a hypercharge of −1. We need φ a complex so that |φ |2 = φ †aφ a is acted on nontrivially by SU(2).
With this, the action φ may be conveniently written as

S =
∫

(Dα φ
a)† (Dα

φ
a)+λ

(
|φ |2− v2

)2

the extra constant, λv4 has no effect. Notice that the potential now has an continuum of minima at |φ |2 = v2. Motion
along this continuum requires no energy, and therefore corresponds to a massless excitation of the Higgs field called a
Goldstone boson.

Expanding the SU(2)-covariant derivative and setting the hypercharge to Y =−1, gives

S =
∫

η
αβ

(
∂α φ

a†− i
2

gBi
α

(
φ

†
τi
)a− i

2
g′Bα φ

a†Y
)(

∂β φ
a +

i
2

gB j
β
(τ jφ)a +

i
2

g′BβY φ
a
)

+λ

(
|φ |2− v2

)2

=
∫

η
αβ

∂α φ
a†

∂β φ
a− i

2
gη

αβ Bi
α

(
φ

†
τi∂β φ

)
+

i
2

g′ηαβ Bα

(
φ

†
∂β φ

)
+

i
2

gη
αβ B j

β

(
∂α φ

a†
τ jφ
)
+

1
4

g2
η

αβ Bi
α B j

β

(
φ

†
τiτ jφ

)
− 1

4
gg′ηαβ Bα B j

β

(
φ

†
τ jφ
)

− i
2

g′ηαβ Bβ

(
∂α φ

†
φ
)
− 1

4
gg′ηαβ Bi

α Bβ

(
φ

†
τiφ
)
+

1
4

g′2η
αβ Bα Bβ

(
φ

†
φ
)

+λ

(
|φ |2− v2

)2

It is the terms quadratic in the gauge fields Bi
α ,Bβ ,

Lm =
1
4

g2
η

αβ Bi
α B j

β

(
φ

†
τiτ jφ

)
− 1

4
gg′ηαβ Bα B j

β

(
φ

†
τ jφ
)

−1
4

gg′ηαβ Bi
α Bβ

(
φ

†
τiφ
)
+

1
4

g′2η
αβ Bα Bβ

(
φ

†
φ
)

that we must study to see what combinations of fields acquire mass.

8.1.3 Choosing a gauge

To simplify the problem, we may choose the local SU(2) gauge any way we like. The greatest simplification occurs if
we use it to restrict the form of φ a.

Under an SU (2) transformation, φ a changes according to

φ
a →

[
e

iϕ
2 n·σ

]a

b
φ

b

= φ
a cos

ϕ

2
+ i [n ·σ ]a b φ

b sin
ϕ

2

=
(

φ 1
(
cos ϕ

2 + inz sin ϕ

2

)
+φ 2 (inx +ny)sin ϕ

2
φ 2
(
cos ϕ

2 − inz sin ϕ

2

)
+φ 1 (inx−ny)sin ϕ

2

)
Now let α = (nx + iny)sin ϕ

2 and β = cos ϕ

2 − inz sin ϕ

2 , where |α|2 , |β |2 ≤ 1, and demand

0 = βφ
2 + iαφ

1

α =
iφ 2

φ 1 β
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so we can make the second component vanish. With this ratio of α we may still choose any β , so consider the first
component

φ
1 → β̄ φ

1 + iᾱφ
2

= β̄

(
φ

2 + iφ 1 ᾱ

β̄

)
= β̄

(
φ

2 +φ
1 φ̄ 2

φ̄ 1

)
=

β̄

φ̄ 1

(
φ

2
φ̄

1 +φ
1
φ̄

2)
The magnitude of β must be less than one, but we can choose the phase of β so that φ 2 is real. Now φ a has the form

φ
a =

(
f
0

)
with f real, and since the SU(2) symmetry is local, we can achieve this form at each point. We expand the remaining
field about the minimum, |φ |2 = v2,

f = v+η

8.1.4 Masses for the gauge bosons

We now work out the quadratic factors at the minimum, φ a
0 =

(
v
0

)
:

φ
†
0 τiτ jφ0 = v2

δi j + iεi jkφ
†
0 τkφ0

= v2 (
δi j + iεi j3

)
φ

†
0 Y τ jφ0 = δ j3v2

Y 2
φ

†
0 φ0 = v2

Now substitute into the quadratic part of the Lagrange density for the masses,

Lm =
1
4

g2v2Bi
α Biα − 1

4
gg′v2Bα B3

α

−1
4

gg′v2B3
α Bα +

1
4

g′2v2Bα Bα

Define the ratio of the SU (2) and UY (1) coupling constants to be

g′

g
= tanθW

Then

Lm =
1
4

g2v2 (B1
α B1α +B2

α B2α
)
+

1
4

g2v2 (B3
α B3α −Bα B3

α tanθW −B3
α Bα tanθW +Bα Bα tan2

θW
)

=
1
4

g2v2 (B1
α B1α +B2

α B2α
)

+
g2v2

4cos2 θW

(
B3

α B3α cos2
θW −Bα B3

α sinθW cosθW −B3
α Bα sinθW cosθW +Bα Bα sin2

θW
)

=
1
4

g2v2 (B1
α B1α +B2

α B2α
)
+

g2v2

4cos2 θW

(
B3

α cosθW −Bα sinθW
)2

Notice that

Bi
α τi =

(
B3

α B1
α − iB2

α

B1
α + iB2

α −B3
α

)
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so that we may combine B1 and B2 into the complex conjugate states

W+
α = B1

α + iB2
α

W−α = B1
α − iB2

α

Then W+ is a charged particle with antiparticle W−. Since

W+
α W−α = B1

α B1α +B2
α B2α

the W± mass is mW = gv
2 .

