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It is not obvious that curvature can account for gravity. The orbiting path of a planet, for example,
does not immediately seem to be the shortest path between points. Even more immediate is the way the
motion of projectiles differs depending on initial conditions. Consider the tightly parabolic path followed by
a stone thrown high into the air, contrasted with the nearly straight-line path of an arrow. How can these
two paths, which may pass through nearly identical regions of space, be regarded as tracing geodesics in the
same curved geometry? The answer lies in the importance of time in giving a 4-dimensional picture.

1 The curvature of a curve
Suppose we have a curve lying in the xy-plane, given by y = y (x). At any point P = (x0, y (x0)) of the
curve we place a circle. The best fit circle is the one which is tangent at P , and matches the curve as nearly
as possible. To find this circle, choose coordinates with origin at P and the x axis tangent at P . Then
y (x0) = y (0) = 0, and the slope of the curve vanishes, dy

dx

∣∣∣
x0=0

= 0. Now expand y (x)near P . By our

choice of coordinates, the first two terms in the series vanish,

ycurve (x) = y (x0) +
dy

dx

∣∣∣∣
x0
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Suppose, for concreteness, that at P the curve has d2y
dx2

∣∣∣
x0

> 0 .

Now define a circle of radius R, tangent to the curve at P . The center of the circle will be a distance R
up the y axis and consist of point satisfying

x2 + (y −R)2 = R2

Solving this for ycircle (x), we have
ycircle = R±

√
R2 − x2

To get points near the origin, we require the lower sign, and expand in a power series,

ycircle = R−
√
R2 − x2

= R−R
√
1− x2

R2

≈ R−R
(
1− 1

2

x2

R2
+ · · ·

)
=

x2

2R
+ · · ·

1



The best fit circle is the circle determined by matching these curves:

ycurve (x) =
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dx2
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ycircle =
x2

2R
+ · · ·

In general, the higher derivatives will not match, but we can match the second derivative by choosing the
radius of the circle:
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We define the curvature at any point of the curve to be 1
R where R is the radius of the best fit circle.

2 The curvature of projectile motion
Consider the two motions: a stone is thrown upward at a steep angle θ, landing at a distance d, while another
is thrown at high speed at a target in the same final location. Each stone follows a parabolic motion:

x = v0xt

y = v0yt−
1

2
gt2

so that

y (x) = v0y

(
x

v0x

)
− 1

2
g

(
x

v0x

)2

The distance traveled, x = d, occurs when y = 0:

0 = v0y

(
d

v0x

)
− 1

2
g

(
d

v0x

)2

d =
2v0xv0y

g

If the projectile is launched at an angle given by tan θ =
v0y
v0x

then

v0y = v0x tan θ

and

d =
2v20x tan θ

g

v0x =

√
gd

2 tan θ
v0y = v0x tan θ

=

√
1

2
gd tan θ

The maximum height is reached at when vy = 0,

0 = v0y − gt

t =
v0y
g
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and at this time we have

h =
v20y
2g

=
d

4
tan θ

We find the curvature at the top of the trajectory, P = (xtop, h) =
(
d
2 ,

d
4 tan θ

)
. At any point, the curve

may be described by

x = x0 + v0xt

y = y0 + voyt−
1

2
gt2

At the top, (x0, y0) =
(
d
2 ,

d
4 tan θ

)
and the initial velocity is (v0x, v0y) = (vox, 0). Therefore,

x =
d

2
+ v0xt

y =
d

4
tan θ − 1

2
gt2

and the curve y (x) is

t =
1

v0x

(
x− d

2

)
=

√
2 tan θ

gd

(
x− d

2

)
y =

d

4
tan θ − 1

2
g
2 tan θ

gd

(
x− d

2

)2

=
d

4
tan θ − tan θ

d

(
x− d

2

)2

The best fit circle will match the second derivative:
1

R
=

2 tan θ

d

and we see that the curvature is large for steep angles and small for shallow angles.
There is a dramatic difference in the curvature for different initial conditions. Suppose the total time of

flight,

t =
2v0y
g

=

√
2d

g
tan θ

is 1 second for one stone and 10 seconds for another over a distance d = 25 meters. Then for the first

1 =

√
50

10
tan θ

1

5
= tan θ

the curvature at the top is

1

R1
=

2 tan θ

d

=
2

125
= .016
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while for the second,

10 =

√
50

10
tan θ

tan θ = 20

and the curvature is
1

R10
=

40

25
= 1.6

The curvatures differ by a factor of 100 for ordinary trajectories. This makes is impossible to model
the motions of the stones by letting them follow geodesics in a curved 3-dimensional geometry. To build a
geometric model, we need the curvature to be very nearly the same for the two stones, so they both move
along comparably shaped paths.

3 The curvature in spacetime
Now place the motion in spacetime. The (non-relativistic) projectile follows a curve parameterized by time:

(ct, x, y) =

(
ct, v0xt,

1

2
gt2
)

The motion lies in a plane rotated in the xt plane at an angle with tanϕ = v0x
c �1. Let τ =

√
c2t2 − x2 be

proper distance (proper time!) along this direction. Then

cτ =
√
c2t2 − v20xt2

= ct

√
1− tan2 ϕ

τ ≈ t

Then we may parameterize the curve in this plane by

(cτ, y) =

(
cτ,

gτ2

2

)
=

(
λ,
gλ2

2c2

)
where we parameterize with λ = cτ . The best-fit circle to this curve gives

c2τ2

2R
=

gc2τ2

2c2

1

R
=

g

c2

and this is independent of initial conditions.
This means that the high arc of a slow stone, and the flat trajectory of a fast stone have the same

curvature in spacetime! Both trajectories could lie on a spherically curved surface where the sphere has a
huge radius, c2

g , so it is only gently curved. In sharp contrast to the Euclidean case, where a factor of 10
difference in time of flight requires a factor of 100 difference in radius of curvature, even a difference of a
factor of 104 in time of flight makes completely negligible difference to the curvature required in spacetime.
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Exerise: Find the difference in curvatures 1
R between initial velocities of 3 m

sec and 3× 104 m
sec

Answer: If we don’t neglect terms of order v2

c2 , then t and τ are related by

cτ =
√
c2t2 − v20xt2

= ct

√
1− v20x

c2

τ = t

√
1− v20x

c2

so
t =

τ√
1− v2

0x

c2

Now, when we parameterize the curve by cτ , we have

(cτ, y) =

(
cτ,

gt2

2

)

=

cτ, g

2c2

 cτ√
1− v2

0x

c2

2


Therefore, the curvature is given exactly by

c2τ2

2R
=

g

2c2
c2τ2

1− v2
0x

c2

1

R
=

g

c2
1

1− v2
0x

c2

Now consider stones thrown with velocities of 3 m
sec and 3× 104 m

sec . In the first case,

1

1− v2
0x

c2

=
1

1− 9
9×1016

=
1

1− 10−16

≈ 1 + 10−16

so the curvature is

1

R
=

g

c2
1

1− v2
0x

c2

=
9.8

9× 1016
×
(
1 + 10−16

)
≈ 1.1× 10−16 + 1.1× 10−32

For the second stone,

1

1− v2
0x

c2

=
1

1− 9×108

9×1016

=
1

1− 10−8

≈ 1 + 10−8
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and the curvature is

1

R
=

g

c2
1

1− v2
0x

c2

=
9.8

9× 1016
×
(
1 + 10−8

)
≈ 1.1× 10−16 + 1.1× 10−24

The difference between these negligible.
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