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We now generalize our computation of curvature to arbitrary spaces. Before computing the form of the
curvature, we note two differences from the 2-dimensional Gaussian case that we must address in higher
dimensions.

1 Infinitesimal rotation transformation per unit area
First, in higher dimensions the angular change in a parallel transported vector per unit area at a point
will depend on the direction of the initial vector we choose. Since the change in the vector under parallel
transport is proportional to the original vector, the change in the vector after loop transport, dwα, will be
linear in the original vector,

dwα = wβTαβ

Furthermore, since parallel transport preserves the length, wαwα, of vectors, Tαβ must satisfy

gαβw̃
αw̃β = gαβw

αwβ

gαβ (wα + dwα)
(
wβ + dwβ

)
= gαβw

αwβ

so to first order,

0 = gαβdw
αwβ + gαβw

αdwβ

= gαβ
(
wµTαµ

)
wβ + gαβw

α
(
wµT βµ

)
= gαβT

α
µw

µwβ + gαβT
β
µw

αwµ

= 2Tβµw
µwβ

Since this must hold for all wα, the symmetric part of Tαβ must vanish and we have

Tαβ = −Tβα

Because we transport about in infinitesimal loop, the transformation itself will be infinitesimal, dTαβ .

2 Area elements in higher dimensions
This infinitesimal linear transformation will also be proportional to the area of the loop about which wα

is transported, so we need to characterize higher dimensional areas. In three dimensions, the area of the
parallelogram defined by two vectors is given by the cross product,

A = |u× v| = |u| |v| sin θ

and it is assigned the unique direction orthogonal to both u and v. Writing out the components,

u× v = (uyvz − uzvy) i + (uzvx − uxvz) j + (uxvy − uyvx)k
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we see that the components are just the antisymmetrized outer products

1

2

(
uivj − ujvi

)
where the factor of 1

2 lets us sum freely over both indices, giving each component twice.
In higher dimensions, there is no unique direction orthogonal to two vectors, so we define an area element

using this last expression,

Aαβ =
1

2

(
uαvβ − uβvα

)
Thus, instead of identifying an area with the normal direction, we characterize it by the two directions
determining its plane. A12 is an area in the xy plane, and so on. In curved spacetime, we will consider
infinitesimal areas,

dAαβ =
1

2
σλ

(
uαvβ − uβvα

)
where σ, λ are infinitesimal.

The curvature is the linear transformation per unit area at a point, acting on any vector infinitesimally
parallel transported about a closed loop,

Rαβµν (P) ≡
dTαβ
dAµν

∣∣∣∣
P

3 Parallel transport around a small closed loop
begin in a spacetime,

(
M4, g

)
, and compute the change in a vector, wα, which we parallel transport around

a closed loop. The loop lies in an infinitesimal 2-dimensional subspace spanned locally by a pair of vectors
uα, vα, with pair of coordinates (λ, σ). Let the transport be along geodesics with uα and vα as tangents, so
that

0 = uαDαu
β

duβ

dλ
= −uνuµΓβµα

and

0 = vαDαv
β

dvβ

dσ
= −vνvµΓβµα

The loop starts at a point P, which we take to have coordinates (0, 0), progresses along a direction uα
a distance λ to a point at (λ, 0). Next, we transport along the direction vα a distance σ to a point at
(λ, σ), giving a curve C1 from (0, 0) to (λ, σ) via (λ, 0). Rather than returning in the direction −uα by
λ then −vα by σ, we perform a second transport from P, interchanging the order: first vα by σ, then
uα by λ, giving a second curve C2 from (0, 0) to (λ, σ) through (0, σ). We then compare the expressions
for wα (λ, σ) along the two curves. This gives the same result as if we had transported around the closed
loop C1 − C2, but the computation is easier this way. The area element of the infinitesimal loop is then
dAαβ = 1

2σλ
(
uαvβ − uβvα

)
.

