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1 Manifolds

1.1 Intuitions
Loosely speaking, a manifold is a (topological) space that looks like a small piece of Rn in any sufficiently
small region. For example, the 2-dimensional surface of a ball in 3-dimensions it the space S2. If we move
very close to the surface, it looks like a piece of a Euclidean plane. Indeed, the distance between two nearby
points on the surface of a sphere of radius R is

ds2 = R2
(
dθ2 + sin2 θdϕ2

)
Pick a point, xi = (θ0, ϕ0), and look in a nearby region of the surface. Expanding about that point, in a
region (θ0 + ε, ϕ0 + σ),

sin (θ0 + ε) = sin θ0 + cos θ0ε+ . . .

dθ = dε

dϕ = dσ

the distance becomes

ds2 = R2
(
dε2 + (sin θ0 + cos θ0ε+ . . .)

2
dσ2
)

≈ R2
(
dε2 + sin2 θ0dσ

2
)

Now define new coordinates

x = Rε

y = Rσ sin θ0

and as long as we can ignore the terms of order ε (dσ)2, we have

ds2 ≈ dx2 + dy2

The sphere looks like a plane when we get close enough. Notice that at every point of S2 the sphere looks
like a plane – it is always two dimensional.

Now picture the 2-dimensional surface of an egg. It is similar to a sphere, but stretched out along one
axis. Any small bit also looks like a small piece of a plane, and is always 2-dimensional. This shape is also
a manifold; in fact, it also S2. The property of being a manifold does not have rigidity. We may smoothly
deform our picture of a manifold, and it remains the same manifold. What makes a difference is punching
holes or joining boundaries. Thus, for example, the plane R2 is a manifold and so is any wavy deformation of
the plane. R2 and S2 are distinct manifolds because we cannot smoothly deform one into the other without
making a puncture in the sphere or sewing up the “edges” of the plane.
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A manifold does not necessarily have a metric. Though we used the metric of a 2-sphere above to
introduce the idea of a manifold being locally Euclidean, it is the metric that fixes the difference between
an egg and a sphere. Our definition below does not rely on having a metric. In general relativity we will be
interested in manifolds with metric, (M, g).

A third example of a 2-dimensional manifold is the toroidal surface of a donut. This is distinct from
both R2 and S2. If we run a circle around the outer limit of the torus (labeled by 0 ≤ θ < 2π), and a
perpendicular circle around the tube of the torus (labeled by 0 ≤ ϕ < 2π), we see that we can label every
point of the surface by a pair of angles (θ, ϕ). The surface is the direct product of these two circles, S1⊗S1.

Higher dimensional manifolds are often difficult to picture, but many may be classified.

1.2 Abstractions
The key to identifying a manifold lies in the property of looking like flat, n-dimensional space, Rn, in a small
enough region around each point. We state this property in terms of a 1− 1, onto mapping called a chart.

Concretely, in order for a space to be an n-dimensional manifold, Mn, we start with the requirement
that in a neighborhood N (P) of each point P, there must be a 1− 1, onto mapping, φ, to an open subset,
O (x0), in Rn, where we take φ (P) = x0

φ : N (P)↔ O (x0)

For any point in the open set Q ∈ N (P), there is a unique x ∈ O (x0) with

φ (Q) = x

In Rn, x is an n-tuple of numbers and these are the coordinates of the point Q.
We cannot usually find a single such a mapping φ that assigns coordinates to every pointMn, so we need

to specify how the coordinates in nearby regions are related. Let P1,P2 be points inMn with neighborhoods
N1 (P1) and N2 (P2) and charts φ1 and φ2. Then for all points in the intersection

N12 = N1 (P1) ∩N2 (P2)

we have two different sets of coordinates, O1 = φ1 (N12) and O2 = φ2 (N12). We require there to exist a
sensible transformation between these.

