Problems in the Schwarzschild geometry

April 4, 2015

Start work on the problems below. See the notes on Schwarzschild geodesics to get started. Help is available.

Summary of geodesics:

We have, for timelike curves:

$$
\begin{aligned}
\frac{d t}{d \tau} & =u_{0}^{0}\left(\frac{1-\frac{2 M}{r_{0}}}{1-\frac{2 M}{r}}\right) \\
\frac{d \varphi}{d \tau} & =\frac{L}{r^{2}} \\
\frac{d r}{d \tau} & =\sqrt{2 E+\frac{2 M}{r}-\frac{L^{2}}{r^{2}}+\frac{2 M L^{2}}{r^{3}}}
\end{aligned}
$$

where

$$
\begin{aligned}
L & =r_{0}^{2}\left(\frac{d \varphi}{d \tau}\right)_{0} \\
E & =-\frac{1}{2}\left[1-\left(1-\frac{2 M}{r_{0}}\right)^{2}\left(u_{0}^{0}\right)^{2}\right]
\end{aligned}
$$

Problems:

1. Find the form of $\frac{d r}{d \tau}$ for spacelike and null geodesics.
2. Find the proper time required for a particle to fall from radius $r_{0}>2 M$ to $r=2 M$. Evaluate the time numerically for a solar mass black hole, and a galactic black hole with mass 10^{7} times the mass of the sun.
3. Find the proper time required for a particle to fall from radius $r_{0}=2 M$ to $r=0$. Evaluate for solar mass and 10^{7} solar mass black holes.

Find predictions for the three classical tests of general relativity. For all three problems, assume $\frac{2 M}{r} \ll 1$.

1. Perihelion advance of Mercury. From the orbital equation derived by integrating $\frac{d r}{d \varphi}$ (given in the Notes), find the angle between adjacent minima of $r(\varphi)$. The amount by which this exceeds 2π is the perihelion advance.
2. Gravitational red shift. Use your expression for null geodesics, restricted to outward radial motion $(L=0)$ to find the fractional change in frequency $\frac{\omega^{\prime}}{\omega}$ (or wavelength) of the light. Remember that the momentum 4-vector, $p^{\alpha}=\left(\frac{E}{c}, \mathbf{p}\right)=\hbar\left(\frac{\omega}{c}, \mathbf{k}\right)$ is tangent to the null curve.
3. Deflection of light passing the sun. Again consider a null geodesic but now $L \neq 0$. Instead, L follows from the point of closest approach, $L=r_{0} c$ where r_{0} is the impact parameter. The orbit is symmetric around this point, so the integral for r will run from ∞ to r_{0} and back out again. Write the solution as $\varphi=2 \int_{r_{0}}^{\infty} F(r) d r$ where $F(r)$ is what you get from the null geodesic equation. The deviation from a straight line is $\Delta \varphi=2 \int_{r_{0}}^{\infty} F(r) d r-\pi$.
