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1 Parallel transport around a closed loop
Consider parallel transport around a loop at constant θ on S2 with the usual metric,

ds2 = R2dθ2 +R2 sin2 θdϕ2

or, as a matrix,

gµν =

(
R2 0
0 R2 sin2 θ

)
The only nonvanishing derivative is g22,1 = 2R2 sin θ cos θ.

1.1 The connection
First we find the connection. Because the only nonvanishing

Γ221 = Γ212

=
1

2
(g22,1 + g21,2 − g21,2)

=
1

2
(g22,1 + 0− 0) = R2 sin θ cos θ

= R2 sin θ cos θ

Γ122 =
1

2
(g12,2 + g12,2 − g22,1)

= −R2 sin θ cos θ

and therefore

Γ2
12 = Γ2

21 =
cos θ

sin θ

Γ1
22 = − sin θ cos θ

1.2 The parallel transport equations
Let the initial vector be va = (a, b) and carry out parallel transport along ua = (0, c). Then we set ubDbv

a = 0
where

ubDbv
a = ub∂bv

a + ubvcΓacb

For the θ component,

0 = ub∂bv
1 + ubvcΓ1

cb

= c
∂v1

∂ϕ
+ cv2Γ1

22

= c
∂v1

∂ϕ
− cv2 sin θ cos θ
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and for ϕ,

0 = ub∂bv
2 + ubvcΓ2

cb

= c
∂v2

∂ϕ
+ cv1Γ2

12

= c
∂v2

∂ϕ
+ cv1

cos θ

sin θ

giving a pair of equations,

∂v1

∂ϕ
= v2 sin θ cos θ

∂v2

∂ϕ
= −v1 cos θ

sin θ

where θ = constant. Differentiate the first again,

∂2v1

∂ϕ2
=

∂v2

∂ϕ
sin θ cos θ

= −v1 cos θ

sin θ
sin θ cos θ

∂2v1

∂ϕ2
+ v1 cos2 θ = 0

so that we immediately have
v1 = A cos (ϕ cos θ) +B sin (ϕ cos θ)

Differentiating to find v2,

∂v1

∂ϕ
= v2 sin θ cos θ

(−A sin (ϕ cos θ) +B cos (ϕ cos θ)) cos θ = v2 sin θ cos θ

so
v2 =

1

sin θ
(−A sin (ϕ cos θ) +B cos (ϕ cos θ))

At ϕ = 0 we impose the initial condition,
(
v1, v2

)
= (a, b), so

a = A

b =
B

sin θ

and therefore,

v1 = a cos (ϕ cos θ) + b sin θ sin (ϕ cos θ)

v2 =
(
− a

sin θ
sin (ϕ cos θ) + b cos (ϕ cos θ)

)
1.3 Rotation of va after a full circuit
After a 2π circuit,

v1 = a cos (2π cos θ) + b sin θ sin (2π cos θ)

v2 =
(
− a

sin θ
sin (2π cos θ) + b cos (2π cos θ)

)
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the cosine of the angle made with the original vector is then,

cos δ =
gijv

i
initialv

j
final

gijviinitialv
j
initial

=
R2

(
a2 cos (2π cos θ) + ab sin θ sin (2π cos θ)− ab sin θ sin (2π cos θ) + b2 sin2 θ cos (2π cos θ)

)
R2

(
a2 + b2 sin2 θ

)
=

(
a2 + b2 sin2 θ

)
cos (2π cos θ)

a2 + b2 sin2 θ
= cos (2π cos θ)

Notice that the result is independent of the original vector. It is telling us something about the shape of the
space.

Near θ = 0, cos θ is very close to 1 and the rotation is close to a full turn, δ ≈ 2π. As θ increases,
δ = 2π cos θ decreases continuously. At θ = π

4 , δ = π√
2
, and at the equator, θ = π

2 , the cosine vanishes,
cos θ = 0, and we have δ = 0, so the vector is not rotated at all.

If we considered instead motion in a plane, the rotation of a vector is exactly 2π, so there is a difference
of

∆ = δcircle − δsphere = 2π (1− cos θ)

This is the deviation of rotation angle from the rotation in flat space. We will call this the angular deficit
(other definitions, essentially equivalent, vary from this). Notice that this calculation depends only on solving
the parallel transport equation, which depends only on our knowledge of the metric on S2. We did not require
any knowledge of the enveloping Euclidean space.

2 Rotation per unit area
Consider the rate of change of deviation of the rotation angle with respect to the enclosed area. The area is
given by integrating the 2-dimensional volume element. Let g ≡ det (gij), then

√
gdθdϕ = R2 sin θdθdϕ

Notice that this also depends only on the metric. The area within a circle of proper radius s = Rθ is

A (s) =

θˆ

0

2πˆ

0

R2 sin θdθdϕ

= −2πR2 cos θ|θ0
= 2πR2 (1− cos θ)

As we shrink the area to a point, the derivative of the angular deficit with respect to area remains finite,

d∆ = d (2π (1− cos θ))

= 2π sin θdθ

dA = 2πR2 sin θdθ

so

d∆

dA

∣∣∣∣
θ=0

=
2π sin θdθ

2πR2 sin θdθ

∣∣∣∣
θ=0

=
1

R2
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This is a remarkable result. Using only the metric of the sphere, we have computed its radius. This means
that there is geometric information about the shape of a space – how it appears to an “outside” observer, that
can be determined from measurements made within the space. Consider our method. We move a vector by
parallel transport, that is, so that infinitesimal displacement by infinitesimal displacement it does not rotate.
We carry the vector in this way around a closed path and discover that it returns rotated. We compare this
rotation to the area enclosed by the closed path, and in the limit of vanishingly small areas we get a measure
of the curvature of the sphere.

We call this derivative the curvature of the 2-sphere.

3 Exercise
Compute the curvature of the parabolic surface z = 1

2aρ
2 at the origin.
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