
Parallel transport and geodesics

February 4, 2015

1 Parallel transport
Before defining a general notion of curvature for an arbitrary space, we need to know how to compare vectors
at different positions on a manifold. Parallel transport provides a way to compare a vector in one tangent
plane to a vector in another, by moving the vector along a curve without changing it. Suppose we have a
curve with unit tangent t in flat space and Cartesian coordinates. Then to move a vector v along this curve
without changing it simply means holding the components constant. At any point λ along the curve, we
may find the transported components by solving

(t ·∇)v = 0

or, in components,
ti∂iv

j = 0

Since the connection vanishes in Cartesian coordinates, this is the same as writing

tiDiv
j = 0

but this expression now holds in any coordinates. The same argument holds in a curved space because close
enough to any point we may find Cartesian coordinates, transport infinitesimally, then change coordinates
to Cartesian again. At each point, the Cartesian expression may be written covariantly, but the covariant
expression is the same at every point of the curve regardless of coordinates. We therefore define parallel
transport of a vector vα along a curve with tangent uα (λ) = dxα

dλ to be the solution vα (λ) to the equation

uαDαv
β = 0

A curve is called autoparallel if it is transported along its own direction,

vαDαv
β = 0

Notice that parallel transport preserves the length of the vector because

uαDα

(
|v|2

)
= uαDα (gµνv

µvν)

= uα (Dαgµνv
µvν + gµνDαv

µvν + gµνv
µDαv

ν)

= gµν (uαDαv
µ) vν + gµνv

µ (uαDαv
ν)

= 0

2 Example: parallel transport on the 2-sphere
Consider the parallel transport of a vector around a θ = θ0 curve on the 2-sphere. The curve itself may
parameterized using ϕ as xi = (θ0, ϕ), with tangent, ti = (0, 1). The length of this tangent vector is given
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by

l2 = gijt
itj

= R2 sin2 θ0

so the unit tangent is

ui =
1

R sin θ0
(0, 1)

At ϕ = 0, let vi =
(
vθ0 , v

ϕ
0

)
, and solve the parallel transport equation for vi (ϕ),

0 = uiDiv
j

=
1

R sin θ0
Dϕv

j

0 = ∂ϕv
j + vkΓjkϕ

2.1 The metric
Since the metric is given by the line element, ds2 = R2dθ2 + sin2 θdϕ2, we have, in matrix components,

gij =

(
R2 0
0 R2 sin2 θ

)
with inverse

gij =

(
1
R2 0
0 1

R2 sin2 θ

)
There are intrinsic ways to get this metric. One approach is to specify the symmetries we require – three
independent rotations. There are techniques for finding the most general metric with given symmetry, so we
can derive this form directly. Alternatively, we could ask for 2-dim spaces of constant curvature. Computing
the metric for a general 2-geometry, then imposing constant curvature gives a set of differential equations
that will lead to this form.

2.2 The connection
Since the only non-constant component of the metric tensor is gϕϕ, there are only three nonvanishing
connection components,

Γθϕϕ =
1

2
gθθ (gθϕ,ϕ + gθϕ,ϕ − gϕϕ,θ)

=
1

2

1

R2

(
−
(
R2 sin2 θ

)
,θ

)
= − sin θ cos θ

Γϕθϕ = Γϕϕθ =
1

2
gϕϕ (gϕϕ,θ + gϕθ,ϕ − gθϕ,ϕ)

=
1

2

1

R2 sin2 θ

(
R2 sin2 θ

)
,θ

=
cos θ

sin θ

2.3 Parallel transport
The parallel transport equation becomes

0 = ∂ϕv
j + vkΓjkϕ

= ∂ϕv
j + vθΓjθϕ + vϕΓjϕϕ
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There are two components to check. For j = θ we have

0 = ∂ϕv
θ + vϕΓθϕϕ

=
∂vθ

∂ϕ
− vϕ sin θ0 cos θ0

For j = ϕ,

0 = ∂ϕv
ϕ + vθΓϕθϕ

=
∂vϕ

∂ϕ
+ vθ

cos θ0
sin θ0

Therefore, we need to solve the coupled equations,

0 =
∂vθ

∂ϕ
− vϕ sin θ0 cos θ0

0 =
∂vϕ

∂ϕ
+ vθ

cos θ0
sin θ0

Taking a second derivative of the first equation and substituting the second,

0 =
∂2vθ

∂ϕ2
− ∂vϕ

∂ϕ
sin θ0 cos θ0

=
∂2vθ

∂ϕ2
+ vθ

cos θ0
sin θ0

sin θ0 cos θ0

=
∂2vθ

∂ϕ2
+ vθ cos2 θ0

Similarly, differentiating the second equation and substituting the first we have