The relationship must hold between the coordinates φ1 (N12) and φ2 (N12), and we can specify the
relationship by using the inverse mapping, φ−11 . We apply two maps in succession. The first,

φ−11 : O1 → N12

maps from the open region O1 in Rn to the overlap region N12. From here we map again with φ2,

φ2 : N12 → O2

taking points of the overlap to the open region O2 in Rn. The combination of these, φ2 ◦ φ−11 is a map
between two open sets in Rn,

φ2 ◦ φ−11 : O1 → O2

so that the composition of the two maps, maps one open region of Rn to another,

φ2 ◦ φ−11 : O1 → O2

We require the mapping φ2 ◦ φ−11 from O1 ⊂ Rn to O2 ⊂ Rn to be infinitely (n-times) differentiable. Mn is
then a C∞ (Cn)manifold.
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1.3 Examples
1.3.1 The plane, R2

The mapping of points of the plane to Cartestian coordinates, (x, y), is 1− 1 and onto the entire plane. We
require only one chart, although we may choose countless others. For example, consider the case of polar
coordinates, (ρ, ϕ). These cover any open set that excludes the origin, but at the origin (0, ϕ) ↔ (0, 0) is
no longer single valued. We require a second chart. Choose a small open rectangle including the origin, and
let the coordinates there be Cartesian. The overlap region is the rectangle minus the point at the origin. In
this region the two charts are related by

x = ρ cosϕ

y = ρ sinϕ

ρ =
√
x2 + y2

ϕ = tan−1
(y
x

)
These relations are smooth functions, and at every point we require exactly two coordinates, so we have a
2-dimensional, C∞ manifold.

1.3.2 The 2-sphere, S2

A natural choice for φ is the usual assignment of (θ, φ) but again these are not single valued at the poles. In
fact, S2 requires at least two charts, and this proves that S2 is a different manifold from R2. Two charts is
sufficient, however. For the first, begin with polar coordinates centered at the north pole but, to include the
north pole, transform to Cartesian,

x = ρ cosϕ

y = ρ sinϕ

Then the north pole has the unique coordinates (x, y) = (0, 0). This map remains single valued all the way
to, but not including, the south pole where (x, y) = (πR cosϕ, πR sinϕ). Unlike the north pole, different
values of ϕ now give different values for x and y, although the point remains the same. We require another
chart. For the second chart, we again choose polar coordinates (r, θ), where r is measured from the south pole
and θ increases counterclockwise when we look down on the south pole. Converting to Cartesian coordinates
(u, v), we set

u = r cos θ

v = r sin θ

This is single valued everywhere except the north pole.
Now, we look in the overlap region, consisting of the entire sphere minus the two poles. The mapping

between (ρ, ϕ) and (r, θ) is given by

r = πR− ρ
θ = −ϕ

so that in this region

u = (πR− ρ) cosϕ
= πR cosϕ− ρ cosϕ

=
πRx√
x2 + y2

− x
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v = − (πR− ρ) sinϕ
= −πR sinϕ+ ρ sinϕ

= − πRy√
x2 + y2

+ y

and these are infinitely differentiable in the overlap region. Again, we require exactly two coordinates at
each point of S2, so we have a 2-dimensional, C∞ manifold. Since we cannot cover the space with one chart,
the manifold is different from the plane.

Exercise: Circle
Prove that a circle is a manifold by specifying an appropriate chart or charts. What is the minimum number
of charts required?

Exercise: Torus
A simple way to define a torus is to put periodic boundary conditions on a rectangle. For concreteness,
consider the rectangle

x ∈ [0, a]

y ∈ [0, b]

and identify points along the top and bottom boundaries,

(x, 0) ≡ (x, b)

and along the left and right boundaries,
(0, y) ≡ (a, y)

It is easy to assign charts in Cartesian coordinates. Find a set of charts to show that the torus is a manifold,
and find the minimum number of charts required to prove that the torus is a distinct manifold from R2 or
S2.

2 Vectors and forms
We now define two vector spaces associated with any manifold. Both spaces depend on two simple ideas:
functions and curves.

