The geodesic equation as Newton’s Law of Universal Gravitation

February 22, 2015

1 The geodesic equation as Newton’s second law
We have seen that curves of extremal proper length or time satisfy the geodesic equation,
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where u® = % is the 4-velocity. Since the acceleration may be written using the chain rule as
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This describes an autoparallel: the parallel transport of the vector u® along its own direction.

In the form of eq.(1), the geodesic equation gives the acceleration of a particle in terms of geometric
quantities. This suggests that it might be possible to explain some force using the connection. If we multiply
the geodesic equation by the mass of a particle, the left side becomes the proper time rate of change of the
momentum,
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where p* = mu®. The question is, can we make the connection term look like a force?
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2 Nearly flat space

Suppose the metric is nearly that of a flat space, differing only in the time component,
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and suppose the function ¢ depends only on 7 = y/x2 + y2 + 22. Then the interval of proper time is
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We would like to find the connection, which is built from derivatives of g,,. The only nonvanishing
derivatives of the metric are
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This means the only nonvanishing connection components must have two time indices, 0, and one spatial
one, i:
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Raising the first index on each, we have
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Now return to the geodesic equation. Writing the 4-velocity as u® = ~ (c, fui) and computing each
component of the equation separately, we have
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for the time component and
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We consider the case of non-relativistic velocities,
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so that we may set v ~ 1. Then, noting that “"72 is just

a unit vector in the radial direction, we can choose ¢ so that this last expression looks like the Newton’s

gravitational force,
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Integrating,
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Notice that 2€M is just the square of the classical e

so the magnitude of ¢ is very small, ”c‘”’e < 1 for

metric differs from flat space by only a term of orde
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at normal velocities v < c.
Now consider the time component of the geode
component of the geodesic equation,

GMm .
— r
r2

2GM

r2c2

2GM
2

rc

scape velocity,

GMm

T
2GM

r

planets and ordinary stars. With this choice for ¢, the
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r —=52< and we reproduce Newton’s law of gravity,
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sic equation. Substituting this result for ¢ into the 0
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This differs from the actual rate of change of energy of a falling particle by a factor of 2. This factor is
eliminated when we use a more realistic metric.

Exercise: Repeat these arguments using the metric
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where A is constant. Can you choose A to get the correct expression for the change in energy?