0 =
∂2vϕ

∂ϕ2
+
∂vθ

∂ϕ

cos θ0
sin θ0

=
∂2vϕ

∂ϕ2
+ vϕ sin θ0 cos θ0

cos θ0
sin θ0

=
∂2vϕ

∂ϕ2
+ vϕ cos2 θ0

Each of these is just the equation for sinusoidal oscillation, so we may immediately write the solution,

vθ (ϕ) = A cosαϕ+B sinαϕ

vϕ (ϕ) = C cosαϕ+D sinαϕ

with the frequency α given by
α = cos θ0

Starting the curve at ϕ = 0, it will close at ϕ = 2π. Then for vα we have the initial condition vα (0) =
(
vθ0 , v

ϕ
0

)
,

and from the original differential equations we must have

∂vθ

∂ϕ

∣∣∣∣
ϕ=0

= vϕ0 sin θ0 cos θ0

∂vϕ

∂ϕ

∣∣∣∣
ϕ=0

= −vθ0
cos θ0
sin θ0
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These conditions determine the constants A,B,C,D to be

vθ (ϕ) = vθ0 cosαϕ+
vϕ0 sin θ0 cos θ0

α
sinαϕ

= vθ0 cosαϕ+ vϕ0 sin θ0 sinαϕ

vϕ (ϕ) = vϕ0 cosαϕ− vθ0
sin θ0

sinαϕ

This gives the form of the transported vector at any point around the circle,

vθ (ϕ) = vθ0 cos (ϕ cos θ0) + vϕ0 sin θ0 sin (ϕ cos θ0)

vϕ (ϕ) = vϕ0 cos (ϕ cos θ0)− vθ0
sin θ0

sin (ϕ cos θ0)

Look at the inner product of v with the tangent vector at the same point, u = 1
R sin θ0

(0, 1),

u · v = gϕϕt
ϕ

(
vϕ0 cos (ϕ cos θ0)− vθ0

sin θ0
sin (ϕ cos θ0)

)
= R sin θ0

(
vϕ0 cos (ϕ cos θ0)− vθ0

sin θ0
sin (ϕ cos θ0)

)
= vϕ0R sin θ0 cos (ϕ cos θ0)− vθ0R sin (ϕ cos θ0)

If the circle is at the equator, θ0 = π
2 , then

u · v = vϕ0R

is constant. On the other hand, near the pole, θ0 � 1,

u · v = vϕ0Rθ0 cosϕ− vθ0R sinϕ

and the transported vector rotates almost completely around the tangent.

3 Geodesics
Consider a curve, xα (λ) in an arbitrary (possibly curved) spacetime, with the proper interval given by

dτ2 = −gαβdxαdxβ

Then the 4-velocity along the curve is given by

uα =
dxα

dτ

and in an arbitrary parameterization, the tangent is tα = dxα

dλ . Then proper time (or length) along the curve
is given by integrating

τ =

τ̂

0

√
−gαβdxαdxβ

=

τ̂

0

√
−gαβ

dxα

dλ

dxβ

dλ
dλ
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A curve of extremal proper length is called a geodesic. We may find an equation for geodesics by finding the
equation for the extrema of τ ,