For the remaining two gauge fields, B3
α and Bα , we identify the orthogonal combinations

Z0
α = B3

α cosθW −Bα sinθW

Aα = B3
α sinθW +Bα cosθW

The Z0 is the only combination appearing in Lm, and it has mass mZ = gv
2cosθW

. The combination of B3
α and Bα

orthogonal to Z0
α is absent from Lm and therefore describes a particle which remains massless. We identify this

combination with the photon.
The Weinberg angle is now defined as the ratio between the W and Z0 masses,

cosθW =
mW

mZ0

mW = 80.398± .025
mZ0 = 91.1876± .0021
θW ≈ 30◦

8.1.5 Masses for fermions

We also require the Higgs mechanism to give different masses to fermions. The action we have written so far describes
fermions with equal masses,

Sleptons ∼ ∑
leptons

∫
ψ̄ (iD/−m)ψ

Squarks ∼ ∑
c=r,g,b

∑
quarks

∫
ψ̄ (iD/−m)ψ

As noted above, if we made the masses different in these expressions, then the mass terms would not allow SU(2) or
SU(3) rotations among the corresponding fermions. However, we know these masses to be different.

We can use the Higgs mechanism to change the different quark and lepton masses when the Higgs settles near
its vacuum expectation value. However, the required coupling hinges on having the correct fields, including the
appropriate parity combinations. Once we discuss parity in the next section, we will return to the question of fermion
masses.

8.2 Parity
We know that the weak interaction violates parity, but the electromagnetic interaction preserves parity. This means
that we need to introduce an asymmetry between left and right spinor fields, given by using the projection operators,
L = 1

2 (1− γ5) ,R = 1
2 (1+ γ5).

To correct the parity problem, first consider the parity of the various Lorentz tensors built as bispinors:

ψ̄ψ scalar
ψ̄γα ψ vector

ψ̄σαβ ψ tensor
ψ̄γα γ5ψ pseudovector

ψ̄γ5ψ pseudoscalar
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Each of these has definite parity, so if we want to violate parity, we need a combination of two or more. The vector
already occurs in the action, coupled to the gauge bosons via the connection term of the covariant derivative

Selectroweak =
1
4

∫
F i

αβ
F iαβ d4x+ ∑

leptons

∫
ψ̄ (iD/−m)ψ

The coupling term comes from the derivative of ψ . If ψ is an SU(2) doublet then

iψ̄D/ψ = iψ̄
(

γ
β

∂β ψ +
i
2

gγ
β B j

β
τ jψ +

i
2

g′γβ BβY ψ

)
From Noether’s theorem, we know that the currents are

Jiβ = −1
2

gψ̄γ
β

τ
i
ψ

Jβ

Y = −1
2

g′ψ̄γ
βY ψ

so we see that the couplings between the gauge fields and the currents are of the same form as in Maxwell theory,

Bi
β

Jiβ ,Bβ Jβ

Y

Notice that Ji
β

is a vector current. The simplest way to violate parity is to take a linear combination of the vector
and pseudovector (or axial vector) currents.

Jα
i = αgψ̄γ

α
τiψ +βgψ̄γ

α
γ5τiψ

Of course, any combination of the Lorentz bispinors is allowed in principle, but this one turns out to be right. In
fact, the best agreement with experiment occurs if we choose the constants α,β so that the violation is maximal,
α =−β = 1

2 . This gives

Jα
i = gψ̄γ

α 1
2

(1− γ5)τiψ

= gψ̄Lγ
α

τiψL

where ψL is a left-handed doublet, for example, ψL = 1
2 (1− γ5)ψ =

(
eL
νL

)
. Because this involves the vector (V )

and axial vector (A) this is often called the V −A coupling. The left-handed combination 1
2 (1− γ5) is a projection

operator since it is idempotent:

1
2

(1− γ5)
1
2

(1− γ5) =
1
4

(1− γ5− γ5 + γ5γ5)

=
1
2

(1− γ5)

The complementary, right-handed projection operator is 1
2 (1+ γ5).

In order for the electromagnetic part of the interaction to preserve parity, we must also include some right handed
fields. These we take to be scalars under SU(2), for example

eR =
1
2

(1+ γ5)e

We introduce only the right-handed electron, muon and tau, but not the right-handed neutrinos because the neutrinos
only participate in the weak, parity violating part of the interaction.

Having the electron, muon, and tau represented by a right-handed scalar and a left-handed doublet allows us to
couple these fields to the Higgs doublet with Yukawa couplings. Let

ψ
L
e =

(
eL
νL

)
ψ

R
e = eR
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where eR,eL and νL are the right- and left-handed electron and the left-handed neutrino spinors. We make this a
Lorentz scalar and SU(2) doublet by contracting with ψ̄R

e ,

ψ̄
R
e ψ

L
e =

(
ēReL
ēRνL

)
Then the Yukawa coupling for the electron is the product of this scalar doublet with the Higgs scalar doublet:

Ge
(
φ

†ēRψL + ψ̄eRφ
)

= Ge (φ ∗1 ,φ ∗2 )
(

ēReL
ēRνL

)
+Ge (ēLeR, ν̄LeR)

(
φ1
φ2

)
When the Higgs particle equals its vacuum expectation value,

φ =
(

v
0

)
Then this term becomes

Ge
(
φ

†ēRψL + ψ̄eRφ
)

= Gev(ēReL + ēLeR)

This is exactly the form of a fermion mass term, with me = Gev for the electron field. We introduce similar Yukawa
terms for the muon and tau, but with coupling constants Gµ and Gτ , giving a total Yukawa interaction of

