A worked example: Geodesics on a parabolic surface

February 22, 2015

1 The metric

Consider the two dimensional surface in 3-space described in polar coordinates by an axisymmetric shape

with parabolic cross section,
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The metric is the metric of Euclidean 3-space, reduced by this parabolic constraint, (p, ¢, 2) = (p, ©, %apQ).
Taking the differential of z, we have dz = apdp. Therefore,

ds® = dp®+ p*dy® + dz?
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and we read of the metric,

with inverse

2 The connection

There are two nonvanishing derivatives of the metric,

g1 = 2a%p
go21 = 2p

This means that the only nonvanishing connection coefficients are I'111, 997 = I'a12, '122, given by:
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Now, raising the first index on each,

Flij = glkrkij
= g''Ty;
There are two cases,
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Then for the F%j,
PQij = QQkaij
= ¢*Ta;
I% = ¢%Tan
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3 The geodesic equation
The geodesic equation is
0 = v'Dp’

vt <6ivj + kajM)

where the tangent to the geodesic is v* = ‘fg.
For j =1,
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For j =2,
0 = v'ow?+v*r?,
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We therefore have a pair of equations,
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4 Integrating the geodesic equation

It is helpful to notice that the components of the vector v’ are related by the line element,
d82 _ (1 +a2p2) dp2 +P2d802

Dividing by ds?, we see that v* is a unit vector,
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Therefore, if we can get one component, we may easily find the other.
The second differential equation is not difficult. Rearranging and setting v? = Z—f, it becomes
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Multiplying by ds, we may integrate:

1 2
—dez = ——dp
v P
1 ro
JR— 2 _— _ p—
/ A / o
v2 PO
2
lnv—2 = 72111£
Yo Po

2
Then writing —21n p% =In (%0) and exponentiating,
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The first component is therefore given by
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so that




At P = Po,
2
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5 Orbital equation
Since
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Then, substituting,
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Dividing by this and multiplying by dy, we may integrate,

1+4+a2p? dp de
p* = (p3ed)” P v (po)”

and therefore, taking g = 0,

1+a2
o = ap

This is integrated quickly using Wolfram integrator to give a logarithmic dependence.