Start with two directions, uα (0, 0) and vα (0, 0). Parallel transport each in the direction of the other to
get uα (0, σ) and vα (λ, 0). For infinitesimal λ:

0 = uαDαv
β

= uα
(
∂vβ

∂xα
+ vµΓβµα

)
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=
dvβ

dλ
+ uαvµΓβµα

dvβ

dλ
= −uαvµΓβµα

where all uα, vµ and Γβµα are evaluated at P. We also need the value of the connection at (λ, 0):

Γβµα (λ, 0) = Γβµα +
(
uν∂νΓβµα

)
λ

Now consider an arbitrary vector, wα, at P. Parallel transport of wα along uα to (λ, 0) results in

wβ (λ, 0) = wβ − uαwµΓβµαλ

where objects without specific coordinates are assumed to be evaluated at P, so for example, wβ = wβ (0, 0).
Parallel transport of wβ (λ, 0) a second time along vα (λ, 0) gives

∂wβ

dσ
(λ, 0) = −

(
vαwµΓβµα

)∣∣
(λ,0)

wβ (λ, σ) = wβ (λ, 0)−
(
vαwµΓβµα

)∣∣
(λ,0)

σ

= wβ (λ, 0)− vα (λ, 0)wµ (λ, 0) Γβµα (λ, 0)σ

Expanding, keeping only up to second order,

wβ (λ, σ)uv =
(
wβ − uνwρΓβρνλ

)
−
(
vα − vσuγΓαγσλ

) (
wµ − uλwτΓµτλλ

) (
Γβµα + uν∂νΓβµαλ

)
σ

= wβ − uνwρΓβρνλ
+
(
−vαwµ + vαuλwτΓµτλλ+ wµvσuγΓαγσλ− uλwτΓµτλv

σuγΓαγσλ
2
) (

Γβµασ + uν∂νΓβµαλσ
)

= wβ − uνwρΓβρνλ− vαwµΓβµασ

+
(
vαuλwτΓµτλΓβµα + wµvσuγΓαγσΓβµα − vαwµuν∂νΓβµα

)
λσ

Now repeat this calculation, but transporting along vα first, then uα. This looks just the same, but with
interchange of uα with vα, and of σ with λ:

wβ (λ, σ)vu = wβ − vνwρΓβρνσ − uαwµΓβµαλ

+
(
uαvλwτΓµτλΓβµα + wµuσvγΓαγσΓβµα − uαwµvν∂νΓβµα

)
σλ

The difference in these expressions gives the change in wβ around the full loop,

dwβ = wβ − uνwρΓβρνλ− vαwµΓβµασ

+
(
vαuλwτΓµτλΓβµα + wµvσuγΓαγσΓβµα − vαwµuν∂νΓβµα

)
λσ

−wβ + vνwρΓβρνσ + uαwµΓβµαλ

−
(
uαvλwτΓµτλΓβµα + wµuσvγΓαγσΓβµα − uαwµvν∂νΓβµα

)
σλ

=
(
uαwµΓβµα − uνwρΓβρν

)
λ+

(
vνwρΓβρν − vαwµΓβµα

)
σ

+
(
vαuλwτΓµτλΓβµα + wµvσuγΓαγσΓβµα − vαwµuν∂νΓβµα

)
λσ

−
(
uαvλwτΓµτλΓβµα + wµuσvγΓαγσΓβµα − uαwµvν∂νΓβµα

)
σλ

= wρvσuγ
(
ΓµργΓβµσ + ΓαγσΓβρα − ∂γΓβρσ

)
λσ

−wρuγvσ
(
ΓµρσΓβµγ + ΓασγΓβρα − ∂σΓβργ

)
σλ

Collecting terms,

dwβ = wρvσuγ
(
∂σΓβργ − ∂γΓβρσ + ΓβµσΓµργ − ΓβµγΓµρσ +

(
Γαγσ − Γασγ

)
Γβρα

)
σλ

dwβ = wρ
(
∂σΓβργ − ∂γΓβρσ + ΓβµσΓµργ − ΓβµγΓµρσ

)
σλvσuγ

3



This equation defines the curvature for any two directions uα, vβ . Give a name to the term in parentheses:

