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1 The cosmological principle
Cosmology is based on the principle that on large scales, space (not spacetime) is homogeneous and isotropic
– that there is no preferred location or direction in the cosmos. This is strongly supported by the data. The
principle means that we may write the spatial part of the spacetime metric as a time-dependent multiple
of a constant-curvature space. We have found the curvature tensor for such maximally symmetric spaces.
Combining this with a time-dependent factor, a (t), and the time part of the metric, the line element becomes

ds2 = −dt2 + a2

(
δij +

κ

1− κr2
xixj

)
dxidxj

−dt2 + a2hijdx
idxj

where κ = ±1, i, j = 1, 2, 3, and a = a (t) sets the cosmic distance scale at any given time and hij is our
constant curvature 3-metric.

The connection is easily found,

−Γ0ij = Γi0j = Γij0 = aȧhij

Γijk = a2Γ̃ijk

where Γ̃ijk is the connection arising purely from the maximally symmetric metric, hij . Therefore,

Γi0j = Γij0 =
ȧ

a
δij

Γ0
ij = aȧhij

Γijk = Γ̃ijk

The curvature can also be written in terms of maximally symmetric parts, and parts depending on a (t).

Rijkl = Γijl,k − Γijk,l − ΓiblΓ
b
jk + ΓibkΓbjl

= R̃ijkl − Γi0lΓ
0
jk + Γi0kΓ0

jl

= R̃ijkl + ȧ2
(
δikhjl − δilhjk

)
and replacing R̃ijkl with the expression for the maximally symmetric curvature,

Rijkl =
(
κ+ ȧ2

) (
δikhjl − δilhjk

)
Next, consider

R0
jkl = Γ0

jl,k − Γ0
jk,l − Γ0

blΓ
b
jk + Γ0

bkΓbjl
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This must be proportional to some rank-3 tensor in the maximally symmetric space, but there is none so we
expect these components to vanish. Indeed, we find

R0
jkl = aȧhjl,k − aȧhjk,l − aȧhmlΓ̃mjk + aȧhmlΓ̃

m
jk

= aȧ
(
hjl,k − hmlΓ̃mjk − hjmΓ̃mlk − hjk,l + hmlΓ̃

m
jk + hjmΓ̃mkl

)
+hjmΓ̃mlk − hjmΓ̃mkl

= aȧ (hjl;k − hjk;l)

= 0

where the derivatives of hij in the penultimate step are with respect to the maximally symmetric connection.
Since hij is the metric compatible with this connection, the derivatives vanish.

The final components are

R0
j0l = Γ0

jl,0 − Γ0
j0,l − Γ0

blΓ
b
j0 + Γ0

b0Γbjl

= Γ0
jl,0 − Γ0

blΓ
b
j0

=
(
aä+ ȧ2

)
hjl − aȧhml

ȧ

a
δmj

= aähjl

Collecting terms, we have

R0
j0l = aähjl

Rijkl =
(
κ+ ȧ2

) (
δikhjl − δilhjk

)
and terms related to these by symmetry.

The Ricci tensor follows immediately,

R00 = Ri0i0

= − 1

a2
hijR0

j0i

= − 1

a2
hijaähji

= −3ä

a

and

Rij = R0
i0j +Rmimj

= aähij +
(
κ+ ȧ2

)
(δmmhij − δmi hmj)

=
(
aä+ 2κ+ 2ȧ2

)
hij

and the Ricci scalar is

R = g00R00 +
1

a2
hijRij

=
3ä

a
+

3

a2

(
aä+ 2κ+ 2ȧ2

)
=

6ä

a
+

6

a2

(
κ+ ȧ2

)
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Finally, we have the components of the Einstein tensor,

G00 = R00 −
1

2
g00R

= −3ä

a
+

3ä

a
+

3

a2

(
κ+ ȧ2

)
=

3

a2

(
κ+ ȧ2

)
and

Gij = Ri −
1

2
gijR

=
(
aä+ 2κ+ 2ȧ2

)
hij −

1

2
a2hij

(
6ä

a
+

6

a2

(
κ+ ȧ2

))
=

(
aä+ 2κ+ 2ȧ2 − 3aä− 3

(
κ+ ȧ2

))
hij

= −
(
2aä+ κ+ ȧ2

)
hij

2 The energy tensor
Now consider possible energy tensors to serve as a source. At the current epoch, there is very little pressure
and we may take the energy tensor for pressureless dust,