∑
l=e,µ,τ

Gl
(
φ

†
ψ̄

R
l ψ

L
l + ψ̄

L
l ψ

R
l φ
)

8.3 The electroweak Lagrangian for leptons
We may now write the Lagrange density for the gauge particles and leptons of the full electroweak interaction. In
condensed form, we see the essential features:

LEW,leptons =
1
4

F i
αβ

F iαβ +
1
4

Hαβ Hαβ

+ ∑
l=e,µ,τ

iψ̄L
l D1,2/ψ

L
l + ∑

l=e,µ,τ

iψ̄R
l D1/ψ

R
l

+
∣∣Dβ φ

∣∣2 +λ

(
|φ |2− v2

)2
+ ∑

l=e,µ,τ

Gl
(
φ

†
ψ̄

R
l ψ

L
l + ψ̄

L
l ψ

R
l φ
)

The first line contains the kinetic and self-interaction terms for the W±,Z0 and photon; the second line gives the kinetic
term for the leptons, where D1,2 is the SU(2)×U(1) covariant derivative and D1 is the U(1) covariant derivative; the
final line gives the kinetic term, potential, and Yukawa couplings for the Higgs particle.

The first thing we need to do is to rearrange the gauge couplings for the photon and weak fields,

Aα = B3
α sinθW +Bα cosθW

W+
α = B1

α + iB2
α

W−α = B1
α − iB2

α

Z0
α = B3

α cosθW −Bα sinθW

to the fermion spinors. This willl allow us to identify the electron, muon and tau, since it is only the these leptons that
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couple to the photon. Expanding the covariant derivative term, we have

iψ̄D1,2/ ψ
L = iψ̄L

γ
β

(
∂β ψ +

i
2

gB j
β

τ jψ +
i
2

g′BβY ψ

)
= iψ̄L

γ
β

(
∂β ψ +

i
2

gB1
β

τ1ψ +
i
2

gB2
β

τ2ψ +
i
2

gB3
β

τ3ψ +
i
2

g′BβY ψ

)
= iψ̄L

γ
β

(
∂β ψ +

i
4

g
(

W+
β

+W−
β

)
τ1ψ +

i
4i

g
(

W+
β
−W−

β

)
τ2ψ

)
+iψ̄L

γ
β

(
ig
4

(
Aβ sinθW +Z0

β
cosθW

)
τ3ψ +

i
4

g′
(

Aβ cosθW −Z0
β

sinθW

)
Y ψ

)
= iψ̄L

γ
β

(
∂β ψ +

i
4

g
(

W+
β

(τ1− iτ2)+W−
β

(τ1 + iτ2)
)

ψ

)
− g

4cosθW
ψ̄

L
γ

β Z0
β

(
τ3 cos2

θW ψ−Y sin2
θW
)

ψ

−gsinθW

4
ψ̄

L
γ

β Aβ (τ3 +Y )ψ

We can write τ3 = 1
2 σ3 as a quantum number, I = ± 1

2 , for isospin, times the identity. Write isospin doublets as

lepton/neutrino pairs,
(

l
ν

)
, where I3 = + 1

2 for l = e,µ,τ and I3 =− 1
2 for ν = νe,νµ ,ντ . We also replace Y = YW

2 ,

to agree with standard usage. Then we have

iψ̄D1,2/ ψ
L = iψ̄L

γ
β

(
∂β ψ +

i
4

g
(

W+
β

(τ1− iτ2)+W−
β

(τ1 + iτ2)
)

ψ

)
− g

4cosθW
ψ̄

L
γ

β Z0
β

(
I3 cos2

θW ψ−Y sin2
θW
)

ψ

−gsinθW

4
ψ̄

L
γ

β Aβ

(
I3 +

YW

2

)
ψ

and we may identify the unit electric charge e = gsinθW ,

q = e
(

I +
YW

2

)
and the electromagnetic current as

JEM = −gsinθW

4
ψ̄γ

β

(
I3 +

YW

2

)
ψL

= −q
4

ψ̄γ
β

ψL

where the extra factor of − 1
4 is due to a bad choice of initial normalization.

The leptons are assigned a weak hypercharge quantum number of YW = 1, so that the e,µ,τ have an electric charge
of e while the neutrino fields have q = 0.

Also, notice that

τ1− iτ2 =
1
2

((
1

1

)
+
(

−1
1

))
=

(
0

1

)
so the current coupling to the W− is

Jβ

+ = −g
4

ψ̄γ
β (τ1− iτ2)ψL

= −g
4

ν̄γ
β lL
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while

Jβ

− = −g
4

ψ̄γ
β (τ1 + iτ2)ψL

= −g
4

l̄γβ
νL

couples to the W+.
The current coupling to the Z0 is given by

Jβ

Z = − g
4cosθW

ψ̄
L
γ

β
(
I3 cos2

θW −Y sin2
θW
)

ψ

= − g
4cosθW

ψ̄
L
γ

β
(
I3
(
cos2

θW + sin2
θW
)
− I3 sin2

θW −Y sin2
θW
)

ψ

= − g
4cosθW

ψ̄
L
γ

β
(
I3− (I3 +Y )sin2

θW
)

ψ

= −ψ̄γ
β g

4cosθW
(2I3−q)ψL

= −ψ̄γ
β g

4cosθW
2I3 +qψ̄γ

β
ψL

The full left-handed interaction therefore becomes

iψ̄D1,2/ψ
L = iψ̄L

γ
β

∂β ψ− g
4

(
W+

β
Jβ

−+W−
β

Jβ

+

)
−qAβ l̄γβ l

= iψ̄L
γ

β

(
∂β ψ +

i
4

g
(

W+
β

(τ1− iτ2)+W−
β

(τ1 + iτ2)
)

