
General coordinates

February 4, 2015

In order to describe curved spaces, it is necessary to assign a set of labels – coordinates – to each point.
There are infinitely many ways to do this, and we need to write our physical laws in a way that doesn’t
depend on which choice we make. While we often use certain coordinate systems, e.g., Cartesian, polar,
spherical, in flat space, we need a more general formulation.

1 General coordinate transformations

1.1 From Lorentz transformations to general coordinate transformations
We have defined (Lorentz) vectors to be objects which transform in the same way as the coordinates,

v̄α = Λαβv
β

where Λαβ may be any Lorentz transformation. Suppose instead, we have a fully general change of coordinates,

yα = yα
(
xβ
)

Then the differential of the new coordinates changes by

dyα =
∂yα

∂xβ
dxβ

Notice the similarity between this and the Lorentz transformation law. The differentials transform linearly
and homogeneously, with the transformation matrix being the Jacobian matrix,

Jα β =
∂yα

∂xβ

This transformation is invertible provided the determinant of Jα β , called the Jacobian, is nonzero.
There is another object with a similar transformation law. Consider a parameterized curve, xα (λ). The

derivative,

tα =
dxα

dλ
is tangent to this curve. If we change coordinates as before, we can write the curve in the new coordinates,
yα (λ) = yα

(
xβ (λ)

)
, and we may use the chain rule to write

tα =
∂xα

∂yβ
dyβ

dλ

=
∂xα

∂yβ
t̄β

where t̄β = dyβ

dλ is the tangent expressed in terms of the yβ coordinates.
Below, we make these notions precise by defining the vector space of differentials and the vector space of

tangents, but we will wait until we can make the definitions in a way that works for curved spaces as well as
flat ones.
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1.2 Derivatives
There is an important difference between the Lorentz transformations and general coordinate transforma-
tions. For Lorentz transformations, we were able to differentiate vectors in the usual way to get other vectors.

Thus, if we wanted the derivatives of a vector vα, we could simply compute them all, and have a type-
(

1
1

)
tensor,

Tαβ =
∂vα

∂xβ

Then Tαβ is a tensor, because in any other Lorentz frame,

T̄αβ = Λνβ
∂

∂xν
(
Λαµv

µ
)

= ΛνβΛαµ
∂

∂xν
vµ

= ΛνβΛαµT
µ
ν

This happens only because Λαβ is constant. However, if a vector vα transforms with a change of coordinates
as

v̄α =
∂yα

∂xβ
vβ

its derivative is not a tensor. Instead,

∂

∂yβ
v̄α =

∂

∂yβ

(
∂yα

∂xµ
vµ
)

=

(
∂xν

∂yβ
∂

∂xν

)(
∂yα

∂xµ
vµ
)

=
∂xν

∂yβ
∂yα

∂xµ
∂

∂xν
vµ +

∂xν

∂yβ
∂2yα

∂xν∂xµ
vµ

=
∂xν

∂yβ
∂yα

∂xµ
∂

∂xν
vµ +

∂xν

∂yβ

(
∂yα

∂xµ
∂xµ

∂yσ

)
∂2yσ

∂xν∂xρ
vρ

=
∂xν

∂yβ
∂yα

∂xµ

(
∂

∂xν
vµ +

∂xµ

∂yσ
∂2yσ

∂xν∂xρ
vρ
)

so the change is inhomogeneous.
We define the covariant derivative in such a way as to correct this problem and produce a tensor. The

idea is to add another term to the partial derivative, and let the extra term change in just the right way to
cancel the extra, inhomogeneous part. Define

Dβv
α = ∂βv

α + vµΓαµβ

and require Γβµα to transform so that Dαv
β transforms as a tensor when we change coordinates. That is,

we require the covariance condition,

D̄β v̄
α =

∂xν

∂yβ
∂yα

∂xµ
Dνv

µ

where

D̄β v̄
α =

∂

∂yβ
v̄α + v̄µΓ̄αµβ

v̄α =
∂yα

∂xµ
vµ

The symbol Γαµβ is called the connection.
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Substituting into covariance condition,

D̄β v̄
α =

∂xν

∂yβ
∂yα

∂xµ
Dνv

µ

∂xν

∂yβ
∂

∂xν

(
∂yα

∂xµ
vµ
)

+

(
∂yν

∂xµ
vµ
)

Γ̄ανβ =
∂xν

∂yβ
∂yα

∂xµ

(
∂vµ

∂xν
+ vσΓµσν

)
∂xν

∂yα
∂yβ

∂xµ

(
∂

∂xν
vµ +

∂xµ

∂yσ
∂2yσ

∂xν∂xρ
vρ
)

+

(
∂yν

∂xµ
vµ
)

Γ̄ανβ =
∂xν

∂yβ
∂yα

∂xµ

(
∂vµ

∂xν
+ vσΓµσν

)
∂xν

∂yα
∂yβ

∂xµ

(
∂xµ

∂yσ
∂2yσ

∂xν∂xρ
vρ
)

