Parallel transport and curvature

February 22, 2015

1 Parallel transport around a closed loop

Consider parallel transport around a loop at constant θ on S^{2} with the usual metric,

$$
d s^{2}=R^{2} d \theta^{2}+R^{2} \sin ^{2} \theta d \varphi^{2}
$$

or, as a matrix,

$$
g_{\mu \nu}=\left(\begin{array}{cc}
R^{2} & 0 \\
0 & R^{2} \sin ^{2} \theta
\end{array}\right)
$$

The only nonvanishing derivative is $g_{22,1}=2 R^{2} \sin \theta \cos \theta$.

1.1 The connection

First we find the connection. Because the only nonvanishing

$$
\begin{aligned}
\Gamma_{221} & =\Gamma_{212} \\
& =\frac{1}{2}\left(g_{22,1}+g_{21,2}-g_{21,2}\right) \\
& =\frac{1}{2}\left(g_{22,1}+0-0\right)=R^{2} \sin \theta \cos \theta \\
& =R^{2} \sin \theta \cos \theta \\
\Gamma_{122} & =\frac{1}{2}\left(g_{12,2}+g_{12,2}-g_{22,1}\right) \\
& =-R^{2} \sin \theta \cos \theta
\end{aligned}
$$

and therefore

$$
\begin{aligned}
& \Gamma_{12}^{2}=\Gamma_{21}^{2}=\frac{\cos \theta}{\sin \theta} \\
& \Gamma_{22}^{1}=-\sin \theta \cos \theta
\end{aligned}
$$

1.2 The parallel transport equations

Let the initial vector be $v^{a}=(a, b)$ and carry out parallel transport along $u^{a}=(0, c)$. Then we set $u^{b} D_{b} v^{a}=0$ where

$$
u^{b} D_{b} v^{a}=u^{b} \partial_{b} v^{a}+u^{b} v^{c} \Gamma_{c b}^{a}
$$

For the θ component,

$$
\begin{aligned}
0 & =u^{b} \partial_{b} v^{1}+u^{b} v^{c} \Gamma_{c b}^{1} \\
& =c \frac{\partial v^{1}}{\partial \varphi}+c v^{2} \Gamma_{22}^{1} \\
& =c \frac{\partial v^{1}}{\partial \varphi}-c v^{2} \sin \theta \cos \theta
\end{aligned}
$$

and for φ,

$$
\begin{aligned}
0 & =u^{b} \partial_{b} v^{2}+u^{b} v^{c} \Gamma_{c b}^{2} \\
& =c \frac{\partial v^{2}}{\partial \varphi}+c v^{1} \Gamma_{12}^{2} \\
& =c \frac{\partial v^{2}}{\partial \varphi}+c v^{1} \frac{\cos \theta}{\sin \theta}
\end{aligned}
$$

giving a pair of equations,

$$
\begin{aligned}
\frac{\partial v^{1}}{\partial \varphi} & =v^{2} \sin \theta \cos \theta \\
\frac{\partial v^{2}}{\partial \varphi} & =-v^{1} \frac{\cos \theta}{\sin \theta}
\end{aligned}
$$

where $\theta=$ constant. Differentiate the first again,

$$
\begin{aligned}
\frac{\partial^{2} v^{1}}{\partial \varphi^{2}} & =\frac{\partial v^{2}}{\partial \varphi} \sin \theta \cos \theta \\
& =-v^{1} \frac{\cos \theta}{\sin \theta} \sin \theta \cos \theta \\
\frac{\partial^{2} v^{1}}{\partial \varphi^{2}}+v^{1} \cos ^{2} \theta & =0
\end{aligned}
$$

so that we immediately have

$$
v^{1}=A \cos (\varphi \cos \theta)+B \sin (\varphi \cos \theta)
$$

Differentiating to find v^{2},

$$
\begin{aligned}
\frac{\partial v^{1}}{\partial \varphi} & =v^{2} \sin \theta \cos \theta \\
(-A \sin (\varphi \cos \theta)+B \cos (\varphi \cos \theta)) \cos \theta & =v^{2} \sin \theta \cos \theta
\end{aligned}
$$

so

$$
v^{2}=\frac{1}{\sin \theta}(-A \sin (\varphi \cos \theta)+B \cos (\varphi \cos \theta))
$$

At $\varphi=0$ we impose the initial condition, $\left(v^{1}, v^{2}\right)=(a, b)$, so

$$
\begin{aligned}
a & =A \\
b & =\frac{B}{\sin \theta}
\end{aligned}
$$

and therefore,

$$
\begin{aligned}
v^{1} & =a \cos (\varphi \cos \theta)+b \sin \theta \sin (\varphi \cos \theta) \\
v^{2} & =\left(-\frac{a}{\sin \theta} \sin (\varphi \cos \theta)+b \cos (\varphi \cos \theta)\right)
\end{aligned}
$$

