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1 The geodesic equation as Newton’s second law
We have seen that curves of extremal proper length or time satisfy the geodesic equation,

d2xα

dτ2
= −Γαµβu

µuβ (1)

where uα = dxα

dτ is the 4-velocity. Since the acceleration may be written using the chain rule as

d2xα

dτ2
=

duα

dτ

=
dxβ

dτ

∂uα

∂xβ

= uβ
∂uα

∂xβ

we may write the geodesic equation as

0 = uβ
∂uα

∂xβ
+ Γαµβu

µuβ

= uβ
(
∂uα

∂xβ
+ uµΓαµβ

)
= uβDβu

α

This describes an autoparallel : the parallel transport of the vector uα along its own direction.
In the form of eq.(1), the geodesic equation gives the acceleration of a particle in terms of geometric

quantities. This suggests that it might be possible to explain some force using the connection. If we multiply
the geodesic equation by the mass of a particle, the left side becomes the proper time rate of change of the
momentum,

dpα

dτ
= −mΓαµβu

µuβ

where pα = muα. The question is, can we make the connection term look like a force?

2 Nearly flat space
Suppose the metric is nearly that of a flat space, differing only in the time component,

gµν = ηµν +


φ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


1



=


−c2 + φ 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1


and suppose the function φ depends only on r =

√
x2 + y2 + z2. Then the interval of proper time is

dτ2 =

(
1 − 1

c2
φ

)
dt2 − 1

c2
(
dx2 + dy2 + dz2

)
We would like to find the connection, which is built from derivatives of gµν . The only nonvanishing

derivatives of the metric are

g00,i =


φ,i 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


where i = 1, 2, 3 and

φ,i =
dφ

dr

∂r

∂xi

=
dφ

dr

xi
r

This means the only nonvanishing connection components must have two time indices, 0, and one spatial
one, i:

Γ00i = Γ0i0 =
1

2
(g00,i + g0i,0 − g0i,0)

=
1

2

dφ

dr

xi
r

Γi00 =
1

2
(gi0,0 + gi0,0 − g00,i)

= −1

2

dφ

dr

xi
r

Raising the first index on each, we have

Γ0
0i = Γ0

i0 = g0αΓαi0

= g00Γ0i0

= − 1

2 (1 − φ)

dφ

dr

xi
r

and

Γi00 = giαΓα00

= gijΓj00

=
1

2

dφ

dr

xi

r

Now return to the geodesic equation. Writing the 4-velocity as uα = γ
(
c, vi

)
and computing each

component of the equation separately, we have

dp0

dτ
= −mΓ0

µβu
µuβ
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= −mΓ0
00u

0u0 −mΓ0
0iu

0ui −mΓ0
i0u

iu0 −mΓ0
iju

iuj

= −2mΓ0
0iu

0ui

= −2m

(
− 1

2 (1 − φ)

dφ

dr

xi
r

)
γ2cvi

=
mc

r (1 − φ)
γ2
dφ

dr
vixi

for the time component and

dpi

dτ
= −mΓiµβu

µuβ

= −mΓi00u
0u0 −mΓi0ju

0uj −mΓij0u
ju0 −mΓijku

juk

= −mΓi00u
0u0

= −1

2
mγ2c2

dφ

dr

xi

r

We consider the case of non-relativistic velocities, so that we may set γ ≈ 1. Then, noting that x2

r is just
a unit vector in the radial direction, we can choose φ so that this last expression looks like the Newton’s
gravitational force,

−1

2
mc2

dφ

dr
r̂ = −GMm

r2
r̂

dφ

dr
=

2GM

r2c2

Integrating,

φ = −2GM

rc2

Notice that 2GM
r is just the square of the classical escape velocity,

1

2
mv2 =

GMm

r

v2 =
2GM

r

so the magnitude of φ is very small, v
2
escape

c2 � 1 for planets and ordinary stars. With this choice for φ, the

metric differs from flat space by only a term of order v2escape
c2 , and we reproduce Newton’s law of gravity,

dp

dt
= −GMm

r2
r̂

at normal velocities v � c.
Now consider the time component of the geodesic equation. Substituting this result for φ into the 0

component of the geodesic equation,

dp0

dτ
=

1

1 + 2GM
rc2

2GMm

r2c
v · r̂

Since p0 = E
c and τ ≈ t,

dE

dt
=

1

1 + 2GM
rc2

2GMm

r2
v · r̂
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=
1

1 +
v2escape
c2

2GMm

r2
v · r̂

≈ 2GMm

r2
r̂ · v

= 2FNewton · v

This differs from the actual rate of change of energy of a falling particle by a factor of 2. This factor is
eliminated when we use a more realistic metric.

Exercise: Repeat these arguments using the metric

gµν =


−c2 + φ 0 0 0

0 1 + λφ 0 0
0 0 1 + λφ 0
0 0 0 1 + λφ


where λ is constant. Can you choose λ to get the correct expression for the change in energy?

4