ψ

)
+iψ̄L

γ
β i

4cosθW

(
gZ0

β

(
I− YW

2

)
+qAβ g

)
ψ

where
q = I3 +

YW

2
Expanding the covariant derivatives,

LEW,leptons =
1
4

F i
αβ

F iαβ +
1
4

Hαβ Hαβ

+ ∑
l=e,µ,τ

iψ̄
(

γ
β

∂β ψ
L
l +

i
2

gγ
β B j

β
τ jψ

L
l +

i
2

g′γβ BβY ψ
L
l

)
+ ∑

l=e,µ,τ

iψ̄
(

γ
β

∂β ψ
R
l +

i
2

g′γβ BβY ψ
R
l

)

+
∣∣∣∣∂β φ

a +
i
2

gB j
β
(τ jφ)a +

i
2

g′BβY φ
a
∣∣∣∣2 +λ

(
|φ |2− v2

)2

+ ∑
l=e,µ,τ

Gl
(
φ

†
ψ̄

R
l ψ

L
l + ψ̄

L
l ψ

R
l φ
)

Exercise Write out all terms in the Lagrange density involving the electron in detail, expanding the Higgs field about

its minimum, φ =
(

v+ρ

0

)
, and putting the gauge fields in terms of W±α ,Z0

α and Aα .

8.4 Weak interactions of quarks
We have written the Lagrange density for quarks as

Squarks =
1
4

8

∑
a=1

∫
Ga

αβ
Gaαβ d4x+ ∑

c=r,g,b
∑
q

∫
ψ̄q (iD/−m)ψq
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where
Dψq = dψq−gsga

λaψq + electroweak

and the obvious thing to write down for the electroweak contribution is to repeat the form we have for the leptons:

LEW,quarks = ∑
q=u,c,t

iψ̄L
q

(
γ

β
∂β ψ

L
q +

i
2

gγ
β B j

β
τ jψ

L
q +

i
2

g′γβ BβY ψ
L
q

)
+ ∑

q=u,c,t
iψ̄R

q

(
γ

β
∂β ψ

R
q +

i
2

g′γβ BβY ψ
R
q

)
+ ∑

l=e,µ,τ

Gl
(
φ

†
ψ̄

R
q ψ

L
q + ψ̄

L
q ψ

R
q φ
)

Notice that this Lagrange density only links quarks in the same electroweak doublet. This means that, for example,
the s quark can emit a W− boson, decaying into a c quark. However, additional decays have been observed, and it is
possible for the s quark to decay into any of the three positively charged quarks, u,c, t. The solution to this problem is
to introduce a mixing matrix.

The first introduction of a mixing matrix was introduced by Cabibbo in 1963 to explain the decay of strange
particles into non-strange particles. This process was later understood as the weak decay of the s quark into the u
quark. Cabibbo suggested that in gauge couplings of the form

−g
2

ūγ
βW−

β
τ jd

the d quark should be replaced by the linear combination

d′ = d cosθc + ssinθc

where, to agree with experiment the Cabibbo angle, θc, should be about 13.04◦. With the discovery of the c quark
a decade later, it was found that both the s, and d quarks could decay into either u or c, so the Cabibbo angle was
generalized to a mixing matrix, (

d′

s′

)
=
(

cosθc sinθc
−sinθc cosθc

)(
d
s

)
There remains a more subtle problem with this mixing matrix, which was recognized by Kobayashi and Maskawa.

In 1973, they proved that the four-quark model could not account for the observed CP violation in weak decays. To
solve the problem, they proposed a third pair of quarks, the t,b doublet. The b quark was seen in 1976 and the t in
1995. With the additional quarks, the 3× 3 extension of the Cabibbo matrix, the KM matrix, had enough degrees of
freedom to allow CP violation.

Cronin and Fitch won the 1980 Nobel prize "for the discovery of violations of fundamental symmetry principles in
the decay of neutral K-mesons"; half the 2008 Nobel prize was awarded to Kobayashi and Maskawa "for the discovery
of the origin of the broken symmetry which predicts the existence of at least three families of quarks in nature".
(The other half went to Nambu, "for the discovery of the mechanism of spontaneous broken symmetry in subatomic
physics").

Rather than applying the CKM mixing matrix to the interaction term, it is equally effective to apply it to the
Yukawa term. The essential point is that the mass eigenstates must be different than the weak interaction eigenstates.
Therefore, it is equally satisfactory to write either

LEW,quarks = ∑
q=u,c,t

iψ̄L
q γ

β Dβ

(
Gqq′ψ

L
q′

)
+ ∑

q=u,c,t
iψ̄R

q γ
β Dβ ψ

R
q

+ ∑
q=u,c,t

Gq
(
φ

†
ψ̄

R
q ψ

L
q + ψ̄

L
q ψ

R
q φ
)
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or

LEW,quarks = ∑
q=u,c,t

iψ̄L
q γ

β Dβ ψ
L
q′

+ ∑
q=u,c,t

iψ̄R
q γ

β Dβ ψ
R
q

+∑
q

(
φ

†
ψ̄

R
q Gqq′ψ

L
q′ + ψ̄

L
q′Gq′qψ

R
q φ

)
and the second expression is simpler. Giving different masses to different quarks is effectively a coupling between
the families of quarks, allowing them to decay into one another. The matrix Gqq′ is called the Cabibbo-Kobayashi-
Maskawa matrix, or simply the CKM matrix

Similar inter-family decays have now been shown to occur between lepton families as well, leading to mixing
of the neutrinos. This provides evidence for neutrino masses, so it now seems likely that a similar mixing matrix is
required for the lepton Yukawa terms,

∑
l

(
φ

†
ψ̄

R
l Gll′ψ

L
l′ + ψ̄

L
l′Gl′lψ

R
l φ
)

The lepton mixing matrix is called the Pontecorvo-Maki–Nakagawa–Sakata (PMNS) matrix.
For three generations of leptons, the matrix can be written as: νe

νµ

ντ

=

 Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

 ν1
ν2
ν3


where  νe

νµ

ντ


are the neutrino fields participating in the weak interaction, and ν1

ν2
ν3


are the mass eigenstates.

