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From the Riemann curvature tensor, we can construct simpler objects. The trace gives the Ricci tensor

Rαβ = Rµαµβ

and the trace of this gives the Ricci scalar,
R = gµνRµν

As we showed in class, traces of the Bianchi identities

Rµ[ανβ] = 0

Rµα[νβ;σ] = 0

lead to two conclusions. The first shows that the Ricci tensor is symmetric, and the second shows that the
combination

Gαβ = Rαβ − 1

2
gαβR

is divergence free:
Gαβ;β = 0

The combination Gαβ is called the Einstein tensor. It is both symmetric and divergence free. These are
also the properties we demand of the stress-energy tensor. Briefly, the stress energy tensor contains all
information about the energy content of matter, including energy density, momentum flux, pressures and
material stresses. Since the Einstein tensor is the only tensor linear in components of the curvature that has
these to properties, it is natural to set

Gαβ = κTαβ

This is the Einstein equation. It is a non-linear, second-order differential equation for the metric with matter
as the source. Given the matter content, Tαβ of a region of spacetime, we may (try to) solve this equation
for gαβ . Knowing the metric, we may then compute the entire curvature tensor and connection. This tells
us whatever we need to know about the geometry. In particular we may look at geodesics to find the paths
followed by the gravitational influence of Tαβ .

The most important solutions of the Einstein equation are for systems that are nearly spherical. Such
solutions describe stars and planets. The simplest such solution is the Schwarzschild solution for a static,
spherically symmetric spacetime. This corresponds to a non-rotating planet or star, and allows us to make
comparisons with Newtonian gravity. While rotating solutions are more realistic, many novel features can
be seen from the Schwarzschild solution.

The metric of the most general static, spherically symmetric spacetime may be put in the form

ds2 = −f2dt2 + g2dr2 + r2dθ2 + r2 sin2 θdϕ2

and you have found the curvatures associated with this entire class of metrics. Now we want to know which
of these geometries, if any, solve the Einstein equation. We are interested in the case when Tαβ = 0 because
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this describes the spacetime outside the surface of the planet or star – the empty space near a gravitating
body. Therefore, consider

Gαβ = 0

It turns out that for “vacuum” solutions (i.e., those with Tαβ = 0), there is a simpler equation. Notice
that if we take the trace of the vacuum Einstein equation,

0 = gαβGαβ

= gαβ
(
Rαβ − 1

2
gαβR

)
= R− 1

2
· 4R

= −R

the Ricci scalar must be zero. Putting this back into the Einstein tensor, it implies

Rαβ = 0

Therefore, it is not necessary to find the Einstein tensor to solve for vacuum spacetimes. It is equivalent to
set the Ricci tensor to zero.

Problem 1: Starting from your solution for the components of the Riemann curvature tensor, compute all
10 components (it is symmetric!) of the Ricci tensor. For example, write out the sum for the tt component,

Rtt = Rαtαt

= Rtttt +Rrtrt +Rθtθt +Rϕtϕt

then substitute your solution for the components of curvature that you need. I recommend writing out the
terms you’ll need this way for each component of the Ricci tensor. It makes it easier to see which bits you
need without losing any. Make a list of the nonzero components of the Ricci tensor.

Problem 2: Set each component of the Ricci tensor to zero. This should give you four equations that
depend on f, g and their first and second derivatives. Two of these equations will be equivalent, and a third
may be found by differentiating the others. Therefore, you will have two independent, coupled, ordinary
differential equations for the two functions f and g. Solve them.
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