Rβργσ ≡ Γβργ,σ − Γβρσ,γ + ΓβµσΓµργ − ΓβµγΓµρσ

Then the relationship becomes
dwβ = wρRβργσσλu

γvσ

notice from its definition that Rβργσ is antisymmetric on its final two indices,

Rβργσ = −Rβρσγ

We may use this property to produce an area element,

Rβργσu
γvσ =

1

2

(
Rβργσu

γvσ +Rβργσu
γvσ

)
=

1

2

(
Rβργσu

γvσ −Rβρσγuγvσ
)

=
1

2

(
Rβργσu

γvσ −Rβργσuσvγ
)

= Rβργσ
1

2
(uγvσ − uσvγ)

In our case, we may take uα and vβ to be unit vectors, with the magnitude of the area given by σλ. Therefore,
we define the infinitesimal area element

dAγσ ≡ 1

2
σλ (uγvσ − uσvγ)

We now have

dwβ = wρRβργσdA
γσ

= wρdT βρ

where dT βρ = RβργσdA
γσ. Then Riemann curvature tensor is the transformation per unit area is

Rαβµν =
dTαβ
dAµν

= Γβργ,σ − Γβρσ,γ + ΓβµσΓµργ − ΓβµγΓµρσ

This gives the form of the curvature tensor in terms of the connection and its first derivatives.

4 Curvature as a tensor
Since all elements of this construction are defined geometrically from within the manifold, Rαµβν is intrinsic
to the manifold, and therefore independent of our choice of coordinates. To see this explicitly, we could
recompute the same construction in different coordinates. Since the entire construction is perturbative, we
would find the components of Rαµβν changing linearly and homogeneously in the transformation matrix.
However, there is an easier way to prove that Rαµβν is a tensor. Consider two covariant derivatives of the
vector wα,

DµDνw
α = Dµ

(
∂νw

α + wβΓαβν
)

= ∂µ
(
∂νw

α + wβΓαβν
)

+
(
∂νw

ρ + wβΓρβν

)
Γαρµ −

(
∂ρw

α + wβΓαρν
)

Γρνµ
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Because we use covariant derivatives, this object is necessarily a tensor. Now take the derivatives in the
opposite order and subtract, giving the commutator. This is also a necessarily a tensor,

[Dµ, Dν ]wα = DµDνw
α −DνDµw

α

= ∂µ∂νw
α + ∂µw

βΓαβν + wβΓαβν,µ +
(
∂νw

ρ + wβΓρβν

)
Γαρµ −

(
∂ρw

α + wβΓαρν
)

Γρνµ

−∂ν∂µwα − ∂νwβΓαβµ − wβΓαβµ,ν −
(
∂µw

ρ + wβΓρβµ

)
Γαρν +

(
∂ρw

α + wβΓαρν
)

Γρµν

= ∂µ∂νw
α − ∂ν∂µwα + ∂µw

βΓαβν + ∂νw
ρΓαρµ − ∂νwβΓαβµ − ∂µwρΓαρν

−
(
∂ρw

α + wβΓαρν
)

Γρνµ +
(
∂ρw

α + wβΓαρν
)

Γρµν

+wβΓαβν,µ + wβΓρβνΓαρµ − wβΓαβµ,ν − wβΓρβµΓαρν

= wβRαβνµ

Since the result is wβ properly contracted with Rαβνµ, and w
β is a tensor, Rαβνµ must also be a tensor.

5 Symmetries of the curvature tensor
We have already seen that since parallel transport preserves lengths, Rαβµν = −Rβαµν , and because it
describes a transformation per unit area, Rαβµν = −Rαβνµ. Explicitly, from the definition,

