Parallel transport and geodesics
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1 Parallel transport

Before defining a general notion of curvature for an arbitrary space, we need to know how to compare vectors
at different positions on a manifold. Parallel transport provides a way to compare a vector in one tangent
plane to a vector in another, by moving the vector along a curve without changing it. Suppose we have a
curve with unit tangent t in flat space and Cartesian coordinates. Then to move a vector v along this curve
without changing it simply means holding the components constant. At any point A\ along the curve, we
may find the transported components by solving

(t-V)v=0

or, in components,
t'o;v7 =0

Since the connection vanishes in Cartesian coordinates, this is the same as writing
tlDﬂ)j = 0

but this expression now holds in any coordinates. The same argument holds in a curved space because close
enough to any point we may find Cartesian coordinates, transport infinitesimally, then change coordinates
to Cartesian again. At each point, the Cartesian expression may be written covariantly, but the covariant
expression is the same at every point of the curve regardless of coordinates. We therefore define parallel
transport of a vector v* along a curve with tangent u® (\) = % to be the solution v® (A) to the equation

u*Dov? =0
A curve is called autoparallel if it is transported along its own direction,
v*Dov? =0
Notice that parallel transport preserves the length of the vector because
u®D,, (|v|2> = u*Dq (guv'v”)
u® (Do guv"v” + gy Do v” + g v Dov”)

= guv (U Dv") V" + g (u* Do)
0

2 Example: parallel transport on the 2-sphere

Consider the parallel transport of a vector around a 8 = 0y curve on the 2-sphere. The curve itself may
parameterized using ¢ as z° = (o, ), with tangent, t* = (0,1). The length of this tangent vector is given



by
12 = g”tltj
= RZ%sin%6,
so the unit tangent is
ut = _ (0,1)
Rsinfy

At 0 =0, let v’ = (118, vo‘p), and solve the parallel transport equation for v? (),

0 = u'D;jv?
1 .
= —— D
Rsin 6y oY
0 = 0,07 + oMY,

2.1 The metric

Since the metric is given by the line element, ds? = R2d#? + sin® 0de?, we have, in matrix components,

(R 0
95 =\ 0 R2sin26

1
g 1 0
gv7 = ( e 1 >
0 R2sin? 0

There are intrinsic ways to get this metric. One approach is to specify the symmetries we require — three
independent rotations. There are techniques for finding the most general metric with given symmetry, so we
can derive this form directly. Alternatively, we could ask for 2-dim spaces of constant curvature. Computing
the metric for a general 2-geometry, then imposing constant curvature gives a set of differential equations
that will lead to this form.

with inverse

2.2 The connection

Since the only non-constant component of the metric tensor is g,,, there are only three nonvanishing
connection components,
_ 1o
v o 29
11 9 . 9
= o (- @s’0))

= —sinfcosf

Feso (906,0 + 90,0 — Gp0,0)
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Fiw = FfoG = 59%9 (9.0 + 90,0 — 9000.0)
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2.3 Parallel transport
The parallel transport equation becomes
0 = Qovj + ka‘j,w

= 0,07 +0°T%, + 071,



There are two components to check. For j = 0 we have

_ 0 0
0 = Jpv” +0v7T,
ov?
= — —v?%sinfycosby

dp
For j = ¢,
0 = 0,0+ vel"gw

Ov?  peosby
Oy sin 6

Therefore, we need to solve the coupled equations,

0
0 = aifv‘psinﬂocoseg
¢
0 — Ov? v(,cosﬁo
dy sin 6

Taking a second derivative of the first equation and substituting the second,

%% ow®
0 = 77)2 - Lsineocos%

dp ot
0?v?  pcosby

= — 3in Ay cos 6
9.2 v o sin 6 cos b
82 0

= 3 v2 + 0% cos? 6,

¥

Similarly, differentiating the second equation and substituting the first we have

%v?  ow? cosb

0 =
Op? + dyp sin by
9?%v¥ cos 0y
= #sin O 0
&pz + v* sin 0y cos Osin90
9%v¥

= 907 + v¥ cos? 6y

Each of these is just the equation for sinusoidal oscillation, so we may immediately write the solution,

v (¢) = Acosap+ Bsinayp
v¥(p) = Ccosap+ Dsinayp
with the frequency a given by
« = cos by

