The constant in Schwarzschild spacetime

April 1, 2015

Spherically symmetric solutions to the Einstein equation take the form

$$
d s^{2}=-\left(1+\frac{a}{r}\right) d t^{2}+\frac{d r^{2}}{1+\frac{a}{r}}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \varphi^{2}
$$

where a is constant and $c=1$. There is one remaining constant in this solution, and since we expect the solution to describe gravity near a spherical body, we should be able to determine its value by comparing this result with Newton's law of gravity. The comparison requires us to consider the motion of a particle in a region of small curvature and low velocity. It is sufficient to consider the initial acceleration of a particle initially at rest far from the source. This must look like the Newtonian acceleration at the same distance.

The motion of a particle is given by the geodesic equation,

$$
\frac{d u^{\alpha}}{d \tau}=-\Gamma_{\mu \nu}^{\alpha} u^{\mu} u^{\nu}
$$

where u^{α} is the 4 -velocity of the particle. Putting in the nonvanishing connection coefficients for the Schwarzschild solution, these four equations are

$$
\begin{aligned}
\frac{d u^{0}}{d \tau} & =-2 \Gamma_{01}^{0} u^{0} u^{1} \\
\frac{d u^{1}}{d \tau} & =-\Gamma_{00}^{1} u^{0} u^{0}-\Gamma_{11}^{1} u^{1} u^{1}-\Gamma_{22}^{1} u^{2} u^{2}-\Gamma_{33}^{1} u^{3} u^{3} \\
\frac{d u^{2}}{d \tau} & =-2 \Gamma_{21}^{2} u^{2} u^{1}-\Gamma_{33}^{2} u^{3} u^{3} \\
\frac{d u^{3}}{d \tau} & =-2 \Gamma_{13}^{3} u^{1} u^{3}-\Gamma_{23}^{3} u^{2} u^{3}
\end{aligned}
$$

In order to fit the constant a, we need only the initial acceleration for a particle starting from rest. For a particle at rest, the 4 -velocity is

$$
\begin{aligned}
u_{0}^{\alpha} & =\left(c \frac{d t}{d \tau}, \frac{d r}{d \tau}, \frac{d \theta}{d \tau}, \frac{d \varphi}{d \tau}\right) \\
& =\frac{d t}{d \tau}(c, \dot{r}, \dot{\theta}, \dot{\varphi}) \\
& =\frac{d t}{d \tau}(c, 0,0,0)
\end{aligned}
$$

where the dot denotes a t derivative, $\frac{d}{d t}$. Substituting these initial values into the geodesic equations, the initial accelerations all but the radial direction vanish:

$$
\left.\frac{d u^{0}}{d \tau}\right|_{t=0}=-2 \Gamma_{01}^{0} u_{0}^{0} u_{0}^{1}=0
$$

$$
\begin{aligned}
&\left.\frac{d u^{1}}{d \tau}\right|_{t=0}=-\Gamma_{00}^{1} u_{0}^{0} u_{0}^{0}-\Gamma_{11}^{1} u_{0}^{1} u_{0}^{1}-\Gamma_{22}^{1} u_{0}^{2} u_{0}^{2}-\Gamma_{33}^{1} u_{0}^{3} u_{0}^{3}=-\left(\frac{d t}{d \tau}\right)_{0}^{2} c^{2} \Gamma_{00}^{1} \\
&\left.\frac{d u^{2}}{d \tau}\right|_{t=0}=-2 \Gamma_{21}^{2} u_{0}^{2} u_{0}^{1}+\Gamma_{33}^{2} u_{0}^{3} u_{0}^{3}=0 \\
&\left.\frac{d u^{3}}{d \tau}\right|_{t=0}=-2 \Gamma_{13}^{3} u_{0}^{1} u_{0}^{3}+\Gamma_{23}^{3} u_{0}^{2} u_{0}^{3}=0
\end{aligned}
$$