0 = δτ

= δ

τ̂

0

√
−gαβ

dxα

dλ

dxβ

dλ
dλ

= −
τ̂

0

1

2
√
−gαβ dx

α

dλ
dxβ

dλ

δ

(
gαβ

dxα

dλ

dxβ

dλ

)
dλ

= −
τ̂

0

1

2
√
−gαβ dx

α

dλ
dxβ

dλ

(
δgαβ

dxα

dλ

dxβ

dλ
+ gαβ

dδxα

dλ

dxβ

dλ
+ gαβ

dxα

dλ

dδxβ

dλ

)
dλ

= −
τ̂

0

1

2
√
−gαβ dx

α

dλ
dxβ

dλ

(
gαβ,µ

dxα

dλ

dxβ

dλ

)
δxµdλ

+

τ̂

0

d

dλ

 1

2
√
−gαβ dx

α

dλ
dxβ

dλ

gαβ
dxβ

dλ

 δxαdλ

+

τ̂

0

d

dλ

 1

2
√
−gαβ dx

α

dλ
dxβ

dλ

gαβ
dxα

dλ

 δxβdλ

Now choose the parameter λ to be proper time (length) so that

gαβ
dxα

dλ

dxβ

dλ
= gαβ

dxα

dτ

dxβ

dτ

= −c2

= −1

Then we have

0 =
1

2

τ̂

0

((
−gαβ,µ

dxα

dτ

dxβ

dτ

)
δxµ +

d

dτ

(
gαβ

dxβ

dτ

)
δxα +

d

dτ

(
gαβ

dxα

dτ

)
δxβ

)
dλ

=
1

2

τ̂

0

((
−gαβ,µuαuβ

)
δxµ +

d

dτ

(
gαβu

β
)
δxα +

d

dτ
(gαβu

α) δxβ
)
dλ

=
1

2

τ̂

0

((
−gαβ,µuαuβ

)
δxµ +

(
gαβ,ν

dxν

dτ
uβ + gαβ

duβ

dτ

)
δxα +

(
gαβ,ν

dxν

dτ
uα + gαβ

duα

dτ

)
δxβ

)
dλ

=
1

2

τ̂

0

((
−gαβ,µuαuβ

)
+

(
gµβ,νu

νuβ + gµβ
duβ

dτ

)
+ gαµ,νu

νuα + gαµ
duα

dτ

)
δxµdλ

=
1

2

τ̂

0

(
gµβ,νu

νuβ + gαµ,νu
νuα − gαβ,µuαuβ + gµβ

duβ

dτ
+ gαµ

duα

dτ

)
δxµdλ

The equation for the geodesic is therefore

0 =
1

2

(
gµβ,νu

νuβ + gαµ,νu
νuα − gαβ,µuαuβ + gµβ

duβ

dτ
+ gαµ

duα

dτ

)
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=
1

2
(gµβ,α + gαµ,β − gαβ,µ)uαuβ + gµβ

duβ

dτ

0 = gµνgµβ
duβ

dτ
+

1

2
gµν (gµβ,α + gαµ,β − gαβ,µ)uαuβ

0 =
duν

dτ
+ Γναβu

αuβ

But this is just

duν

dτ
+ Γναβu

αuβ = uµ
(
duν

dxµ
+ uαΓναµ

)
= uµDµu

ν

and we have the equation for an autoparallel,

uµDµu
ν =

duν

dτ
+ Γναβu

αuβ = 0

4 Example: Geodesics on the 2-sphere
Once again consider the 2-sphere, but not look for autoparallels. We have the connection components,

Γθϕϕ = − sin θ cos θ

Γϕθϕ = Γϕϕθ =
cos θ

sin θ

and the equations to solve are now,

duθ

dτ
+ Γθαβu

αuβ = 0

duϕ

dτ
+ Γϕαβu

αuβ = 0

Expanding the first, there is only one nonvanishing connection term,

duθ

dτ
+ Γθϕϕu

ϕuϕ = 0

duθ

dτ
− (uϕ)

2
sin θ cos θ = 0

For the second,

duϕ

dτ
+ Γϕαβu

αuβ = 0

duϕ

dτ
+ Γϕϕθu

ϕuθ + Γϕθϕu
θuϕ = 0

duϕ

dτ
+ 2uϕuθ

cos θ

sin θ
= 0

Let the initial conditions be

θ0 =
π

2
ϕ0 = 0

uϕ0 = 1

uθ0 = 0

6



Since every point and direction on the sphere are equivalent, there is no loss of generality in this choice.
Then we initially have (

duθ

dτ

)
0

= (uϕ0 )
2

sin θ0 cos θ0

= 0

and uθ does not change. For the ϕ equation, it follows that

duϕ

dτ
= −2uϕuθ

cos θ

sin θ
= 0

so uϕ is also constant and the velocity vector is

ui = (0, 1)

Integrating to find the curve,

dθ

dτ
= 0

dϕ

dτ
= 1

so θ = θ0 = π
2 and ϕ = ϕ0 + τ = τ . The curve is therefore the equator,

(θ, ϕ) = (0, τ)

We may characterize the equator as the intersection of the unique plane normal to the surface, containing
the initial velocity vector. Such a plane always passes through the center of the sphere, so all geodesics are
given by great circles.

7


