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Currently, the simplest cosmological model that fits the experimental observations is the Λ-CDM model.
Lambda is the cosmological constant and CDM stands for cold dark matter. Our Friedmann equation
requires only minor modification to describe Λ-CDM – the inclusion of radiation. As the universe expanded,
it cooled, but before about 380,000 years after the big bang, it was too hot for eletrons and

1 Ultrarelativistic energy momentum tensor
Going back in time toward the big bang, when matter becomes ultrarelativistic, we need a different energy
tensor because the contribution of pressure becomes important. In the extreme case of pure radiation, we
have ρ = 3p. Maintaining homogeneity and isotropy, we may only use the metric and the comoving velocity:

Tαβ = (ρ+ p)uαuβ + pgαβ

=

(
ρ

pgij

)
where, in the comoving frame, ua = (1, 0, 0, 0) and gij = 1

a2h
ij . The conservation equation requires,

0 = Tµν;ν

= Tµν,ν + T βνΓµβν + TµβΓνβν

Recalling the form of the connection,

Γi0j = Γij0 =
ȧ

a
δij

Γ0
ij = aȧhij

Γijk = Γ̃ijk

the time component is

0 = T 0ν
,ν + T βνΓ0

βν + T 0βΓνβν

= T 00
,0 + pgijΓ0

ij + T 00Γν0ν

= ρ̇+ pgijaȧhij +
3ȧ

a
ρ

= ρ̇+
3ȧ

a
p+

3ȧ

a
ρ

= ρ̇+
4ȧ

a
ρ

Multiplying by a4 we have

0 = a4ρ̇+ 4a3ȧρ

=
d

dt

(
ρa4
)
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so that ρa4 remains constant.

ρa4 = ε = constant

This means that ρ = α
a4 is a function of time only, so the pressure is too. Therefore, for the spatial

components,

0 = T iν ,ν + T βνΓiβν + T iβΓνβν

= T ij ,j + T jkΓijk + T ijΓkjk

=
(
pgij

)
,j

+ pgjkΓ̃ijk + pgijΓ̃kjk

=
p

a2

(
hij ,j + hjkΓ̃ijk + hijΓ̃kjk

)
≡ 0

since hij ,j + hjkΓ̃ijk + hijΓ̃kjk is the covariant derivative of the constant curvature metric on the constant
curvature submanifold.

2 Radiation cosmology
Suppose we have a universe filled with radiation. In the early universe, after inflation but before the current
matter dominated era, this is a good approximation.

The field equations are now

G00 + Λg00 = βT00

3

a2

(
κ+ ȧ2

)
− Λ =

βε

a4

while the spatial components give a second equation,

Gij + Λgij = βTij

Gij + Λgij = βpa2hij

−
(
2aä+ κ+ ȧ2 − Λa2

)
hij =

1

3
βρa2hij

−
(
2aä+ κ+ ȧ2 − Λa2

)
=

1

3
β
ε

a2

and therefore,

3a2
(
κ+ ȧ2

)
− Λa4 − βε = 0

3a2
(
2aä+ κ+ ȧ2

)
− 3Λa4 + βε = 0

Multiply the first by a and differentiate

3a3
(
κ+ ȧ2

)
− Λa5 − βεa = 0

9a2κȧ+ 9a2ȧ3 + 6a3ȧä− 5Λa4ȧ− βεȧ = 0

3a2
(
2aä+ 3

(
κ+ ȧ2

))
− 5Λa4 − βε = 0

Subtract,

6a2
(
κ+ ȧ2

)
− 2Λa4 − 2βε = 0

3a2
(
κ+ ȧ2

)
− Λa4 − βε = 0
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and this is satisfied by the first equation, so once again we need only the Friedmann equation.
Now look at the first equation,

−κ = ȧ2 − Λa4

3a2
− βε

3a2

This is essentially the same as before, with the effective potential

Veff = −1

3
Λa2 − βε

3a2

except that the divergence of the potential as a→ 0 goes as Veff ∼ 1
a2 .

3 A realistic cosmology: the Λ-CDM model
To build a realistic cosmological model, we divide the energy-momentum sources into four contributions:

1. Normal massive particles, ρm = m
a3

2. Radiation, ρr = ε
a4

3. Dark matter, ρd = md

a3

4. Cosmological constant, Λ

The dark matter behaves in much the same way as normal matter, but it is useful to separate it out for
experimental purposes. Sometimes the cosmological constant is absorbed into the stress-energy tensor and
treated as a field rather than a constant. Though there is no evidence for such a field, called quintessence,
it motivates experimental searches.

Putting together all components, we have the single Einstein equation

ȧ2

a2
=

βε

3a4
+
βm

3a3
+
βmd

3a3
− κ

a2
+

1

3
Λ

Generally, instead of choosing units so that κ = ±1, 0, the units are chosen so that a (t) at the present time
is 1. This sets the scale for the other quantities. Also, some define Ωr = βε

3 ,Ωm = βm
3 ,Ωκ = −κ, and

ΩΛ = 1
3Λ.

Increasingly accurate measurements show that within experimental error, κ = 0, so we consider the
effective potential for this case.

Letting M = m+md, we write,

−κ = 0 = ȧ2 − βε

3a2
− βM

3a
− 1

3
Λa2

so the effective potential is

Veff = − βε

3a2
− βM

3a
− 1

3
Λa2

with extrema when

0 =
dVeff
da

=
2βε

3a3
+
βM

3a2
− 2

3
Λa

0 =
2βε

3
+
βM

3
a− 2

3
Λa4
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For Λ > 0 (in agreement with experiment),

a4
max =

βM

2Λ

(
amax +

2ε

m

)
The right side grows faster near a = 0, so the curves will cross at exactly one point. Therefore, there is a
single extremum. The second derivative,

d2Veff
da2

= −2βε

a4
− 2βM

3a3
− 2

3
Λ < 0

so the single extremum is a maximum. Finally, we check the value of Veff at the maximum,

Veff (amax) =
β

3a2

(
−ε−Mamax −

1

β
Λa4

max

)
=

β

3a2

(
−ε−Mamax −

1

β
Λ
βM

2Λ

(
amax +

2ε

m

))
=

β

3a2

(
−ε−Mamax −

M

2
amax − ε

)
=

β

3a2

(
−3M

2
amax − 2ε

)
Since this is less than zero, while the effective energy is indistinguishable from zero, −κ ≈ 0, the universe
has enough energy to escape the initial singularity and expand forever.

4 Inflation
At early times when a is small, all the matter is ultrarelativistic and the effective potential is dominated by
the first term,

ȧ2

a2
=

βε

3a4

aȧ = +

√
βε

3

1

2
a2 = +

√
βε

3
t

a =

(
4βε

3

)1/4√
t

which is a fairly slow rate of expansion. There is a serious problem with this, and there are too many
solutions.

4.1 The horizon problem
When we look a great distance in any direction, we see the same temperature for the cosmic microwave
background. However, with such a slow rate of expansion as given above, these regions have always been at
a great distance from one another – they were never close enough to achieve such a uniform temperature. This
problem is solved (though others may arise) if during the earliest epoch the universe expanded exponentially
until it increased in size by a factor of at least 1026.
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