1.3 Rotation of v^{a} after a full circuit

After a 2π circuit,

$$
\begin{aligned}
v^{1} & =a \cos (2 \pi \cos \theta)+b \sin \theta \sin (2 \pi \cos \theta) \\
v^{2} & =\left(-\frac{a}{\sin \theta} \sin (2 \pi \cos \theta)+b \cos (2 \pi \cos \theta)\right)
\end{aligned}
$$

the cosine of the angle made with the original vector is then,

$$
\begin{aligned}
\cos \delta & =\frac{g_{i j} v_{\text {initial }}^{i} v_{\text {final }}^{j}}{g_{i j} v_{\text {initial }}^{i} v_{\text {initial }}^{j}} \\
& =\frac{R^{2}\left(a^{2} \cos (2 \pi \cos \theta)+a b \sin \theta \sin (2 \pi \cos \theta)-a b \sin \theta \sin (2 \pi \cos \theta)+b^{2} \sin ^{2} \theta \cos (2 \pi \cos \theta)\right)}{R^{2}\left(a^{2}+b^{2} \sin ^{2} \theta\right)} \\
& =\frac{\left(a^{2}+b^{2} \sin ^{2} \theta\right) \cos (2 \pi \cos \theta)}{a^{2}+b^{2} \sin ^{2} \theta} \\
& =\cos (2 \pi \cos \theta)
\end{aligned}
$$

Notice that the result is independent of the original vector. It is telling us something about the shape of the space.

Near $\theta=0, \cos \theta$ is very close to 1 and the rotation is close to a full turn, $\delta \approx 2 \pi$. As θ increases, $\delta=2 \pi \cos \theta$ decreases continuously. At $\theta=\frac{\pi}{4}, \delta=\frac{\pi}{\sqrt{2}}$, and at the equator, $\theta=\frac{\pi}{2}$, the cosine vanishes, $\cos \theta=0$, and we have $\delta=0$, so the vector is not rotated at all.

If we considered instead motion in a plane, the rotation of a vector is exactly 2π, so there is a difference of

$$
\Delta=\delta_{\text {circle }}-\delta_{\text {sphere }}=2 \pi(1-\cos \theta)
$$

This is the deviation of rotation angle from the rotation in flat space. We will call this the angular deficit (other definitions, essentially equivalent, vary from this). Notice that this calculation depends only on solving the parallel transport equation, which depends only on our knowledge of the metric on S^{2}. We did not require any knowledge of the enveloping Euclidean space.

2 Rotation per unit area

Consider the rate of change of deviation of the rotation angle with respect to the enclosed area. The area is given by integrating the 2 -dimensional volume element. Let $g \equiv \operatorname{det}\left(g_{i j}\right)$, then

$$
\sqrt{g} d \theta d \varphi=R^{2} \sin \theta d \theta d \varphi
$$

Notice that this also depends only on the metric. The area within a circle of proper radius $s=R \theta$ is

$$
\begin{aligned}
A(s) & =\int_{0}^{\theta} \int_{0}^{2 \pi} R^{2} \sin \theta d \theta d \varphi \\
& =-\left.2 \pi R^{2} \cos \theta\right|_{0} ^{\theta} \\
& =2 \pi R^{2}(1-\cos \theta)
\end{aligned}
$$

As we shrink the area to a point, the derivative of the angular deficit with respect to area remains finite,

$$
\begin{aligned}
d \Delta & =d(2 \pi(1-\cos \theta)) \\
& =2 \pi \sin \theta d \theta \\
d A & =2 \pi R^{2} \sin \theta d \theta
\end{aligned}
$$

so

$$
\begin{aligned}
\left.\frac{d \Delta}{d A}\right|_{\theta=0} & =\left.\frac{2 \pi \sin \theta d \theta}{2 \pi R^{2} \sin \theta d \theta}\right|_{\theta=0} \\
& =\frac{1}{R^{2}}
\end{aligned}
$$

This is a remarkable result. Using only the metric of the sphere, we have computed its radius. This means that there is geometric information about the shape of a space - how it appears to an "outside" observer, that can be determined from measurements made within the space. Consider our method. We move a vector by parallel transport, that is, so that infinitesimal displacement by infinitesimal displacement it does not rotate. We carry the vector in this way around a closed path and discover that it returns rotated. We compare this rotation to the area enclosed by the closed path, and in the limit of vanishingly small areas we get a measure of the curvature of the sphere.

We call this derivative the curvature of the 2 -sphere.

3 Exercise

Compute the curvature of the parabolic surface $z=\frac{1}{2} a \rho^{2}$ at the origin.