Starting the curve at ¢ = 0, it will close at ¢ = 2. Then for v® we have the initial condition v® (0) = (vg, vg),
and from the original differential equations we must have

o 0

& = wg sinfcos by
dy =0

ov? B g cos by

dp =0 N 0 sin 6y




These conditions determine the constants A, B, C, D to be

o
vy sinfg cos by .
v (p) = vfcosap+ 2" sinayp

= vf cos ayp + v sin f sin ap
0
v,
v (p) = v cosap — —2
sin 6y

sin agp

This gives the form of the transported vector at any point around the circle,

v’ (p) = vfcos(pcosby) + vf sin by sin (¢ cos )
0
v (p) = v cos(pcosby) — sinoeo sin (¢ cos 6p)

Look at the inner product of v with the tangent vector at the same point, u = m (0,1),

0
u-v o= gyut? <v60 cos (¢ cosfy) — sizof)o sin (¢ cos 90))
of
= Rsinb <vg cos (pcosby) — — 00 sin (gocos@o)>
sin tg

= ¢ Rsinbycos (@ cosby) — vh Rsin (pcos )

If the circle is at the equator, y = 7, then

is constant. On the other hand, near the pole, 8y < 1,
u-v = vfRlycosp — v Rsing

and the transported vector rotates almost completely around the tangent.

3 Geodesics

Consider a curve, z (A) in an arbitrary (possibly curved) spacetime, with the proper interval given by
dr? = —gapda®dz”

Then the 4-velocity along the curve is given by

e
T odr

ua

and in an arbitrary parameterization, the tangent is t* = %. Then proper time (or length) along the curve
is given by integrating

T = /\/—gagda:“dajﬁ
0

_ dadaf
JeB7 0N "dA



A curve of extremal proper length is called a geodesic. We may find an equation for geodesics by finding the
equation for the extrema of 7,
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Now choose the parameter A to be proper time (length) so that
dotda? _ detda?
JoB7aN "dx JoB g "dr
= —62
= -1

Then we have
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The equation for the geodesic is therefore

1 duP du®
0 = 5 <g#5,yu”u’8 + ga#,uul’uo‘ — gaﬁ,#uau'g + g#g? + gwdT)



1 o B du®
) (IuB.o + Gau,8 — Gapu) u™u” + IuB~ =
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0 = gluyg#ﬁ? + 59“11 (guﬁ,a + Gap,B — gaﬁ,#) uauﬁ
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But this is just
du” v e B u du” o
i + I puu” = wu dquru IR
= u'Dyu”
and we have the equation for an autoparallel,
d v
u/‘D“uV = % + Iwaﬁuauﬂ =0

4 Example: Geodesics on the 2-sphere

Once again consider the 2-sphere, but not look for autoparallels. We have the connection components,

I’ew; = —sinfcosf
Ut = g
and the equations to solve are now,
C%_e + Feaﬁuauﬁ =0
d(;ij +T%uu’ = 0

Expanding the first, there is only one nonvanishing connection term,

du?

o Fputu? =0
d 4
di—(u“")Qsin(?cosg =0
-
For the second,
du®
bl ® a, B _
= —|—I‘aﬁu uw = 0
du®
dL+Fi9u“’u9+F“"9¢u9u“’ = 0
-
CZL—W—F u”ue—c?sg =0
T sin
Let the initial conditions be
T
00 == 5
v = 0
u = 1
ug = 0



Since every point and direction on the sphere are equivalent, there is no loss of generality in this choice.
Then we initially have

0
(CZ:_) = (uf)”sin by cos by
0
0

and u? does not change. For the ¢ equation, it follows that
du® cosf
- —ouPul =2
dr U Sing
= 0

so u? is also constant and the velocity vector is

u' = (0,1)
Integrating to find the curve,
do
;iTT =0
< =
so ) =0y = 5 and ¢ = 9o + 7 = 7. The curve is therefore the equator,
(0, ¢) = (0,7)

We may characterize the equator as the intersection of the unique plane normal to the surface, containing
the initial velocity vector. Such a plane always passes through the center of the sphere, so all geodesics are
given by great circles.



