Gaussian curvature

February 22, 2015

Curvature may be defined as the rate at which the amount a vector rotates when transported around an infinitesmal closed loop with respect to the area enclosed by the loop, evaluated at a point. This agrees with Gauss's definition for two surfaces, given in terms of the curvature of curves.

1 Gaussian curvature

Gauss developed a way to characterize cuvature for 2-dimensional spaces embeded in R^{3}, and showed that it can be computed without reference to the embedding.

1.1 The curvature of a curve

Previously, we defined the curvature of a planar curve as the inverse radius of the best fit circle. Here we generalize this definition to curves in three dimensions. To begin, let the curve be given by $\mathbf{x}(\lambda)=$ $(x(\lambda), y(\lambda), z(\lambda))$ in Euclidean 3-space where the parameter λ is arclength. The tangent vector to the curve is given by $\mathbf{n}=\frac{d \mathbf{x}}{d \lambda}$. This will always be a unit vector since we choose arclength as the parameter. We define a unique direction orthogonal to \mathbf{n} by taking another derivative,

$$
\mathbf{m} \equiv \frac{1}{\kappa} \frac{d \mathbf{n}}{d \lambda}
$$

where we choose κ to make \mathbf{m} a unit vector. Notice that since $\mathbf{n} \cdot \mathbf{n}=1$, differentiating shows that \mathbf{m} is orthogonal to \mathbf{n},

$$
\mathbf{n} \cdot \frac{d \mathbf{n}}{d \lambda}=0
$$

The cross product, $\mathbf{k}=\mathbf{n} \times \mathbf{m}$ gives a third unit vector orthogonal to \mathbf{n} and \mathbf{m}. We take the best fit circle to lie in the \mathbf{n}, \mathbf{m} plane with its center on the line determined by \mathbf{m}. The circle will also have unit tangent vector \mathbf{n}.

To describe the best fit circle, we expand both the circle and the curve near a point P of the curve. Let $\mathbf{x}(0)=P$. Then to second order near P the curve is

$$
\begin{aligned}
\mathbf{x}(\lambda) & =\mathbf{x}(0)+\frac{d \mathbf{x}(0)}{d \lambda} \lambda+\frac{1}{2!} \frac{d^{2} \mathbf{x}(0)}{d \lambda^{2}} \lambda^{2} \\
& =\mathbf{x}(0)+\mathbf{n}(0) \lambda+\frac{1}{2!} \kappa \mathbf{m} \lambda^{2}
\end{aligned}
$$

The circle has its center at $\mathbf{x}(0)+R \mathbf{m}$ and lies in the \mathbf{n}, \mathbf{m} plane. Therefore, all points on the circle are described by points

$$
\mathbf{x}_{\text {circle }}(x, y)=(\mathbf{x}(0)+R \mathbf{m})+x \mathbf{n}+y \mathbf{m}
$$

where $x^{2}+y^{2}=R^{2}$. We may parameterize the circle by setting

$$
\begin{aligned}
& x=R \sin \frac{\xi}{R} \\
& y=-R \cos \frac{\xi}{R}
\end{aligned}
$$

so that

$$
\mathbf{x}_{\text {circle }}(\xi)=(\mathbf{x}(0)+R \mathbf{m})+\mathbf{n} R \sin \frac{\xi}{R}-\mathbf{m} R \cos \frac{\xi}{R}
$$

These are chosen so that ξ measures arc length on the circle (note that $\frac{d \mathbf{x}_{\text {circle }}(0)}{d \xi}=\mathbf{n}$ so the tangents coincide) and $\mathbf{x}_{\text {circle }}(0)=\mathbf{x}(0)=P$.

To second order, the circle and the curve coincide, and both ξ and λ measure arc length, so to second order, $\xi=\lambda$. Therefore, expanding the sine and cosine in $\mathbf{x}_{\text {circle }}(\lambda)$ to second order,

$$
\begin{aligned}
\mathbf{x}_{\text {circle }}(\lambda) & =(\mathbf{x}(0)+R \mathbf{m})+\mathbf{n} \lambda-\mathbf{m} R\left(1-\frac{1}{2!}\left(\frac{\lambda}{R}\right)^{2}\right) \\
& =\mathbf{x}(0)+\mathbf{n} \lambda+\frac{1}{2!} \frac{1}{R} \lambda^{2} \mathbf{m}
\end{aligned}
$$

and equating the curves

$$
\begin{aligned}
\mathbf{x}(\lambda) & =\mathbf{x}_{\text {circle }}(\lambda) \\
\mathbf{x}(0)+\mathbf{n}(0) \lambda+\frac{1}{2!} \kappa \mathbf{m} \lambda^{2} & =\mathbf{x}(0)+\mathbf{n} \lambda+\frac{1}{2!} \frac{1}{R} \lambda^{2} \mathbf{m}
\end{aligned}
$$

we see that κ is the curvature of the best fit circle.
The curvature of the curve is therefore defined as the magnitude of the rate of change of this unit normal,

$$
\kappa=\left|\frac{d \mathbf{n}(\lambda)}{d \lambda}\right|
$$

Exercise: Find the curvature of the spiral, $\mathbf{x}(\lambda)=\frac{1}{\sqrt{R^{2}+1}}(R \cos \lambda, R \sin \lambda, \lambda)$ at every point.

1.2 Gaussian curvature of a 2-surface

Now consider a 2-dimensional surface embedded in Euclidean 3-space. We define the Gaussian curvature of a 2 -surface as follows.

