Problems in the Schwarzschild geometry

April 4, 2015

Start work on the problems below. See the notes on Schwarzschild geodesics to get started. Help is available.

Summary of geodesics:

We have, for timelike curves:

$$\begin{aligned} \frac{dt}{d\tau} &= u_0^0 \left(\frac{1 - \frac{2M}{r_0}}{1 - \frac{2M}{r}} \right) \\ \frac{d\varphi}{d\tau} &= \frac{L}{r^2} \\ \frac{dr}{d\tau} &= \sqrt{2E + \frac{2M}{r} - \frac{L^2}{r^2} + \frac{2ML^2}{r^3}} \end{aligned}$$

where

$$L = r_0^2 \left(\frac{d\varphi}{d\tau}\right)_0$$
$$E = -\frac{1}{2} \left[1 - \left(1 - \frac{2M}{r_0}\right)^2 \left(u_0^0\right)^2\right]$$

Problems:

- 1. Find the form of $\frac{dr}{d\tau}$ for spacelike and null geodesics.
- 2. Find the proper time required for a particle to fall from radius $r_0 > 2M$ to r = 2M. Evaluate the time numerically for a solar mass black hole, and a galactic black hole with mass 10^7 times the mass of the sun.
- 3. Find the proper time required for a particle to fall from radius $r_0 = 2M$ to r = 0. Evaluate for solar mass and 10^7 solar mass black holes.

Find predictions for the three classical tests of general relativity. For all three problems, assume $\frac{2M}{r} \ll 1$.

1. Perihelion advance of Mercury. From the orbital equation derived by integrating $\frac{dr}{d\varphi}$ (given in the Notes), find the angle between adjacent minima of $r(\varphi)$. The amount by which this exceeds 2π is the perihelion advance.

- 2. Gravitational red shift. Use your expression for null geodesics, restricted to outward radial motion (L = 0) to find the fractional change in frequency $\frac{\omega'}{\omega}$ (or wavelength) of the light. Remember that the momentum 4-vector, $p^{\alpha} = \left(\frac{E}{c}, \mathbf{p}\right) = \hbar\left(\frac{\omega}{c}, \mathbf{k}\right)$ is tangent to the null curve.
- 3. Deflection of light passing the sun. Again consider a null geodesic but now $L \neq 0$. Instead, L follows from the point of closest approach, $L = r_0 c$ where r_0 is the impact parameter. The orbit is symmetric around this point, so the integral for r will run from ∞ to r_0 and back out again. Write the solution as $\varphi = 2 \int_{r_0}^{\infty} F(r) dr$ where F(r) is what you get from the null geodesic equation. The deviation from a straight line is $\Delta \varphi = 2 \int_{r_0}^{\infty} F(r) dr \pi$.