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1 The metric
Consider the two dimensional surface in 3-space described in polar coordinates by an axisymmetric shape
with parabolic cross section,

z =
1

2
aρ2

The metric is the metric of Euclidean 3-space, reduced by this parabolic constraint, (ρ, ϕ, z) =
(
ρ, ϕ, 12aρ

2
)
.

Taking the differential of z, we have dz = aρdρ. Therefore,

ds2 = dρ2 + ρ2dϕ2 + dz2

= dρ2 + ρ2dϕ2 + a2ρ2dρ2

=
(
1 + a2ρ2

)
dρ2 + ρ2dϕ2

and we read of the metric,

gij =

(
1 + a2ρ2 0

0 ρ2

)
with inverse

gij =

( 1
1+a2ρ2 0

0 1
ρ2

)

2 The connection
There are two nonvanishing derivatives of the metric,

g11,1 = 2a2ρ

g22,1 = 2ρ

This means that the only nonvanishing connection coefficients are Γ111,Γ221 = Γ212,Γ122, given by:

Γ111 =
1

2
(g11,1 + g11,1 − g11,1)

= a2ρ

Γ221 = Γ212 =
1

2
(g22,1 + g21,2 − g12,2)

=
1

2
(2ρ)

= ρ

Γ122 =
1

2
(g12,2 + g12,2 − g22,1)

= −ρ
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Now, raising the first index on each,

Γ1
ij = g1kΓkij

= g11Γ1ij

There are two cases,

Γ1
11 =

a2ρ

1 + a2ρ2

Γ1
22 = − ρ

1 + a2ρ2

Then for the Γ2
ij ,

Γ2
ij = g2kΓkij

= g22Γ2ij

Γ2
21 = g22Γ221

=
1

ρ

3 The geodesic equation
The geodesic equation is

0 = viDiv
j

= vi
(
∂iv

j + vkΓjki

)
where the tangent to the geodesic is vi = dxi

dx .
For j = 1,

0 = vi∂iv
1 + vivkΓ1

ki

=
dv1

ds
+ v1v1Γ1

11 + v2v2Γ1
22

=
dv1

ds
+

a2ρ

1 + a2ρ2
(
v1
)2 − ρ

1 + a2ρ2
(
v2
)2

For j = 2,

0 = vi∂iv
2 + vivkΓ2

ki

=
dv2

ds
+ v2v1Γ2

21 + v1v2Γ2
12

=
dv2

ds
+

2

ρ
v1v2

We therefore have a pair of equations,

0 =
dv1

ds
+

a2ρ

1 + a2ρ2
(
v1
)2 − ρ

1 + a2ρ2
(
v2
)2

0 =
dv2

ds
+

2

ρ
v1v2
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4 Integrating the geodesic equation
It is helpful to notice that the components of the vector vi are related by the line element,

ds2 =
(
1 + a2ρ2

)
dρ2 + ρ2dϕ2

Dividing by ds2, we see that vi is a unit vector,

1 =
(
1 + a2ρ2

)(dρ
ds

)2

+ ρ2
(
dϕ

ds

)2

=
(
1 + a2ρ2

) (
v1
)2

+ ρ2
(
v2
)2

Therefore, if we can get one component, we may easily find the other.
The second differential equation is not difficult. Rearranging and setting v2 = dϕ

ds , it becomes

1

v2
dv2

ds
= −2

ρ

dρ

ds

Multiplying by ds, we may integrate:

1

v2
dv2 = −2

ρ
dρ

v2ˆ

v20

1

v2
dv2 = −

ρˆ

ρ0

2

ρ
dρ

ln
v2

v20
= −2 ln

ρ

ρ0

Then writing −2 ln ρ
ρ0

= ln
(
ρ0
ρ

)2
and exponentiating,

v2

v20
=

(
ρ0
ρ

)2

v2 = v20

(
ρ0
ρ

)2

The first component is therefore given by

1 =
(
1 + a2ρ2

) (
v1
)2

+ ρ2
(
v2
)2

=
(
1 + a2ρ2

) (
v1
)2

+ ρ2

(
v20

(
ρ0
ρ

)2
)2

=
(
1 + a2ρ2

) (
v1
)2

+

(
ρ20v

2
0

ρ

)2

(
1 + a2ρ2

) (
v1
)2

= 1 −
(
ρ20v

2
0

)2
ρ2

(
v1
)2

=
1 − (ρ20v

2
0)

2

ρ2

1 + a2ρ2

so that

v1 =

√√√√1 − (ρ20v20)
2

ρ2

1 + a2ρ2
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At ρ = ρ0,

v10 =

√
1 − ρ20 (v20)

2

1 + a2ρ20

5 Orbital equation
Since

v1 =
dρ

ds

v2 =
dϕ

ds

we may derive an orbit equation, ρ (ϕ) by taking the ratio,

v1

v2
=
dρ

dϕ

Then, substituting,

dρ

dϕ
=

1

v20

(
ρ0
ρ

)2
√√√√1 − (ρ20v20)

2

ρ2

1 + a2ρ2

=
ρ2

v20 (ρ0)
2

√√√√1 − (ρ20v20)
2

ρ2

1 + a2ρ2

=
ρ

v20 (ρ0)
2

√
ρ2 − (ρ20v

2
0)

2

1 + a2ρ2

Dividing by this and multiplying by dϕ, we may integrate,√
1 + a2ρ2

ρ2 − (ρ20v
2
0)

2

dρ

ρ
=

dϕ

v20 (ρ0)
2

and therefore, taking ϕ0 = 0,

ϕ =
1

v20 (ρ0)
2

ρˆ

ρ0

√
1 + a2ρ2

ρ2 − (ρ20v
2
0)

2

dρ

ρ

This is integrated quickly using Wolfram integrator to give a logarithmic dependence.
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