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The simplest tensors are scalars, which are the measurable quantities of a theory, left invariant by
symmetry transformations. By far the most common non-scalars are the vectors, also called rank-1 tensors.
Vectors hold a distinguished position among tensors – indeed, tensors must be defined in terms of vectors. The
reason for their importance is that, while tensors are those objects that transform linearly and homogeneously
under a given set of transformations, we require vectors in order to define the action of the symmetry in the
first place. Thus, algebraic vectors cannot be defined in terms of their transformations. In this Note, we
provide an axiomatic, algebraic definition of vectors.

1 Vectors as algebraic objects
Alternatively, we can define vectors algebraically. Briefly, a vector space is defined as a set of objects,
V = {v} , together with a field F of numbers (general R or C) which form a commutative group under
addition and permit scalar multiplication. The scalar multiplication must satisfy distributive laws.

More concretely, being a group under addition guarantees the following:

1. V is closed under addition. If u,v are any two elements of V, then u+ v is also an element of V.

2. There exists an additive identity, which we call the zero vector, 0.

3. For each element v of V there is an additive inverse to v. We call this element (−v) .

4. Vector addition is associative, w + (u+ v) = (w + u) + v

In addition, addition is commutative, u+ v = v + u.
The scalar multiplication satisfies:

1. Closure: av is in V whenever v is in V and a is in F .

2. Scalar identity: 1v = v

3. Scalar and vector zero: 0v = 0 for all v in V and a0 = 0 for all a in F .

4. Distributive 1: (a+ b)v = av + bv

5. Distributive 2: a (u+ v) = au+ av

6. Associativity: (ab)v = a (bv)

All of the familiar properties of vectors follow from these. An important example is the existence of a basis
for any finite dimensional vectors space. We prove this in several steps as follows.

First, define linear dependence. A set of n vectors
{
v(i) | i = 1, . . . , n

}
is linearly dependent if there exist

numbers
{
ai | i = 1, . . . , n

}
, not all of which are zero, such that the sum aivi vanishes,

aiv(i) = 0
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As set of vectors is linearly independent if it is not dependent. Now suppose there exists a maximal linearly
independent set of vectors. By this we mean that there exists some finite number n, such that we can find
one or more linearly independent sets containing n vectors, but there do not exist any linearly independent
sets containing n+ 1 vectors. Then we say that n is the dimension of the vector space.

In an n-dimensional vector space, and collection of n independent vectors is called a basis. Suppose we
have a basis,

B =
{
v(i) | i = 1, . . . , n

}
Then, since every set with n+ 1 elements is linearly dependent, the set

{u} ∪B =
{
u,v(i) | i = 1, . . . , n

}
is dependent, where u is any nonzero vector in V . Therefore, there exist numbers ai, b, not all zero, such
that

bu+ aiv(i) = 0

Now suppose b = 0. Then we have a linear combination of the vi that vanishes, aiv(i) = 0, contrary to our
assumption that they form a basis. Therefore, b is nonzero, and we can divide by it. Adding the inverse to
the sum aiv(i) we can write

u = −1

b
aiv(i)

This shows that every vector in a finite dimensional vector space V can be written as a linear combination
of the vectors in any basis. The numbers ui = −ai

b are called the components of the vector u in the basis B.
W1. Prove that two vectors are equal if and only if their components are equal.
Notice that we have chosen to write the labels on the basis vectors as subscripts, while we write the

components of a vector as superscripts. This choice is arbitrary, but leads to considerable convenience later.
Therefore, we will carefully maintain these positions in what follows.

Often vector spaces are given an inner product. An inner product on a vector space is a symmetric
bilinear mapping from pairs of vectors to the relevant field, F ,

g : V × V → F

Here the Cartesian product V × V means the set of all ordered pairs of vectors, (u,v) , and bilinear means
that g is linear in each of its two arguments. Symmetric means that g (u,v) = g (v,u) .

There are a number of important consequences of inner products.
Suppose we have an inner product which gives a nonnegative real number whenever the two vectors it

acts on are identical:
g (v,v) = s2 ≥ 0

where the equal sign holds if and only if v is the zero vector. Then g is a norm or metric on V – it provides
a notion of length for each vector. If the inner product satisfies the triangle inequality,

g (u+ v,u+ v) ≤ g (u,u) + g (v,v)

then we can also define angles between vectors, via

cos θ =
g (u,v)√

g (u,u) g (v,v)

If the number s is real, but not necessarily positive, then g is called a pseudo-norm or a pseudo-metric. We
use a pseudo-metric when we study relativity.

If
{
v(i)

}
is a basis, then we can write the inner product of any two vectors as

g (u,v) = g
(
aiv(i), b

jv(j)

)
= aibjg

(
v(i),v(j)

)
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so if we know how g acts on the basis vectors, we know how it acts on any pair of vectors. We can summarize
this knowledge by defining the matrix

gij ≡ g (vi,vj)

Now, we can write the inner product of any two vectors as

g (u,v) = aigijb
j = gija

ibj

It’s fine to think of this as sandwiching the metric, gij , between a row vector ai on the left and a column
vector bj on the right. However, index notation is more powerful than the notions of row and column vectors,
and in the long run it is more convenient to just note which sums are required. A great deal of computation
can be accomplished without actually carrying out sums.
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