Rαβµν = Γαβµ,ν − Γαβν,µ + ΓασνΓσβµ − ΓασµΓσβν

= −Γαβν,µ + Γαβµ,ν − ΓασµΓσβν + ΓασνΓσβµ

= −
(
Γαβν,µ − Γαβµ,ν + ΓασµΓσβν − ΓασνΓσβµ

)
= −Rαβνµ

Another symmetry follows if we totally antisymmetrize the final three indices,

Rα[βµν] =
1

3

(
Rαβµν +Rαµνβ +Rανβµ

)
3Rα[βµν] = Γαβµ,ν − Γαβν,µ + ΓασνΓσβµ − ΓασµΓσβν

+Γαµ,νβ − Γαµβ,ν + ΓασβΓσµν − ΓασνΓσµβ

+Γαν,βµ − Γανµ,β + ΓασµΓσνβ − ΓασβΓσνµ

=
(
Γαβµ − Γαµβ

)
,ν

+
(
Γανβ − Γαβν

)
,µ

+
(
Γαµν − Γανµ

)
,β

+Γασν
(
Γσβµ − Γσµβ

)
+ Γασβ

(
Γσµν − Γσνµ

)
+Γασµ

(
Γσνβ − Γσβν

)
= 0

The sum vanishes identically because of the symmetry of Γαµν . This condition ultimately arises because the
connection may be written in terms of the metric. It is called the first Bianchi identity.

Finally, consider

Rαβµν −Rµναβ = Rαβµν − (−Rµαβν −Rµβνα)

= Rαβµν −Rαµβν −Rβµνα
= Rαβµν − (−Rαβνµ −Rανµβ)− (−Rβαµν −Rβναµ)

= Rαβµν +Rαβνµ +Rανµβ +Rβαµν +Rβναµ

= −Rαβµν +Rανµβ +Rβναµ
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= (−Rαβµν −Rανβµ) +Rβναµ

= Rαµνβ +Rβναµ

= −Rαµβν +Rβναµ

Now interchange the names within each pair, α↔ β and µ↔ ν. On the left, this gives two minus signs, but
on the right only one:

Rβανµ −Rνµβα = −Rβναµ +Rαµβν

(−1)
2

(Rαβµν −Rµναβ) = +Rαµβν −Rβναµ
= − (Rαβµν −Rµναβ)

This difference therefore vanishes, and we have symmetry under interchange of the pairs,

Rαβµν = Rµναβ

Summarizing, we have the following symmetries of the Riemann curvature tensor:

Rαβµν = −Rβαµν
Rαβµν = −Rαβνµ
Rαβµν = Rµναβ

Rα[βµν] = 0

We can count the independent components by using these symmetries. Because of the antisymmetry on αβ,
there are only 4·3

2 = 6 independent values for this pair of indices. The same counting holds for the final pair,
µν. Since we have symmetry in these pairs,

R[αβ][µν] = R[µν][αβ]

we may think of R[αβ][µν] as a 6 × 6 symmetric matrix, which will have 6·7
2 = 21 independent components.

This makes use of the first three symmetries.
To use the final symmetry, note that the three final indices must differ from one another, so there are

only possible four cases,

R0[αβµ] = 0

R1[αβµ] = 0

R2[αβµ] = 0

R3[αβµ] = 0

Now suppose one of αβµ is the same as the first index, for example,

R1123 +R1312 +R1231 = R1312 +R1231

= R1312 −R1213

= 0

Then the vanishing is automatic using the previous three symmetries and there is no additional constraint.
Therefore, to get any new condition, all four indices must differ. But then, notice that

R0123 = −R1023

= R2310

= −R3210

so that once we have the condition with 0 in the first position, the other three possibilities follow automati-
cally. There is therefore only one condition from the fourth symmetry,

R0123 +R0312 +R0231 = 0

reducing the number of degrees of freedom of the Riemann curvature tensor to 20.
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6 Ricci tensor and Ricci scalar
Because of the symmetries, there is only one independent contraction of Rαβµν . We define the Ricci tensor,

Rµν ≡ Rαµαν

Because of the symmetry between pairs, we have

Rµν ≡ Rαµαν

= gαβRαµβν

= gαβRβναµ

= Rαναµ

= Rνµ

so the Ricci tensor is symmetric.

Exercise: Prove that any other contraction of the curvature is either zero, or a multiple of the Ricci tensor.

We also define the Ricci scalar, given by taking contracting the Ricci tensor,

R = gµνRµν

It is possible to decompose the full Riemann curvature into a traceless part, called the Weyl curvature,
and combinations of the Ricci tensor and Ricci scalar, but we will not need this now.