Tµν =


ρ

0
0

0


with its conservation equation,

0 = Tµν;ν

= Tµν,ν + T βνΓµβν + TµβΓνβν

The vanishing divergence is an identity for all but the time component, which becomes

0 = T 0ν
,ν + T βνΓ0

βν + T 0βΓνβν

= T 00
,0 + T 00Γ0

00 + T 00Γν0ν

= ρ̇+ T 00Γi0i

= ρ̇+ ρ
3ȧ

a

Multiplying by a3 we have

0 = a3ρ̇+ 3a2ȧρ

=
d

dt

(
ρa3
)

so that ρa3 remains constant.
The meaning of this is easy to see. Consider a unit spatial volume, V0 = l30 = 1. The comoving lengths

of the sides will expand with a factor of a,
l (t) = a (t)

so that the volume at any time is given by
V (t) = a3

The mass contained in this volume is

m ≡ ρV = ρa3 = constant

3



3 From the Einstein equation to the Friedmann equation
We may now write the Einstein equation, including a possible cosmological constant, Λ,

Gαβ + Λgαβ = βTαβ

where β = 8πG
c4 . Each term in the equation is diagonal.

For the 00 component,

G00 + Λg00 = βT00

3

a2

(
κ+ ȧ2

)
− Λ =

βm

a3

while the spatial components give a second equation,

Gij + Λgij = 0

−
(
2aä+ κ+ ȧ2

)
hij + Λa2hij = 0

Notice that if we multiply the 00 equation by a2 to get

3
(
κ+ ȧ2

)
− Λa2 =

βm

a

then differentiate with respect to time,

6ȧä− 2Λaȧ = −βm
a2

ȧ

= −1

a

(
3
(
κ+ ȧ2

)
− Λa2

)
ȧ

where we substitute the original expression for βm
a . Cancelling a common factor of ȧ and simplifying,

6ä− 3Λa = −3

a

(
κ+ ȧ2

)
2aä− Λa2 = −

(
κ+ ȧ2

)
so finally,

2aä− Λa2 + κ+ ȧ2 = 0

and we have derived the spatial equation from the 00 component. This is consistent with the requirements
of the Bianchi identity.

We have therefore reduced this cosmological model to the single, first-order Friedmann equation,

3a
(
κ+ ȧ2

)
− Λa3 − βm = 0

Solutions to this govern low energy cosmology. At early times, when the energies and pressures are substan-
tial, this requires modification.

4 Curvature singularity
The metric appears to be degenerate if a = 0 or if a diverges. The first of these is also a curvature singularity.
We may confirm this by substituting the field equations into the expression for the scalar curvature,

R =
6ä

a
+

6

a2

(
κ+ ȧ2

)
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To evaluate this, start with the field equations,

2aä+ κ+ ȧ2 − Λa2 = 0
3

a2

(
κ+ ȧ2

)
− Λ− βm

a3
= 0

Solving the first for ä shows that

6ä

a
=

6

a

(
−κ+ ȧ2 − Λa2

2a

)
= − 3

a2

(
κ+ ȧ2

)
+ 3Λ

while the second immediately gives
3

a2

(
κ+ ȧ2

)
= Λ +

βm

a3

Combining in the expression for R,

R =
6ä

a
+

6

a2

(
κ+ ȧ2

)
= − 3

a2

(
κ+ ȧ2

)
+ 3Λ +

6

a2

(
κ+ ȧ2

)
= 3Λ +

3

a2

(
κ+ ȧ2

)
= 4Λ +

βm

a3

which diverges when a = 0.
It is not hard to show that other curvature invariants also diverge at a = 0, and nowhere else.

