The geodesic equation as Newton's Law of Universal Gravitation

February 22, 2015

1 The geodesic equation as Newton's second law

We have seen that curves of extremal proper length or time satisfy the geodesic equation,

$$
\begin{equation*}
\frac{d^{2} x^{\alpha}}{d \tau^{2}}=-\Gamma_{\mu \beta}^{\alpha} u^{\mu} u^{\beta} \tag{1}
\end{equation*}
$$

where $u^{\alpha}=\frac{d x^{\alpha}}{d \tau}$ is the 4 -velocity. Since the acceleration may be written using the chain rule as

$$
\begin{aligned}
\frac{d^{2} x^{\alpha}}{d \tau^{2}} & =\frac{d u^{\alpha}}{d \tau} \\
& =\frac{d x^{\beta}}{d \tau} \frac{\partial u^{\alpha}}{\partial x^{\beta}} \\
& =u^{\beta} \frac{\partial u^{\alpha}}{\partial x^{\beta}}
\end{aligned}
$$

we may write the geodesic equation as

$$
\begin{aligned}
0 & =u^{\beta} \frac{\partial u^{\alpha}}{\partial x^{\beta}}+\Gamma_{\mu \beta}^{\alpha} u^{\mu} u^{\beta} \\
& =u^{\beta}\left(\frac{\partial u^{\alpha}}{\partial x^{\beta}}+u^{\mu} \Gamma^{\alpha}{ }_{\mu \beta}\right) \\
& =u^{\beta} D_{\beta} u^{\alpha}
\end{aligned}
$$

This describes an autoparallel: the parallel transport of the vector u^{α} along its own direction.
In the form of eq.(1), the geodesic equation gives the acceleration of a particle in terms of geometric quantities. This suggests that it might be possible to explain some force using the connection. If we multiply the geodesic equation by the mass of a particle, the left side becomes the proper time rate of change of the momentum,

$$
\frac{d p^{\alpha}}{d \tau}=-m \Gamma^{\alpha}{ }_{\mu \beta} u^{\mu} u^{\beta}
$$

where $p^{\alpha}=m u^{\alpha}$. The question is, can we make the connection term look like a force?

2 Nearly flat space

Suppose the metric is nearly that of a flat space, differing only in the time component,

$$
g_{\mu \nu}=\eta_{\mu \nu}+\left(\begin{array}{cccc}
\phi & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

$$
=\left(\begin{array}{cccc}
-c^{2}+\phi & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

and suppose the function ϕ depends only on $r=\sqrt{x^{2}+y^{2}+z^{2}}$. Then the interval of proper time is

$$
d \tau^{2}=\left(1-\frac{1}{c^{2}} \phi\right) d t^{2}-\frac{1}{c^{2}}\left(d x^{2}+d y^{2}+d z^{2}\right)
$$

We would like to find the connection, which is built from derivatives of $g_{\mu \nu}$. The only nonvanishing derivatives of the metric are

$$
g_{00, i}=\left(\begin{array}{cccc}
\phi_{, i} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

where $i=1,2,3$ and

$$
\begin{aligned}
\phi_{, i} & =\frac{d \phi}{d r} \frac{\partial r}{\partial x^{i}} \\
& =\frac{d \phi}{d r} \frac{x_{i}}{r}
\end{aligned}
$$

This means the only nonvanishing connection components must have two time indices, 0 , and one spatial one, i :

$$
\begin{aligned}
\Gamma_{00 i}=\Gamma_{0 i 0} & =\frac{1}{2}\left(g_{00, i}+g_{0 i, 0}-g_{0 i, 0}\right) \\
& =\frac{1}{2} \frac{d \phi}{d r} \frac{x_{i}}{r} \\
\Gamma_{i 00} & =\frac{1}{2}\left(g_{i 0,0}+g_{i 0,0}-g_{00, i}\right) \\
& =-\frac{1}{2} \frac{d \phi}{d r} \frac{x_{i}}{r}
\end{aligned}
$$

Raising the first index on each, we have

$$
\begin{aligned}
\Gamma_{0 i}^{0}=\Gamma_{i 0}^{0} & =g^{0 \alpha} \Gamma_{\alpha i 0} \\
& =g^{00} \Gamma_{0 i 0} \\
& =-\frac{1}{2(1-\phi)} \frac{d \phi}{d r} \frac{x_{i}}{r}
\end{aligned}
$$

and

$$
\begin{aligned}
\Gamma_{00}^{i} & =g^{i \alpha} \Gamma_{\alpha 00} \\
& =g^{i j} \Gamma_{j 00} \\
& =\frac{1}{2} \frac{d \phi}{d r} \frac{x^{i}}{r}
\end{aligned}
$$