Looking at the Yukawa term, at the vacuum expectation value of the Higgs, we have, for example

v
(
ν̄

R
e Gνeee+ ēLGeνe ψ

R
l φ
)

9 Putting it all together
Our final Lagrangian for the standard model is, in abbreviated form,

L =
1
4

8

∑
a=1

Ga
αβ

Gaαβ d4x+
1
4

3

∑
i=1

F i
αβ

F iαβ +
1
4

Hαβ Hαβ

+ ∑
c=r,g,b

3doublets

∑
q=1

∫
ψ̄

L
q iD/ψ

L
q + ∑

c=r,g,b

6singlets

∑
q=1

∫
ψ̄

R
q iD/ψ

R
q

+
3doublets

∑
l=e,µ,τ

iψ̄LD/ψ
L
l +

6singlets

∑
l=1

iψ̄RD/ψ
R
l

+ |Dφ
a|2 +λ

(
|φ |2− v2

)2

+∑
q

(
φ

†
ψ̄

R
q Gqq′ψ

L
q′ + ψ̄

L
q′Gq′qψ

R
q φ

)
+∑

l

(
φ

†
ψ̄

R
l Gll′ψ

L
l′ + ψ̄

L
l′Gl′lψ

R
l φ
)
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Expanding out the covariant derivatives, this becomes

L =
1
4

8

∑
a=1

Ga
αβ

Gaαβ d4x+
1
4

3

∑
i=1

F i
αβ

F iαβ +
1
4

Hαβ Hαβ

∑
c=r,g,b

doublets

∑
q

iψ̄L
q

(
γ

β
∂β ψ

L
q +

i
2

gγ
β B j

β
τ jψ

L
q +

i
2

g′γβ BβY ψ
L
q

)

+ ∑
c=r,g,b

singlets

∑
q

iψ̄R
q

(
γ

β
∂β ψ

R
q +

i
2

g′γβ BβY ψ
R
q

)

+
doublets

∑
l=e,µ,τ

iψ̄
(

γ
β

∂β ψ
L
l +

i
2

gγ
β B j

β
τ jψ

L
l +

i
2

g′γβ BβY ψ
L
l

)

+
singlets

∑
l

iψ̄
(

γ
β

∂β ψ
R
l +

i
2

g′γβ BβY ψ
R
l

)
+
∣∣∣∣∂β φ

a +
i
2

gB j
β
(τ jφ)a +

i
2

g′BβY φ
a
∣∣∣∣2 +λ

(
|φ |2− v2

)2

+∑
q

(
φ

†
ψ̄

R
q Gqq′ψ

L
q′ + ψ̄

L
q′Gq′qψ

R
q φ

)
+∑

l

(
φ

†
ψ̄

R
l Gll′ψ

L
l′ + ψ̄

L
l′Gl′lψ

R
l φ
)

where the gauge field strengths are given by

Ga
αβ

= ∂α g a
β
−∂β g a

α +
1
2

f a
bc g b

α g c
β

F i
αβ

= ∂α B i
β
−∂β B i

α +
1
2

ε
i

jk B j
α B k

β

Hαβ = ∂α Bβ −∂β Bα

The left-handed doublets are

ψ
L
q =

1
2

(1− γ5)
(

u
d

)
,

1
2

(1− γ5)
(

c
s

)
,

1
2

(1− γ5)
(

t
b

)
ψ

L
l =

1
2

(1− γ5)
(

e
νe

)
,

1
2

(1− γ5)
(

µ

νµ

)
,

1
2

(1− γ5)
(

τ

ντ

)
and the right-handed singlets are 1

2 (1+ γ5) times

ψq = u,d,c,s, t,b

ψl = e,µ,τ

By choosing the SU (2) gauge appropriately, the complex Higgs doublet,

φ =
(

φ1
φ2

)
may be given the form

φ =
(

v+ρ (x)
0

)
with v a real constant and ρ a real scalar field. When φ =

(
v+ρ (x)

0

)
is substituted into the Lagrangian, the

gauge-field combinations

W+
α = B1

α + iB2
α

W−α = B1
α − iB2

α

Z0
α = B3

α cosθW −Bα sinθW
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acquire masses mW± = gv
2 and mZ = gv

2cosθW
where

cosθW =
mW

mZ0

gives the Weinberg angle. The remaining massless combination of B3
α and Bα is identified with the photon

Aα = B3
α sinθW +Bα cosθW

10 Flavor symmetry
We now consider the approximate symmetry between different flavors of quark. In the simplest version of flavor
symmetry, we consider sufficiently high energy to allow us to neglect the mass differences between the u,d and s
quarks. Then there is a symmetry, SU (3), that rotates each of these three quark fields into the others. Notice that
this is quite distinct from the SU (3)color symmetry that gives rise to the gluons and strong interaction. This is an
approximate symmetry, and may be extended to SU (6) by including the c, t and b quarks.