Properties of the Friedmann equation
We now examine the Friedmann equation,

3a
(
κ+ ȧ2

)
− Λa3 − βm = 0

Solving for ȧ,

ȧ = ±
√

Λa3 + βm− 3κa

3a

The rate of change of a is therefore divergent at a = 0, and when a diverges. The exact solution is given by
integrating

± (t− t0) =

a(t)ˆ

a(t0)

√
3ada√

Λa3 + βm− 3κa

but this is not necessary to see the qualitative properties of the possible solutions. Instead, for various signs
of Λ and κ, we treat the problem as a single particle in a potential. We need to consider 4 cases, depending
on the signs of Λ and κ. We may always take a > 0.
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Case 1: Positive spatial curvature and positive cosmological constant
When κ = 1 and Λ > 0,

ȧ = ±
√

1

3
Λa2 +

βm

3a
− 1

If we write the Friedmann equation as

−1 = −κ = ȧ2 − 1

3
Λa2 − βm

3a

we have conservation of the “energy”, −κ. The effective potential is strongly attractive at all values of a:

Veff = −1

3
Λa2 − βm

3a

with a single maximum at

0 =
dVeff
da

= −2

3
Λa+

βm

3a2

acrit =

(
βm

2Λ

)1/3

(There are three roots:
(
βm
2Λ

)1/3

,
(
βm
2Λ

)1/3

e
2πi
3 ,
(
βm
2Λ

)1/3

e
4πi
3 only one of which is real). The value of the

potential at this maximum is

Veff (acrit) = −1

3
Λ

(
βm

2Λ

)2/3

− βm

3

(
βm

2Λ

)−1/3

= −1

3

(
βm

2Λ

)−1/3(
Λ

(
βm

2Λ

)
+ βm

)

= −

((
βm

2

)3
2Λ

βm

)1/3

= −
(

1

4
β2m2Λ

)1/3

The evolution of the system depends on how this value compares to the total energy, −κ = −1. If

1

4
β2m2Λ < 1

then the energy exceeds the maximum of the potential and a increases or decreases monotonically to infinity
or zero, depending on the sign of its initial condition, ȧ (t0). On the other hand, if

1

4
β2m2Λ > 1

there is a turning point when Veff = −1,

−1 = −1

3
Λa2

turning −
βm

3aturning

0 =
1

3
Λa3

turning − aturning +
βm

3
− 1
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If the initial value, a (t0), is below acrit, the universe expands to this turning point, then contracts to the
singularity. If a (t0) exceeds acrit, then the universe contracts to the turning point then expands forever.

The complete solution is given by integrating,

±
tˆ

t0

dt =

aˆ

a(t0)

da√
1
3Λa2 + βm

3a − 1

± (t− t0) =

aˆ

a(t0)

√
3ada√

Λa3 − 3a+ βm

Case 2: Positive spatial curvature and negative cosmological constant
When κ = 1 and Λ < 0, the energy equation takes the form

−1 = ȧ2 +
1

3
|Λ| a2 − βm

3a

and the effective potential is

Veff =
1

3
|Λ| a2 − βm

3a

This has no extrema,

0 =
dVeff
da

=
2

3
|Λ| a+

βm

3a2

since
a3 = − βm

2 |Λ|
has only one negative and two complex roots. The potential becomes infinitely attractive for a small, and
increases without bound for large a, with a single inflection point at

0 =
d2Veff
da2

=
2

3
|Λ| − 2βm

3a3

a =

(
βm

|Λ|

)1/3

The universe expands to a maximum at the single real positive root of

0 =
1

3
|Λ| a3 + a− βm

3

then collapses to a = 0.

Case 3: Negative spatial curvature and positive cosmological constant
When κ = −1 and the cosmological constant is positive, we have

1 = ȧ2 − 1

3
Λa2 − βm

3a
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which again has negative definite potential with a single maximum at

Veff (acrit) = −
(

1

4
β2m2Λ

)1/3

Since the energy is now positive, ȧ2 remains nonzero and there is no turning point. The universe continues
to collapse or expand in accordance with the initial sign of ȧ.

Case 4: Negative spatial curvature and negative cosmological constant
When κ = −1 and the cosmological constant is positive,

1 = ȧ2 +
1

3
|Λ| a2 − βm

3a

so we again have the monotonic potential,

Veff =
1

3
|Λ| a2 − βm

3a

This always eventually exceeds the energy, so we have a single turning point when

0 =
1

3
|Λ| a3 − a− βm

3
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