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Curvature may be defined as the rate at which the amount a vector rotates when transported around an
infinitesmal closed loop with respect to the area enclosed by the loop, evaluated at a point. This agrees with
Gauss’s definition for two surfaces, given in terms of the curvature of curves.

1 Gaussian curvature
Gauss developed a way to characterize cuvature for 2-dimensional spaces embeded in R3, and showed that
it can be computed without reference to the embedding.

1.1 The curvature of a curve
Previously, we defined the curvature of a planar curve as the inverse radius of the best fit circle. Here
we generalize this definition to curves in three dimensions. To begin, let the curve be given by x (λ) =
(x (λ) , y (λ) , z (λ)) in Euclidean 3-space where the parameter λ is arclength. The tangent vector to the
curve is given by n = dx

dλ . This will always be a unit vector since we choose arclength as the parameter. We
define a unique direction orthogonal to n by taking another derivative,

m ≡ 1

κ

dn

dλ

where we choose κ to make m a unit vector. Notice that since n · n = 1, differentiating shows that m is
orthogonal to n,

n · dn
dλ

= 0

The cross product, k = n×m gives a third unit vector orthogonal to n and m. We take the best fit circle
to lie in the n,m plane with its center on the line determined by m. The circle will also have unit tangent
vector n.

To describe the best fit circle, we expand both the circle and the curve near a point P of the curve. Let
x (0) = P . Then to second order near P the curve is

x (λ) = x (0) +
dx (0)

dλ
λ+

1

2!

d2x (0)

dλ2
λ2

= x (0) + n (0)λ+
1

2!
κmλ2

The circle has its center at x (0) + Rm and lies in the n,m plane. Therefore, all points on the circle are
described by points

xcircle (x, y) = (x (0) +Rm) + xn+ ym

where x2 + y2 = R2. We may parameterize the circle by setting

x = R sin
ξ

R

y = −R cos
ξ

R
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so that
xcircle (ξ) = (x (0) +Rm) + nR sin

ξ

R
−mR cos

ξ

R

These are chosen so that ξ measures arc length on the circle (note that dxcircle(0)
dξ = n so the tangents

coincide) and xcircle (0) = x (0) = P .
To second order, the circle and the curve coincide, and both ξ and λ measure arc length, so to second

order, ξ = λ. Therefore, expanding the sine and cosine in xcircle (λ) to second order,

xcircle (λ) = (x (0) +Rm) + nλ−mR

(
1− 1

2!

(
λ

R

)2
)

= x (0) + nλ+
1

2!

1

R
λ2m

and equating the curves

x (λ) = xcircle (λ)

x (0) + n (0)λ+
1

2!
κmλ2 = x (0) + nλ+

1

2!

1

R
λ2m

we see that κ is the curvature of the best fit circle.
The curvature of the curve is therefore defined as the magnitude of the rate of change of this unit normal,

κ =

∣∣∣∣dn (λ)

dλ

∣∣∣∣
Exercise: Find the curvature of the spiral, x (λ) = 1√

R2+1
(R cosλ,R sinλ, λ) at every point.

1.2 Gaussian curvature of a 2-surface
Now consider a 2-dimensional surface embedded in Euclidean 3-space. We define the Gaussian curvature of
a 2-surface as follows.

At any point, P, of a surface, S, consider the normal, n, to the surface. Choose any plane P containing
this vector. Any two such planes are related by the angle, ϕ, between them, while they intersect in the line
containing n. We may therefore label all planes containing n by ϕ, giving P (ϕ). The intersection of the
surface S with any one of these planes will be a curve, C (ϕ), lying in P (ϕ). There is a unique circle in
the plane P (ϕ) which (a) passes through P, (b) is tangent to C (ϕ), and (c) has curvature κ (ϕ) matching
C (ϕ). This is called the osculating (i.e., kissing), or best fit, circle.

The curvatures of the full set of osculating circles give a bounded function, κ (ϕ) on a bounded interval,
[0, 2π]. The function therefore has a maximum and a minimum, κ1 and κ2 respectively called the principal
curvatures. The intrinsic curvature of the surface is defined as the product of the principal curvatures,

R ≡ κ1κ2

There is another quantity, the extrinsic curvature defined as the sum, κ1 + κ2. The intrinsic curvature may
be calculated knowing only the metric of the 2-surface, but the extrinsic curvature depends on how the shape
is embedded in 3-dimensions. For example, a plane and a cylinder both have zero intrinsic curvature (cutting
the cylinder, it flattens into a plane) but while the plane has κ1 = κ2 = 0, the cylinder has κ1 = 1

R , κ2 = 0,
hence nonzero extrinsic curvature.

We compute the Gaussian curvature of the 2-sphere. It is easy to see that for the 2-sphere, the principal
curvatures are equal to one another, since the intersection of a plane normal to the sphere always gives a
great circle. Now consider a great circle through the north pole – any curve of constant ϕ will do. In the
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embedding 3-space, taking ϕ = 0, the curve is xi = (R sin θ, 0, R cos θ) =
(
R sin s

R , 0, R cos s
R

)
, where s is the

arclength. The unit tangent is therefore

n =
dxi

ds

=
(
cos

s

R
, 0,− sin

s

R

)
At the north pole, s = 0, and the tangent points in the x-direction as expected. The principle curvature,
κ1 = κ2, is given by the magnitude of

dn

ds
=

1

R

(
− sin

s

R
, 0,− cos

s

R

)
=

1

R

(
−k̂
)

so we have κ1 = κ2 = 1
R and the Gaussian curvature is

R =
1

R2

which agrees with our previous result.

1.3 Gaussian curvature in the language of manifolds
The surface is a manifold, and may be described parametrically using two parameters,

x (λ, ξ) = (x (λ, ξ) , y (λ, ξ) , z (λ, ξ))

and this provides a chart at each point of the manifold. The metric of the surface is

ds2 = dx · dx

where
dx =

(
∂x

∂λ
dλ+

∂x

∂ξ
dξ,

∂y

∂λ
dλ+

∂y

∂ξ
dξ,

∂z

∂λ
dλ+

∂z

∂ξ
dξ

)
Then

ds2 =

(
∂x

∂λ
dλ+

∂x

∂ξ
dξ

)2

+

(
∂y

∂λ
dλ+

∂y

∂ξ
dξ

)2

+

(
∂z

∂λ
dλ+

∂z

∂ξ
dξ

)2

=

((
∂x

∂λ

)2

+

(
∂y

∂λ

)2

+

(
∂z

∂λ

)2
)
dλ2 + 2

(
∂x

∂λ

∂x

∂ξ
+
∂y

∂λ

∂y

∂ξ
+
∂z

∂λ

∂z

∂ξ

)
dλdξ

+

((
∂x

∂ξ

)2

+

(
∂y

∂ξ

)2

+

(
∂z

∂ξ

)2
)
dξ2

= g11dλ
2 + (g12 + g21)dλdξ + g22dξ

2

where g12 = g21and all components gij are now functions of λ, ξ only. Knowing these components, we may
compute the curvature by the methods described in the previous Note.
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