10.1 Standard form of a Lie algebra
The first step in analyzing the particle states under SU (3) f lavor is to put the Lie algebra into standard form. The
standard form was developed by Cartan as a way of classifying all semisimple Lie groups, but its application to SU (n)
is especially easy.

In general, Cartan’s standard form divides the generators, GA, into two subsets, {Hi} ,{Eα} where the Hi form a
maximal set of mutually commuting generators,

[Hi,H j] = 0

For the special unitary groups, su(n), there are n−1 of these. We may choose a basis in which these are diagonal. The
remaining generators, Eα , are each chosen to satisfy an equation of the form

[Hi,E] = ρiE

for some constants ρi and for each i = 1, . . .n−1. If we start with a general basis, each such equation is an eigenvalue
equation, since we may expand

H = aAGA

E = bAGA

Then, expanding the commutation relation,

aAbB [GA,GB] = ρbBGB

aAbBc C
AB = ρbC

and defining
MC

B = aAc C
AB

we have the usual form of an eigenvalue equation:

MC
BbB = ρbC

The standard form for the full Lie algebra becomes

[Hi,H j] = 0
[Hi,Eα ] = ρiα Eα[
Eα ,Eβ

]
= ηαβ Eα+β
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A few theorems are required to show that this is always possible, but for SU (n) we can demonstrate this form explicitly
and will not need the theorems.

The usefulness of this form stems from the relationship between the Hi and the Eα generators. Suppose we find a
state labeled by eigenvalues of the Hi,

Hi |λi〉= λi |λi〉

Then acting on the eigenstate with any of the Eα we have

Hi (Eα |λi〉) = (Eα Hi +ρiα Eα) |λi〉
= (λi +ρiα)(Eα |λi〉)

and we have a new eigenket with eigenvalue λi + ρiα . By applying all of the Eα sufficiently many times, we may
generate a complete set of eigenstates. The application of this method to SU (2) is used in quantum mechanics to
generate all possible representations of angular momentum.

10.2 Standard form for su(2)
To show how the method works, we first look at SU (2). In this case, there is only one diagonal operator,

H =
1
2

σ3

=
1
2

(
1 0
0 −1

)
The remaining two generators, σ1,σ2 are combined as

E± =
1
2

(σ1± iσ2)

These become nilpotent matrices,

E+ =
(

0 1
0 0

)
E− =

(
0 0
1 0

)
The Lie algebra becomes,

[H,H] = 0

[H,E±] = ±1
2

E±

[E+,E−] = 2H

which is indeed of standard form.
The next step is to think of the collection of diagonal operators, Hi, as a vector, H, in an n−1 dimensional space.

Then the eigenvalues, ρiα for each α also form a vector, ρα . For SU (2) these are the 1-dimensional vectors,

H = (H)

ρ+ =
(

1
2

)
ρ− =

(
−1

2

)
and we may plot them:
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This plot gives us a graphical representation of the possible states, namely, the two eigenstates of the fundamental
representation. If we label these states by ρ and the eigenvalue of the Casimir operator J2, then we have the usual
quantum mechanical notation,

| j,m〉

where m =± 1
2 . To form states with higher values of angular momentum, we take products of spin- 1

2 states, and using
the techniques of Young tableau or of Clebsch-Gordon reduction, re-express them as irreducible states. This procedure
gives us 2 j +1 states | j,m〉 for each positive half-integer, j, and all − j ≤ m≤ j.

10.3 Standard form for su(3)
Among the eight generators of SU (3), we may diagonalize two. Starting with the Gell-Mann matrices as our basis,
the diagonal generators are

H1 =
1√
6

λ3 =
1√
6

 1 0 0
0 −1 0
0 0 0


H2 =

1√
6

λ8 =
1

3
√

2

 1 0 0
0 1 0
0 0 −2


The normalization is chosen so that the weight diagrams have equally spaced weights. Treat the two diagonal genera-
tors as a vector, H = (H1,H2). The remaining generators fall into pairs,

λ1 =

 0 1 0
1 0 0
0 0 0

 ;λ2 =

 0 −i 0
i 0 0
0 0 0


λ4 =

 0 0 1
0 0 0
1 0 0

 ;λ5 =

 0 0 −i
0 0 0
i 0 0


λ6 =

 0 0 0
0 0 1
0 1 0

 ;λ7 =

 0 0 0
0 0 −i
0 i 0


and we immediately see that we can take

E±1 =
1
2

(λ1± iλ2)

E±2 =
1
2

(λ4± iλ5)

E±3 =
1
2

(λ6± iλ7)

Each generator has a 1 in one off-diagonal position, and zeros everywhere else, for example,

E+
1 =

 0 1 0
0 0 0
0 0 0


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Since H1,H2 are diagonal, we may identify particle states with the similtaneous eigenstates:

u1 =

 1
0
0

 ,u2 =

 0
1
0

 ,u3 =

 0
0
1


Writing the eigenvalues as

Huα = mα uα

We may immediately write

m1 =
(

1√
6
,

1
3
√

2

)
m2 =

(
− 1√

6
,

1
3
√

2

)
m3 =

(
0,− 2

3
√

2

)
and plot

This is the first fundamental representation of SU (3). There is a second fundamental representation found by
antisymmetrizing outer products of the generators, ūk = 1√

2
εi jkuiu j with eigenvalues

Hū1 = m̄1ū1

= H(u2u3)
= ((Hu2)u3 +u2Hu3)
= (m2 +m3)u2u3

=
((
− 1√

6
,

1
3
√

2

)
+
(

0,− 2
3
√

2

))
u2u3

=
(
− 1√

6
,− 1

3
√

2

)
ū1

Hū2 = (m3 +m1) ū2

=
(

1√
6
,− 1

3
√

2

)
ū2

Hū3 = (m1 +m2) ū3

=
(

0,
2

3
√

2

)
ū3

so the weight diagram is the same as the first fundamental representation reflected through the H1 axis, and m̄i =−mi.
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10.4 Representations of SU(3)
We may now construct general representations of SU (3) by building tensors from the eigenvectors. The eigenvalues
of H for tensor products are additive, since we have

H(uiu j) = (H⊗1+1⊗H)(ui⊗u j)
= Hui⊗u j +ui⊗Hu j

= miui⊗u j +ui⊗m ju j

= (mi +m j)ui⊗u j

We can find irreducible representations by acting with the various E±α , since these move states only within irreducible
representations.