Therefore, the initial acceleration is in the radial direction. We have $\frac{d t}{d \tau}$ from the norm of the 4 -velocity,

$$
\begin{aligned}
-1 & =g_{\mu \nu} u_{0}^{\mu} u_{0}^{\nu} \\
& =-\left(1+\frac{a}{r}\right)\left(\frac{d t}{d \tau}\right)^{2}+\frac{1}{1+\frac{a}{r}}\left(\frac{d r}{d \tau_{0}}\right)^{2}+r^{2}\left(\frac{d \theta}{d \tau_{0}}\right)^{2}+r^{2} \sin ^{2} \theta\left(\frac{d \varphi}{d \tau_{0}}\right)^{2} \\
& =-\left(1+\frac{a}{r}\right)\left(\frac{d t}{d \tau}\right)^{2}
\end{aligned}
$$

so that $u_{0}^{0}=\frac{1}{\sqrt{1+\frac{c}{r_{0}}}}$. Substituting this, and Γ_{00}^{1} from our solution

$$
\begin{aligned}
\left.\frac{d u^{1}}{d \tau}\right|_{0} & =-\Gamma_{00}^{1} u_{0}^{0} u_{0}^{0} \\
& =\left(\frac{1}{\sqrt{1+\frac{a}{r_{0}}}}\right)_{0}^{2} c^{2} \frac{a}{2 r_{0}^{2}}\left(1+\frac{a}{r_{0}}\right) \\
& =\frac{a c^{2}}{2 r_{0}^{2}}
\end{aligned}
$$

Finally, for sufficiently large initial radius, $r_{0} \gg a$, we may take $\frac{d t}{d \tau}=u_{0}^{0}=\frac{1}{\sqrt{1+\frac{a}{r_{0}}}} \approx 1$. This lets us replace $d \tau \approx d t$ so that $\frac{d u^{1}}{d \tau} \approx \frac{d^{2} r}{d t^{2}}$. Comparing to the Newtonian gravitational acceleration, $\frac{d^{2} r}{d t^{2}}=-\frac{G M}{r^{2}}$ we set

$$
\begin{aligned}
\frac{a c^{2}}{2 r_{0}^{2}} & =-\frac{G M}{r_{0}^{2}} \\
a & =-\frac{2 G M}{c^{2}}
\end{aligned}
$$

For a Newtonian potential, the escape velocity is given by

$$
\begin{aligned}
E=0 & =\frac{1}{2} m v_{\text {escape }}^{2}-\frac{G M m}{r} \\
v_{\text {escape }}^{2} & =\frac{2 G M}{r}
\end{aligned}
$$

so the factor $1-\frac{2 G M}{r c^{2}}$ in the line element is just $1-\frac{v_{\text {escape }}^{2}}{c^{2}}$ where $v_{\text {escape }}$ is the Newtonian escape velocity. For solar system masses $v_{\text {escape }}$ is much less than the speed of light.

This completes the specification of the Schwarzschild line element,

$$
d s^{2}=-\left(1-\frac{2 G M}{r c^{2}}\right) d t^{2}+\frac{d r^{2}}{1-\frac{2 G M}{r c^{2}}}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \varphi^{2}
$$

Notice the importance of the cancellation of the mass of the particle in Newton's law:

$$
\begin{aligned}
m \frac{d^{2} r}{d t^{2}} & =-\frac{G M m}{r^{2}} \\
\frac{d^{2} r}{d t^{2}} & =-\frac{G M}{r^{2}}
\end{aligned}
$$

Without this, the acceleration would depend on the mass of the particle, and there would not be a single geometry that would account for all orbits. The line element is typically written choosing gravitational units,

$$
\begin{aligned}
G & =1 \\
c & =1
\end{aligned}
$$

so we have the more compact expression

$$
d s^{2}=-\left(1-\frac{2 M}{r}\right) d t^{2}+\frac{d r^{2}}{1-\frac{2 M}{r}}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \varphi^{2}
$$

This describes gravity for objects as diverse as the moon, neutron stars, and black holes.