7 The second Bianchi identity and the Einstein equation
We have already seen the first Bianchi identity,

Rα[βµν] = 0

This is an integrability condition that guarantees that the connection may be written in terms of derivatives
of the metric. There is a second integrability condition, called the second Bianchi identity, guaranteeing that
the curvature may be written in terms of a connection. The second Bianchi identity is

Rαβ[µν;σ] = 0

To prove this, first consider antisymmetrizing a double commutator:

[Dβ , [Dµ, Dν ]]wα = (DβDµDν −DβDνDµ −DµDνDβ +DνDµDβ)wα

3
[
D[β ,

[
Dµ, Dν]

]]
= [Dβ , [Dµ, Dν ]] + [Dµ, [Dν , Dβ ]] + [Dν , [Dβ , Dµ]]

= DβDµDν −DβDνDµ −DµDνDβ +DνDµDβ

+DµDνDβ −DµDβDν −DνDβDµ +DβDνDµ

+DνDβDµ −DνDµDβ −DβDµDν +DµDβDν

= DβDµDν −DβDµDν −DβDνDµ +DβDνDµ

+DµDνDβ −DµDνDβ −DµDβDν +DµDβDν

−DνDβDµ +DνDβDµ −DνDµDβ +DνDµDβ

= 0
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However, we may also write this as

0 = 3
[
D[β ,

[
Dµ, Dν]

]]
wα

= DβDµDν −DβDµDν −DβDνDµ +DβDνDµ

+DµDνDβ −DµDνDβ −DµDβDν +DµDβDν

−DνDβDµ +DνDβDµ −DνDµDβ +DνDµDβ

= Dβ (DµDν −DνDµ)wα +Dβ (DνDµ −DµDν)wα

+Dµ (DνDβ −DβDν)wα +Dµ (DβDν −DνDβ)wα

+Dν (DµDβ −DβDµ)wα +Dν (DβDµ −DµDβ)wα

= Dβ

(
wρRαρµν

)
+Dβ

(
wρRαρνµ

)
+Dµ

(
wρRαρνβ

)
+Dµ

(
wρRαρβν

)
+Dν

(
wρRαρµβ

)
+Dν

(
wρRαρβµ

)
= wρRαρ[µν;β]

+
(
Rαρµν +Rαρνµ

)
Dβw

ρ +
(
Rαρνβ +Rαρβν

)
Dµw

ρ +
(
Rαρµβ +Rαρβµ

)
Dνw

ρ

= wρRαρ[µν;β]

and since wα is arbitrary, we have the second Bianchi identity.
The second Bianchi identity is important for general relativity because of its contractions. First, expand

the identity and contract on αµ,

0 = Rαβµν;σ +Rαβνσ;µ +Rαβσµ;ν

0 = Rαβαν;σ +Rαβνσ;α +Rαβσα;ν

Using the definition of the Ricci tensor and the antisymmetry of the Riemann tensor,

0 = Rβν;σ +Rαβνσ;α −Rβσ;ν

Now contract on βσ using the metric,

0 = gβσRβν;σ + gβσRαβνσ;α − gβσRβσ;ν
=

(
gβσRβν

)
;σ

+ gβσR α
β σν;α −

(
gβσRβσ

)
;ν

= Rσν;σ +Rαν;α −R;ν

We may write this as a divergence,

0 = Rαν;α −
1

2
R;ν

0 = Dα

(
Rαν −

1

2
δανR

)
or, raising an index,

Dα

(
Rαβ − 1

2
gαβR

)
= 0

We define the Einstein tensor,

Gαβ ≡ Rαβ − 1

2
gαβR

and have now shown that it has vanishing divergence. Since both the Ricci tensor and the metric are both
symmetric, we have

Gαβ = Gβα

DβG
αβ = 0
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These are precisely the properties we require of the energy-momentum tensor, Tαβ . It can be shown that
Gαβ is the only tensor linear in components of the Riemann curvature tensor to have these properties.

Reasoning that it is the presence of energy that leads to curvature, the only candidate equation consistent
with the properties of Tαβ and linear in the curvature (hence, a second order differential equation for the
metric) is

Gαβ = κTαβ

This is the Einstein equation for general relativity.
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