+
∂yν

∂xρ
vρΓ̄ανβ =

∂xν

∂yβ
∂yα

∂xµ
vρΓµρν

This must hold for every vector, vρ, so

∂xν

∂yα
∂yβ

∂xµ
∂xµ

∂yσ
∂2yσ

∂xν∂xρ
+
∂yν

∂xρ
Γ̄ανβ =

∂xν

∂yβ
∂yα

∂xµ
Γµρν

∂yν

∂xρ
Γ̄ανβ =

∂xν

∂yβ
∂yα

∂xµ
Γµρν −

∂xν

∂yα
∂yβ

∂xµ
∂xµ

∂yσ
∂2yσ

∂xν∂xρ

∂xρ

∂yλ
∂yν

∂xρ
Γ̄ανβ =

∂xρ

∂yλ
∂xν

∂yβ
∂yα

∂xµ
Γµρν −

∂xρ

∂yλ
∂xν

∂yα
∂yβ

∂xµ
∂xµ

∂yσ
∂2yσ

∂xν∂xρ

Γ̄αλβ =
∂xρ

∂yλ
∂xν

∂yβ
∂yα

∂xµ

(
Γµρν −

∂xµ

∂yσ
∂2yσ

∂xν∂xρ

)
Fortunately, we do not need to use this formula very often.

The covariant derivative satisfies the basic properties of any derivation: it is linear and Leibnitz. Linearity
is easy to see, but to understand the Leibnitz (product rule) property, we need to consider how the covariant
derivative acts on general tensors. We determine this by requiring the product rule and applying it to a
product of vectors. Thus, we demand that

Dµ

(
uαvβ

)
= (Dµu

α) vβ + uαDµv
β

=
(
∂µu

α + uνΓανµ
)
vβ + uα

(
∂µv

β + vνΓβνµ
)

= (∂µu
α) vβ + uα∂µv

β +
(
uνvβ

)
Γανµ + (uαvν) Γβνµ

= ∂µ
(
uαvβ

)
+
(
uνvβ

)
Γανµ + (uαvν) Γβνµ

If we define a type-
(

2
0

)
tensor Tαβ = uαvβ then we see from the calculation above that its covariant

derivative must be

DµT
αβ = ∂µT

αβ + T νβΓανµ + TανΓβνµ

Using linearity, we can sum outer products of pairs of vectors to produce a general rank-2 tensor. It is easy
to see the pattern here: each index of Tαβ needs to be contracted with a copy of the connection. A rank-3
tensor will have three terms containing Γβνµ and so on for higher rank tensors.

Exercise: Prove that Dµ (auα + bvα) = aDµu
α+ bDµv

α for arbitrary constants a, b and arbitrary vectors
uα, vα.

1.3 Example: polar coordinates
There is an easier way to do this, but this example shows that the construction so far actually works.

Consider what happens when we change from Cartesian to polar coordinates. We know that in Cartesian
coordinates in flat space, the covariant derivative is the same as the usual partial derivative,

Div
j = ∂iv

j
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If we change to polar coordinates, the components of the vector vi change to

vr =
∂r

∂x
vx +

∂r

∂y
vy

vϕ =
∂ϕ

∂x
vx +

∂ϕ

∂y
vy

Since

r =
√
x2 + y2

tanϕ =
y

x

we have:

∂r

∂x
=

x

r
∂r

∂y
=

y

r

for the r derivatives. For ϕ we take the differential,

d (tanϕ) = d
(y
x

)
1

cos2 ϕ
dϕ =

1

x
dy − y

x2
dx

Because 1
cos2 ϕ = 1 + tan2 ϕ = 1 + y2

x2 , this becomes

∂ϕ

∂x
dx+

∂ϕ

∂y
dy = dϕ

= cos2 ϕ

(
1

x
dy − y

x2
dx

)
=

1

1 + y2

x2

(
xdy − ydx

x2

)
=

xdy − ydx
x2 + y2

and therefore

∂ϕ

∂x
= − y

x2 + y2

= − y

r2

∂ϕ

∂y
=

x

r2

The components of the vector are therefore

vr =
∂r

∂x
vx +

∂r

∂y
vy

=
xvx

r
+
yvy

r
= vx cosϕ+ vy sinϕ
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vϕ =
∂ϕ

∂x
vx +

∂ϕ

∂y
vy

= − y

r2
vx +

x

r2
vy

= −v
x

r
sinϕ+

vy

r
cosϕ

Now find the connection. We will learn a much easier way to compute this later. Moreover, once we have
them, we can use them to compute many properties of the geometry and all covariant derivatives in that
geometry. For now, however, we use the general transformation,

Γ̄αλβ =
∂xρ

∂yλ
∂xν

∂yα
∂yβ

∂xµ

(
Γµρν −

∂xµ

∂yσ
∂2yσ

∂xν∂xρ

)
but since the original coordinate system is Cartesian, the original connection vanishes, Γµρν = 0. Therefore,

Γ̄αλβ = −∂x
ρ

∂yλ
∂xν

∂yβ
∂yα

∂xµ
∂xµ

∂yσ
∂2yσ

∂xν∂xρ

= −∂x
ρ

∂yλ
∂xν

∂yβ
δασ

∂2yσ

∂xν∂xρ

= −∂x
ρ

∂yλ
∂xν

∂yβ
∂2yα

∂xν∂xρ

Notice that Γ̄αλβ = Γ̄αβλ because the transformation depends on ∂2yα

∂xν∂xρ . This is always the case: if the
connection is symmetric in one coordinate system, Γµαβ = Γµβα, it remains symmetric in all coordinate
systems. In two dimensions, there are therefore 6 different terms to compute: Γrrr,Γ

r
rϕ,Γ

ϕ
rr,Γ

r
ϕϕ,Γ

ϕ
rϕ,Γ

ϕ
ϕϕ.