Now return to the geodesic equation. Writing the 4 -velocity as $u^{\alpha}=\gamma\left(c, v^{i}\right)$ and computing each component of the equation separately, we have

$$
\frac{d p^{0}}{d \tau}=-m \Gamma_{\mu \beta}^{0} u^{\mu} u^{\beta}
$$

$$
\begin{aligned}
& =-m \Gamma_{00}^{0} u^{0} u^{0}-m \Gamma_{0 i}^{0} u^{0} u^{i}-m \Gamma_{i 0}^{0} u^{i} u^{0}-m \Gamma_{i j}^{0} u^{i} u^{j} \\
& =-2 m \Gamma_{0 i}^{0} u^{0} u^{i} \\
& =-2 m\left(-\frac{1}{2(1-\phi)} \frac{d \phi}{d r} \frac{x_{i}}{r}\right) \gamma^{2} c v^{i} \\
& =\frac{m c}{r(1-\phi)} \gamma^{2} \frac{d \phi}{d r} v^{i} x_{i}
\end{aligned}
$$

for the time component and

$$
\begin{aligned}
\frac{d p^{i}}{d \tau} & =-m \Gamma^{i}{ }_{\mu \beta} u^{\mu} u^{\beta} \\
& =-m \Gamma^{i}{ }_{00} u^{0} u^{0}-m \Gamma^{i}{ }_{0 j} u^{0} u^{j}-m \Gamma^{i}{ }_{j 0} u^{j} u^{0}-m \Gamma^{i}{ }_{j k} u^{j} u^{k} \\
& =-m \Gamma^{i}{ }_{00} u^{0} u^{0} \\
& =-\frac{1}{2} m \gamma^{2} c^{2} \frac{d \phi}{d r} \frac{x^{i}}{r}
\end{aligned}
$$

We consider the case of non-relativistic velocities, so that we may set $\gamma \approx 1$. Then, noting that $\frac{x^{2}}{r}$ is just a unit vector in the radial direction, we can choose ϕ so that this last expression looks like the Newton's gravitational force,

$$
\begin{aligned}
-\frac{1}{2} m c^{2} \frac{d \phi}{d r} \hat{\mathbf{r}} & =-\frac{G M m}{r^{2}} \hat{\mathbf{r}} \\
\frac{d \phi}{d r} & =\frac{2 G M}{r^{2} c^{2}}
\end{aligned}
$$

Integrating,

$$
\phi=-\frac{2 G M}{r c^{2}}
$$

Notice that $\frac{2 G M}{r}$ is just the square of the classical escape velocity,

$$
\begin{aligned}
\frac{1}{2} m v^{2} & =\frac{G M m}{r} \\
v^{2} & =\frac{2 G M}{r}
\end{aligned}
$$

so the magnitude of ϕ is very small, $\frac{v_{\text {escape }}^{2}}{c^{2}} \ll 1$ for planets and ordinary stars. With this choice for ϕ, the metric differs from flat space by only a term of order $\frac{v_{\text {escape }}^{2}}{c^{2}}$, and we reproduce Newton's law of gravity,

$$
\frac{d \mathbf{p}}{d t}=-\frac{G M m}{r^{2}} \hat{\mathbf{r}}
$$

at normal velocities $v \ll c$.
Now consider the time component of the geodesic equation. Substituting this result for ϕ into the 0 component of the geodesic equation,

$$
\frac{d p^{0}}{d \tau}=\frac{1}{1+\frac{2 G M}{r c^{2}}} \frac{2 G M m}{r^{2} c} \mathbf{v} \cdot \hat{\mathbf{r}}
$$

Since $p^{0}=\frac{E}{c}$ and $\tau \approx t$,

$$
\frac{d E}{d t}=\frac{1}{1+\frac{2 G M}{r c^{2}}} \frac{2 G M m}{r^{2}} \mathbf{v} \cdot \hat{\mathbf{r}}
$$

$$
\begin{aligned}
& =\frac{1}{1+\frac{v_{\text {escape }}^{2}}{c^{2}}} \frac{2 G M m}{r^{2}} \mathbf{v} \cdot \hat{\mathbf{r}} \\
& \approx \frac{2 G M m}{r^{2}} \hat{\mathbf{r}} \cdot \mathbf{v} \\
& =2 \mathbf{F}_{\text {Newton }} \cdot \mathbf{v}
\end{aligned}
$$

This differs from the actual rate of change of energy of a falling particle by a factor of 2 . This factor is eliminated when we use a more realistic metric.

Exercise: Repeat these arguments using the metric

$$
g_{\mu \nu}=\left(\begin{array}{cccc}
-c^{2}+\phi & 0 & 0 & 0 \\
0 & 1+\lambda \phi & 0 & 0 \\
0 & 0 & 1+\lambda \phi & 0 \\
0 & 0 & 0 & 1+\lambda \phi
\end{array}\right)
$$

where λ is constant. Can you choose λ to get the correct expression for the change in energy?