2.1 Functions and curves
A real-valued function on a manifold is an assignment of a real number to each point of the manifold,

f :M→ R

By using the charts of the manifold, we can differentiate the function. For any point P ofM, there exists a
chart on some neighborhood, N (P), of P,

φ : N (P)↔ O (x0)

so combining with the function for each point in N (P) we have a mapping from a region in Rn to the reals,

f ◦ φ−1 : O (x0)→ R
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We may write the result of this as map as the number f (x) ∈ R, where x is a point in Rn. Then f is a
real-valued function on Rn and we may differentiate it in the usual way,

∂f

∂xα

While functions map fromM to R, a curve is a mapping from R intoM:

C : R→M

Combined with a chart
φ−1 ◦ C : R→ O (x0)

we have a parameterized curve in Rn, x (λ), where as λ ∈ R varies, the point x (λ) traces out a path in Rn.

2.2 Vectors
We define:

Def: A vector at a point P is a directional derivative at P along a curve C Consider the values
of a function f (P) restricted to a curve C (λ), f (C (λ)) = f ◦ C : R→ R. The derivative

df

dλ

tells us how the function f is changing along the curve C. This is intrinsic to the space. The function at
any point of the curve C is a number, and our usual definition of derivative works:

df

dλ
= lim
ε→0

f (C (λ+ ε))− f (C (λ))

ε

Here, λ and ε are real numbers, C (λ) and C (λ+ ε) are points of the manifold, and f (C (λ)) is another
number, the value of the function f at the point C (λ).

Using a chart, we may write

f (P) = f ◦ φ−1 ◦ φ (P)
=

(
f ◦ φ−1

)
(φ (P))

= F (xα)

Here, f ◦ φ−1 maps a point with coordinates xα in Rn to a point P of the manifold, then f takes a value at
that point. Then, to evaluate the derivative along C, where

φ (C (λ)) = xα (λ)

we have

df

dλ
= lim

ε→0

f (C (λ+ ε))− f (C (λ))

ε

= lim
ε→0

f ◦ φ−1 ◦ φ (C (λ+ ε))− f ◦ φ−1 ◦ φ (C (λ))

ε

= lim
ε→0

f (xα (λ+ ε))− f (xα (λ))
ε

=
df (xα (λ))

dλ

=
∂f (xα)

∂xα
dxα (λ)

dλ
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Therefore, in coordinates, i.e., a basis, we may write

d

dλ
f (λ) =

dxα

dλ

∂

∂xα
f (xα)

We now define a vector to be the directional derivative operator

d

dλ
=

dxα

dλ

∂

∂xα

Which function we act on is irrelevant. We see that once we make a choice of coordinates xα, all directional
derivatives may be written as linear combinations of the basis vectors

~eα =
∂

∂xα

The coefficients of this linear combination are the tangents to the mapped curve, xα (λ) = φ ◦ C (λ),

vα =
dxα

dλ

We now show that these directional derivatives form a vector space. It is not hard to see that scalar
multiples are also curves, since a change of parameter from λ to aλ changes vα to avα so that avα is also a
vector. The only tricky part of the demonstration is to show that we can add directional derivatives to get
a third directional derivative. We content ourselves with demonstrating this.

Suppose we have two curves, C1 (λ) and C2 (λ), both passing through the same point P . Then

φ ◦ C1 = xα1 (λ)

φ ◦ C2 = xα2 (λ)

where xα1 (λ) , xα2 (λ) are two curves in Rn. We may choose the mappings C1 and C2 so that C1 (0) = C2 (0) =
P . Since Rn is a vector space, we may add the vectors xα1 and xα2 at each value of λ to get a new curve

xα3 (λ) = (xα1 + xα2 ) (λ)

Then

C3 (λ) = φ−1 (xα3 (λ))

= φ−1 (φ ◦ C1 + φ ◦ C2)

is a curve inM. Since φ ◦ C3 is just xα3 (λ), the directional derivative along C3 is

d

dλ (3)
=

dxα3 (λ)

dλ

∂

∂xα

=
d (xα1 + xα2 ) (λ)

dλ

∂

∂xα

=
dxα1
dλ

∂

∂xα
+
dxα2
dλ

∂

∂xα

=
d

dλ (1)
+

d

dλ (2)

The sum of two directional derivatives is therefore a third directional derivative. This, together with the
usual properties of addition and scalar multiplication, show that directional derivatives form a vector space.
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Exercise:
Define real linear combinations of directional derivatives, α d

dλ (1)
+β d

dλ (2)
in such a way that the distributive

laws,

(α+ β)
d

dλ
= α

d

dλ
+ β

d

dλ

α

(
d

dλ (1)
+

d

dλ (2)

)
= α

d

dλ (1)
+ α

d

dλ (2)

are satisfied and prove that α d
dλ (1)

+ β d
dλ (2)

is a directional derivative along some curve C3.

