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1. The Schwarzschild solution, in r, t, θ, ϕ coordinates, diverges at r = 0 and r = 2M . We have seen
that changing to Kruskal-Szekeres coordinate removes any pathology at r = 2M : this is just normal
(curved) spacetime. The only meaning of the event horizon at r = 2M is large scale, telling us about
which events can be seen by which observers. On the other hand, the singularity at r = 0 is a failure of
the geometry to exist at that point. To show this, it is sufficient to show the existence of a scalar that
diverges. The individual components of vectors or tensors depend on our choice of coordinates, but a
scalar such as vαwα or RαβRαβ is coordinate invariant. The simplest scalars to compute are the Ricci
scalar, R, and the square of the Ricci tensor, RαβRαβ , but since the Schwarzschild geometry satisfies
Rαβ = 0, these both vanish. Prove that r = 0 is a true singularity by showing that
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Notice that your result does not diverge at r = 2M . Showing one divergent scalar is enough to prove
that a point is not part of the manifold, but proving that a point is regular requires all scalars to be
regular – for these it is often easier to find coordinates that remove the problem. When you sum, you
will get several equivalent terms, for example, both of
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occur in the sum.

2. By describing a 3-dimensional spherical surface embedded in a 4-dimensional space, we can find a way
to write the metric of a constant curvature space. Let the 4-dimensional (Euclidean or Lorentzian)
space have line element

ds2 = λdw2 + dx2 + dy2 + dz2

where λ = ±1, and let the surface be described by

λw2 + x2 + y2 + z2 = λR2

Differentiating the constraint to the surface gives

2λwdw + 2x · dx = 0

where x · dx = δijx
idxj is the usual Euclidean dot product. Then

dw = −x · dx
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so the line element ds2, restricted to the spherical surface, is (with λ2 = 1)

ds2 = dx2 + dy2 + dz2 +
(x · dx)2

λR2 − x · x

Let κ ≡ λ
R2 and x · x = x2 to write this as

ds2 = dx2 +
κ (x · dx)2

1− κx2

= hijdx
idxj

This gives us the metric
hij = δij +

κxixj
1− κx2

Show directly by computing the curvature tensor that this describes a 3-dimensional space of constant
curvature.

3. Show that the geodesic equation for the radial component of the 4-velocity,
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follows from the other two geodesic equations
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by differentiating with respect to τ (or λ for the null case) and substituting for u0 = dt
dτ and u3 = dϕ

dτ .
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