10.4.1 Meson octet

The next simplest representation is the product of the two fundamental representations,

3⊗ 3̄ = 1⊕8

The states are built from the products uiū j, which have eigenvalues as follows:

Hu1ū1 = (0,0)

Hu1ū2 =
(

2√
6
,0
)

Hu1ū3 =
(

1√
6
,

1√
2

)
Hu2ū1 =

(
− 2√

6
,0
)

Hu2ū2 = (0,0)

Hu2ū3 =
(
− 1√

6
,

1√
2

)
Hu3ū1 =

(
− 1√

6
,− 1√

2

)
Hu3ū2 =

(
1√
6
,− 1√

2

)
Hu3ū3 = (0,0)

There are three degenerate states with quantum numbers (0,0). Certain linear combinations of these correspond to
definite particle states; the remaining combinations refer to definite particles. To help identify the particles, note that
the electric charge for the mesons is given by Q = I3 + 1

2Ys, where the isospin, I3, and strong hypercharge, Ys, are
related to the eigenvalues of H by

(I3,Ys) =

(√
6

2
m1,
√

2m2

)
Therefore,

Q =
√

6
2

m1 +
1√
2

m2
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The charges of the various parings are therefore,

Qu1ū1 = 0
Qu1ū2 = 1
Qu1ū3 = 1
Qu2ū1 = −1
Qu2ū2 = 0
Qu2ū3 = 0
Qu3ū1 = −1
Qu3ū2 = 0
Qu3ū3 = 0

Now plot the states:

Now we can identify the quarks. The center row contains a triplet built from u1,u2 and their antiparticles, having
charges −,0,+. We identify these with the pions:

π
− = u2ū1

π
0 =

1√
2

(u1ū1 +u2ū2)

π
+ = u1ū2

and since the pion has strangeness 0, we identify the constituent quarks as

u = u1

ū = ū1

d = u2

d̄ = ū2

Then the pions are then identified with the quark-antiquark combinations

π
+ = ud̄

π
0 =

1√
2

(
uū+dd̄

)
π
− = dū

We may also identify the third quark as u3 = s, and complete the identification of the meson octet:

K0 = ds̄

K+ = us̄

K− = sū

K̄0 = sd̄
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The remaining state of the meson octet, η , and the singlet state, η ′, show some mixing due to differences in the quark
masses.

η ,η ′ ∼ αuū+βdd̄ + γss̄

Because of the mixing, this is sometimes called the meson nonet.
We will not venture into the details of the central degeneracy, but there is a good review on the Particle Data Group

website. The final octet is

10.4.2 Baryon singlet and decuplet

Analysis with Young tableau shows that the product three 3-quark states has irreducible representations,

3⊗3⊗3 = 1⊕8⊕8⊕10

The simplest representation is the singlet
u[iu juk] = εi jku1u2u3

with

Hu1u2u3 = (m1 +m2 +m3)u1u2u3

=
((

1√
6
,

1
3
√

2

)
+
(
− 1√

6
,

1
3
√

2

)
+
(

0,− 2
3
√

2

))
u1u2u3

= 0

This state is called the Λ, but the ground state is forbidden by the requirement of total antisymmetry of the wave
function. There have been recent claims that interpret some higher energy states as excited states of the Λ, though the
data is inconculsive.

We were able to guess the contents of the meson octet, but with 3 quarks it pays to be a little more systematic. We
approach the problem in the spirit of Clebsch-Gordon coefficients, starting with the highest state of a given symmetry,
and using lowering operators to trace out the remaining states.

One of the maximal symmetry states we can write consists of 3 up quarks in a totally symmetric combination. The
isospins, mu, will line up, leading to an I3 = 3

2 state. The Ys values also add, so we have

H(uuu) =
(

3√
6
,

1√
2

)
(uuu)

The charge of this state is given by

Q =
√

6
2

m1 +
1√
2

m2

=
3
2

+
1
2

= +2

which is a bit surprising, but turns out to correspond to a particle called the ∆++.
To proceed, we need to know how E−α changes the eigenvalues, for α = 1,2,3. This follows from the commutation
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relations [
H1,E±1

]
= ± 2√

6
E±1[

H1,E±2
]

= ± 1√
6

E±2[
H1,E±3

]
= ∓ 1√

6
E±3[

H2,E±1
]

= 0[
H2,E±2

]
= ± 1√

2
E±2[

H2,E±3
]

= ± 1√
2

E±3

Consider application of E−1 to the uuu state. Since[
H,E−1

]
=−

(
2√
6
,0
)

E−1

we know that whenever H |m〉= m |m〉 that

H
(
E−1 |m〉

)
=

(
E−1 H−

(
2√
6
,0
)

E−1

)
|m〉

=
(

m−
(

2√
6
,0
))

