More problems in general relativity

April 9, 2015

1. The Schwarzschild solution, in r, t, θ, φ coordinates, diverges at $r=0$ and $r=2 M$. We have seen that changing to Kruskal-Szekeres coordinate removes any pathology at $r=2 M$: this is just normal (curved) spacetime. The only meaning of the event horizon at $r=2 M$ is large scale, telling us about which events can be seen by which observers. On the other hand, the singularity at $r=0$ is a failure of the geometry to exist at that point. To show this, it is sufficient to show the existence of a scalar that diverges. The individual components of vectors or tensors depend on our choice of coordinates, but a scalar such as $v^{\alpha} w_{\alpha}$ or $R^{\alpha \beta} R_{\alpha \beta}$ is coordinate invariant. The simplest scalars to compute are the Ricci scalar, R, and the square of the Ricci tensor, $R^{\alpha \beta} R_{\alpha \beta}$, but since the Schwarzschild geometry satisfies $R_{\alpha \beta}=0$, these both vanish. Prove that $r=0$ is a true singularity by showing that

$$
\lim _{r \rightarrow 0}\left(R_{\alpha \rho \sigma}^{\beta} R_{\beta \mu \nu}^{\alpha} g^{\rho \mu} g^{\sigma \nu}\right)=\infty
$$

Notice that your result does not diverge at $r=2 M$. Showing one divergent scalar is enough to prove that a point is not part of the manifold, but proving that a point is regular requires all scalars to be regular - for these it is often easier to find coordinates that remove the problem. When you sum, you will get several equivalent terms, for example, both of

$$
\begin{aligned}
& R_{0 \rho \sigma}^{1} R_{1 \mu \nu}^{0} g^{\rho \mu} g^{\sigma \nu} \\
& R_{1 \rho \sigma}^{0} R_{0 \mu \nu}^{1} g^{\rho \mu} g^{\sigma \nu}
\end{aligned}
$$

occur in the sum.
2. By describing a 3-dimensional spherical surface embedded in a 4-dimensional space, we can find a way to write the metric of a constant curvature space. Let the 4-dimensional (Euclidean or Lorentzian) space have line element

$$
d s^{2}=\lambda d w^{2}+d x^{2}+d y^{2}+d z^{2}
$$

where $\lambda= \pm 1$, and let the surface be described by

$$
\lambda w^{2}+x^{2}+y^{2}+z^{2}=\lambda R^{2}
$$

Differentiating the constraint to the surface gives

$$
2 \lambda w d w+2 \mathbf{x} \cdot d \mathbf{x}=0
$$

where $\mathbf{x} \cdot d \mathbf{x}=\delta_{i j} x^{i} d x^{j}$ is the usual Euclidean dot product. Then

$$
\begin{aligned}
d w & =-\frac{\mathbf{x} \cdot d \mathbf{x}}{\lambda w} \\
d w^{2} & =\frac{(\mathbf{x} \cdot d \mathbf{x})^{2}}{w^{2}} \\
& =\frac{\lambda(\mathbf{x} \cdot d \mathbf{x})^{2}}{\lambda R^{2}-\mathbf{x} \cdot \mathbf{x}}
\end{aligned}
$$

so the line element $d s^{2}$, restricted to the spherical surface, is (with $\lambda^{2}=1$)

$$
d s^{2}=d x^{2}+d y^{2}+d z^{2}+\frac{(\mathbf{x} \cdot d \mathbf{x})^{2}}{\lambda R^{2}-\mathbf{x} \cdot \mathbf{x}}
$$

Let $\kappa \equiv \frac{\lambda}{R^{2}}$ and $\mathbf{x} \cdot \mathbf{x}=\mathbf{x}^{2}$ to write this as

$$
\begin{aligned}
d s^{2} & =d \mathbf{x}^{2}+\frac{\kappa(\mathbf{x} \cdot d \mathbf{x})^{2}}{1-\kappa \mathbf{x}^{2}} \\
& =h_{i j} d x^{i} d x^{j}
\end{aligned}
$$

This gives us the metric

$$
h_{i j}=\delta_{i j}+\frac{\kappa x_{i} x_{j}}{1-\kappa \mathbf{x}^{2}}
$$

Show directly by computing the curvature tensor that this describes a 3-dimensional space of constant curvature.
3. Show that the geodesic equation for the radial component of the 4 -velocity,

$$
\frac{d u^{1}}{d \tau}=-\frac{M}{r^{2}}\left(1-\frac{2 M}{r}\right) u^{0} u^{0}+\frac{M}{r^{2}\left(1-\frac{2 M}{r}\right)} u^{1} u^{1}+r\left(1-\frac{2 M}{r}\right) u^{2} u^{2}+\left(1-\frac{2 M}{r}\right) r \sin ^{2} \theta u^{3} u^{3}
$$

follows from the other two geodesic equations

$$
\begin{aligned}
\frac{d t}{d \tau} & =u_{0}^{0}\left(\frac{1-\frac{2 M}{r_{0}}}{1-\frac{2 M}{r}}\right) \\
\frac{d \varphi}{d \tau} & =\frac{L}{r^{2}}
\end{aligned}
$$

and the norm of u^{α},

$$
\left.\begin{array}{c}
\pm \\
0
\end{array}\right\}=\left(1-\frac{2 M}{r}\right)\left(u^{0}\right)^{2}+\frac{1}{1-\frac{2 M}{r}}\left(u^{1}\right)^{2}+r^{2}\left(u^{3}\right)^{2}
$$

by differentiating with respect to τ (or λ for the null case) and substituting for $u^{0}=\frac{d t}{d \tau}$ and $u^{3}=\frac{d \varphi}{d \tau}$.