2.3 Forms
There is a second vector space arising from curves and functions on a manifold.

Def: A form is a linear map on curves The basic idea here is that an integral is a linear mapping. If
we integrate the differential of a function along a curve, we get a number,

f (xα) =

xαˆ

C

df

The differentials, df , combine linearly,

a f (xα) + b g (xα) =

xαˆ

C

(a df + b dg)

Therefore, we may regard df, dg as linear mappings that take the curve C into the reals, R. The linear
combination a df + b dg is another such mapping. What we need to do is define these things in a way that
applies to general manifolds.

Consider an arbitrary linear mapping on curves,

ω̃ : C → R

Linearity guarantees that for any such mapping, we can divide the curve C (λ) into small pieces,

Ck (λ) = {C (λ) | λ ∈ [λk, λk+1]}

so that Ck is the piece of C running from parameter values λk to λk+1. Clearly,

C (λ) =

n∑
k=0

Ck (λ)

and by the linearity of ω̃,

ω̃ (C (λ)) =

n∑
k=0

ω̃ (Ck (λ))

Now use charts to write this in coordinates:

ω̃ (C (λ)) =

n∑
k=0

ω̃ ◦ φ−1 ◦ φ ◦ Ck (λ)
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where φ ◦ Ck (λ) : R → Rn is a curve, xα (λ), in Rn. Then ω̃ ◦ φ−1 acts on this curve, mapping first to
C (xα (λ)) then to the value f (λ) = ω̃ (C (xα (λ))). This makes the right side a mapping from points along
a curve, xα (λ), in Rn to the reals, R, giving a function, f (λ).

Now consider the sum,
n∑
k=0

ω̃ ◦ φ−1 ◦ φ ◦ Ck (λ)

Let n become large so that λk+1−λk → dλ. Then φ◦Ck (λ) is just the coordinate change, dxα (λ) = dxα

dλ dλ,
for an infinitesimal piece of the curve from λ to λ + dλ. The form returns the value a real number which
must depend linearly on this coordinate displacement,

ω̃ ◦ φ−1 (dxα) = ωαdx
α

In the limit, the sum becomes an integral along the curve C, limdλ→0

∑n
k=0 ωαdx

α =
´
C
ωαdx

α, so that

ω̃ (C (λ)) =

ˆ

C

ωαdx
α

Again, we make an operator interpretation. The form is the integrand,

ω̃ = ωαdx
α

The components of the form are ωα and the coordinate differentials dxα form a basis. The operation of ω̃
on any curve C is the integral of ω̃ along the curve,

ω̃ : C → R

where ω̃ (C) ≡
´
C
ωαdx

α. Just as for our definition of a directional derivative we ignored which function we
differentiate, we now neglect which curve we integrate along and focus on the 1-form,

ω̃ = ωαdx
α

These form a vector space, with components ωα and basis forms, dxα.

Mappings between vectors and forms
Writing the integral ω̃ (C) =

´
C
ωαdx

α as an integral over the parameter λ,

ω̃ (C (λ)) =

ˆ

C

ωα
dxα

dλ
dλ

=

ˆ

C

f (λ) dλ

the integrand shows us a mapping to the reals, given by combining the form with a tangent vector, ωα dx
α

dλ =

f (λ). This is just the mapping of ω̃ on an infinitesmal curve dxα

dλ dλ. Now, writing the tangent vector in
components, φ

(
~t
)
= dxα

dλ , we may also write the form as a linear mapping on vectors,

ω̃
(
~t
)
= ωα

dxα

dλ

This expression, like ω̃ (C), is independent of the basis.
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