E−1 |m〉

and we may identify

E−1 |m〉= c
∣∣∣∣m1−

2√
6
,m2

〉
Applying this reasoning to the uuu state, and noting that

E−1 u =

 0 0 0
1 0 0
0 0 0

 1
0
0


=

 0
1
0


= d

while
E−1 d = 0

we have
E−1 (uuu) = c(duu+udu+uud)

and normalization requires c = 1√
3
. Acting with H1,H2 shifts the eigenvalues by

(
− 2√

6
,0
)

, so the new state has

m =
(

1√
6
, 1√

2

)
. Applying E−1 two more times yields two additional states

1√
3
(ddu+dud +udd)

ddd

with eigenvalues
(
− 1√

6
, 1√

2

)
and

(
− 3√

6
, 1√

2

)
. Using

Q =
√

6
2

m1 +
1√
2

m2
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as for the mesons, this quadruplet of particles has charges +2,+1,0,−1, and we have the Ω baryons,

∆
++ = uuu

∆
+ =

1√
3

(duu+udu+uud)

∆
0 =

1√
3

(ddu+dud +udd)

∆
− = ddd

However, we have not yet exhausted the particle states of the totally symmetric decuplet.
Now we start again with the Ω++ state, and apply E−2 , which changes the eigenvalues by ρ2 given by[

H,E−2
]
= ρ2E−2

with

ρ2 =
(
− 1√

6
,− 1√

2

)
From the states ∆++ =

(
3√
6
, 1√

2

)
we have

E−2 ∆
++ =

(
3√
6
,

1√
2

)
+
(
− 1√

6
,− 1√

2

)
=

(
2√
6
,0
)

(
E−2
)2

∆
++ =

(
1√
6
,− 1√

2

)
(
E−2
)3

∆
++ =

(
0,−
√

2
)

with electric charges Q =
√

6
2 m1 + 1√

2
m2 = (2,1,0,−1), respectively. The quark content is found by noting that

E−2 u =

 0 0 0
0 0 0
1 0 0

 1
0
0


= s

E−2 d = E−2 s = 0

We identify the resulting states as

∆
++ = uuu

Σ
∗+ =

1√
3

(uus+usu+ suu)

Ξ
0 =

1√
3

(uss+ sus+ ssu)

Ω
− = sss

We may act with E−1 on each of these. Recalling E−1 u = d and noting that E−1 d = E−2 s = 0, we find three additional
states:

Σ
∗0 =

1√
6

(dus+dsu+uds+ sdu+usd + sud)

Σ
∗− =

1√
3

(dds+dsd +dds)

Ξ
− =

1√
3

(dss+ sds+ ssd)
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10.4.3 Baryon octets

Now we turn to the octets. The two octets are built from the same sets of quarks but with different angular momentum,
j = 1

2 , 3
2 , and are therefore considered to describe different energy levels of the same quark-composite particle. We

consider the ground state particles, with j = 1
2 . Finding the states works just like finding Clebsch-Gordon coefficients.

The ∆++ is uniquely determined, but

∆
+ =

1√
3

(uud +udu+duu)

is only one of two states that can be built from two up and one down quark. The orthogonal state is

N+ =
1√
6

(uud−2udu+duu)

This state has Q = 1 and vanishing strangeness, S = 0; it is identified with the proton. Note that there are only two
independent combinations since the totally antisymmetric part of uud vanishes because there are two u quarks.

Now we apply E±1 and E−2 to find the remaining states. The neutron is given by E−1 p,

N0 =
1√
6

(2dud−ddu−udd)

Now apply E−2 (u→ s) to the neutron to find

Σ
− =

1√
6

(2dsd−dds− sdd)

and then two applications of E+
1 (d→ u) to get the remaining Sigma baryons,

Σ
0 =

1
2
√

3
(2usd +2dsu−uds−dus− sud− sdu)

Σ
+ =

1√
6

(2usu−uus− suu)

The final states are given by applying E−2 to each of these,

Ξ
− = E−2 Σ

0

=
1√
6

(ssd +dss−2sds)

Ξ
0 = E−2 Σ

+

=
1√
6

(ssu+uss−2sus)

There remains one state orthogonal to both the Σ0 and the Σ∗0. Set

Λ = αusd +β sdu+ γdus+δuds+ εdsu+σsud

Then orthogonality with Σ0 requires
2α +2ε−δ − γ−σ −β = 0

while orthogonality with Σ∗0 gives
α + ε +δ + γ +σ +β = 0

Setting α =−ε and σ = β =−γ =−δ , the Λ becomes

Λ
0 = α (usd−dsu)+β (sdu+dus−uds− sud)
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The remaining arbitrariness is because the totally antisymmetric part of Λ0 must vanish:

0 = α ((usd−dsu)+(dus− sud)+(sdu−uds))
+α (−(sud−dus)− (dsu−usd)− (uds− sdu))
+β (sdu+dus−uds− sud)
+β (usd + sdu−dsu−uds)
+β (dus+usd− sud−dsu)
−β (uds+dsu− sdu−usd)
−β (dsu+ sud−usd−dus)
−β (sud +uds−dus− sdu)

= (2α +4β )(usd +dus+ sdu−dsu− sud−uds)

Therefore, set β =− 1
2 α and normalize,

Λ
0 =

1
2
√

3
(2usd−2dsu− sdu−dus+uds+ sud)

Once again, the singlet state will mix with the Λ0,Σ0 and Σ∗0 because of inequalities in the quark masses.
The strong hypercharge, Ys, is typically written in terms of more familiar quantum numbers which are conserved

by the strong interaction,
Ys = B+S +C +T +B′

Here, B is the baryon number, with B = 1
3 for each quark. S,C,T and B′ are the strangeness, charm, topness and

bottomness.
To conclude, we plot the decuplet and the octet.

The octet:
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