At any point, \mathcal{P}, of a surface, S, consider the normal, \mathbf{n}, to the surface. Choose any plane P containing this vector. Any two such planes are related by the angle, φ, between them, while they intersect in the line containing \mathbf{n}. We may therefore label all planes containing \mathbf{n} by φ, giving $P(\varphi)$. The intersection of the surface S with any one of these planes will be a curve, $C(\varphi)$, lying in $P(\varphi)$. There is a unique circle in the plane $P(\varphi)$ which (a) passes through \mathcal{P}, (b) is tangent to $C(\varphi)$, and (c) has curvature $\kappa(\varphi)$ matching $C(\varphi)$. This is called the osculating (i.e., kissing), or best fit, circle.

The curvatures of the full set of osculating circles give a bounded function, $\kappa(\varphi)$ on a bounded interval, $[0,2 \pi]$. The function therefore has a maximum and a minimum, κ_{1} and κ_{2} respectively called the principal curvatures. The intrinsic curvature of the surface is defined as the product of the principal curvatures,

$$
\mathcal{R} \equiv \kappa_{1} \kappa_{2}
$$

There is another quantity, the extrinsic curvature defined as the sum, $\kappa_{1}+\kappa_{2}$. The intrinsic curvature may be calculated knowing only the metric of the 2-surface, but the extrinsic curvature depends on how the shape is embedded in 3-dimensions. For example, a plane and a cylinder both have zero intrinsic curvature (cutting the cylinder, it flattens into a plane) but while the plane has $\kappa_{1}=\kappa_{2}=0$, the cylinder has $\kappa_{1}=\frac{1}{R}, \kappa_{2}=0$, hence nonzero extrinsic curvature.

We compute the Gaussian curvature of the 2 -sphere. It is easy to see that for the 2 -sphere, the principal curvatures are equal to one another, since the intersection of a plane normal to the sphere always gives a great circle. Now consider a great circle through the north pole - any curve of constant φ will do. In the
embedding 3-space, taking $\varphi=0$, the curve is $x^{i}=(R \sin \theta, 0, R \cos \theta)=\left(R \sin \frac{s}{R}, 0, R \cos \frac{s}{R}\right)$, where s is the arclength. The unit tangent is therefore

$$
\begin{aligned}
\mathbf{n} & =\frac{d x^{i}}{d s} \\
& =\left(\cos \frac{s}{R}, 0,-\sin \frac{s}{R}\right)
\end{aligned}
$$

At the north pole, $s=0$, and the tangent points in the x-direction as expected. The principle curvature, $\kappa_{1}=\kappa_{2}$, is given by the magnitude of

$$
\begin{aligned}
\frac{d \mathbf{n}}{d s} & =\frac{1}{R}\left(-\sin \frac{s}{R}, 0,-\cos \frac{s}{R}\right) \\
& =\frac{1}{R}(-\hat{\mathbf{k}})
\end{aligned}
$$

so we have $\kappa_{1}=\kappa_{2}=\frac{1}{R}$ and the Gaussian curvature is

$$
\mathcal{R}=\frac{1}{R^{2}}
$$

which agrees with our previous result.

1.3 Gaussian curvature in the language of manifolds

The surface is a manifold, and may be described parametrically using two parameters,

$$
\mathbf{x}(\lambda, \xi)=(x(\lambda, \xi), y(\lambda, \xi), z(\lambda, \xi))
$$

and this provides a chart at each point of the manifold. The metric of the surface is

$$
d s^{2}=d \mathbf{x} \cdot d \mathbf{x}
$$

where

$$
d \mathbf{x}=\left(\frac{\partial x}{\partial \lambda} d \lambda+\frac{\partial x}{\partial \xi} d \xi, \frac{\partial y}{\partial \lambda} d \lambda+\frac{\partial y}{\partial \xi} d \xi, \frac{\partial z}{\partial \lambda} d \lambda+\frac{\partial z}{\partial \xi} d \xi\right)
$$

Then

$$
\begin{aligned}
d s^{2}= & \left(\frac{\partial x}{\partial \lambda} d \lambda+\frac{\partial x}{\partial \xi} d \xi\right)^{2}+\left(\frac{\partial y}{\partial \lambda} d \lambda+\frac{\partial y}{\partial \xi} d \xi\right)^{2}+\left(\frac{\partial z}{\partial \lambda} d \lambda+\frac{\partial z}{\partial \xi} d \xi\right)^{2} \\
= & \left(\left(\frac{\partial x}{\partial \lambda}\right)^{2}+\left(\frac{\partial y}{\partial \lambda}\right)^{2}+\left(\frac{\partial z}{\partial \lambda}\right)^{2}\right) d \lambda^{2}+2\left(\frac{\partial x}{\partial \lambda} \frac{\partial x}{\partial \xi}+\frac{\partial y}{\partial \lambda} \frac{\partial y}{\partial \xi}+\frac{\partial z}{\partial \lambda} \frac{\partial z}{\partial \xi}\right) d \lambda d \xi \\
& +\left(\left(\frac{\partial x}{\partial \xi}\right)^{2}+\left(\frac{\partial y}{\partial \xi}\right)^{2}+\left(\frac{\partial z}{\partial \xi}\right)^{2}\right) d \xi^{2} \\
= & g_{11} d \lambda^{2}+\left(g_{12}+g_{21}\right) d \lambda d \xi+g_{22} d \xi^{2}
\end{aligned}
$$

where $g_{12}=g_{21}$ and all components $g_{i j}$ are now functions of λ, ξ only. Knowing these components, we may compute the curvature by the methods described in the previous Note.