Substituting,

Γ̄rrr = −∂x
ρ

∂r

∂xν

∂r

∂2r

∂xν∂xρ

= −∂x
∂r

∂x

∂r

∂2r

∂x2
− 2

∂x

∂r

∂y

∂r

∂2r

∂x∂y
− ∂y

∂r

∂y

∂r

∂2r

∂y2

= − cos2 ϕ
y2

r3
+ 2 cosϕ sinϕ

xy

r3
− sin2 ϕ

x2

r3

= − cos2 ϕ sin2 ϕ

(
1

r
− 2

r
− 1

r

)
= 0

where we have used

∂2r

∂x2
=

∂

∂x

(x
r

)
=

1

r
− x2

r3

=
y2

r3

∂2r

∂y2
=

x2

r3

∂2r

∂y∂x
=

∂

∂y

(x
r

)
= −xy

r3
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The other components proceed similarly, with the only nonzero cases being Γrϕϕ,Γ
ϕ
rϕ. There is an easy way

to see this, once we find the relationship between the connection and the metric. For now, we compute these
two directly:

Γrϕϕ = −∂x
ρ

∂ϕ

∂xν

∂ϕ

∂2r

∂xν∂xρ

= − ∂x
∂ϕ

∂x

∂ϕ

∂2r

∂x2
− 2

∂x

∂ϕ

∂y

∂ϕ

∂2r

∂x∂y
− ∂y

∂ϕ

∂y

∂ϕ

∂2r

∂y2

= − sin2 ϕ
y2

r3
− 2 cosϕ sinϕ

xy

r3
− cos2 ϕ

x2

r3

= −r
(
sin4 ϕ+ 2 cos2 ϕ sin2 ϕ+ cos4 ϕ

)
= −r

(
sin2 ϕ+ cos2 ϕ

)2
= −r

and

Γϕrϕ = −∂x
ρ

∂r

∂xν

∂ϕ

∂2ϕ

∂xν∂xρ

= −∂x
∂r

∂x

∂ϕ

∂2ϕ

∂x2
− ∂x

∂r

∂y

∂ϕ

∂2ϕ

∂x∂y
− ∂y

∂r

∂x

∂ϕ

∂2ϕ

∂y∂x
+
∂y

∂r

∂y

∂ϕ

∂2ϕ

∂y2

= −∂x
∂r

∂x

∂ϕ

2xy

r4
+
∂x

∂r

∂y

∂ϕ

(
x2 − y2

r4

)
+
∂y

∂r

∂x

∂ϕ

(
x2 − y2

r4

)
+
∂y

∂r

∂y

∂ϕ

2xy

r4

= r cosϕ sinϕ
2xy

r4
+ r cos2 ϕ

(
x2 − y2

r4

)
− r sin2 ϕ

(
x2 − y2

r4

)
+ r sinϕ cosϕ

2xy

r4

=
1

r

(
2 cos2 ϕ sin2 ϕ+ cos2 ϕ

(
cos2 ϕ− sin2 ϕ

)
− sin2 ϕ

(
cos2 ϕ− sin2 ϕ

)
+ 2 sin2 ϕ cos2 ϕ

)
=

1

r

(
cos4 ϕ+ sin4 ϕ+ 2 sin2 ϕ cos2 ϕ

)
=

1

r

where we have used

∂2ϕ

∂x2
= − ∂

∂x

( y
r2

)
=

2xy

r4

∂2ϕ

∂y2
= −2xy

r4

∂2ϕ

∂y∂x
= −

(
1

r2
− 2y2

r4

)
= −x

2 − y2

r4

We may now take the covariant derivative of the vector vi,

Dkv
i = ∂kv

i + vjΓijk

There are four components,

Drv
r = ∂rv

r + vrΓrrr + vϕΓrϕr
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= ∂rv
r

= ∂r (vx cosϕ+ vy sinϕ)

=
∂vx

∂r
cosϕ+

∂vy

∂r
sinϕ

and

Drv
ϕ = ∂rv

ϕ + vrΓϕrr + vϕΓϕϕr

= ∂rv
ϕ +

1

r
vϕ

=
∂

∂r

(
−v

x

r
sinϕ+

vy

r
cosϕ

)
+

1

r

(
−v

x

r
sinϕ+

vy

r
cosϕ

)
= −

(
−v

x

r2
+

1

r

∂vx

∂r

)
sinϕ+

(
−v

y

r2
+

1

r

∂vy

∂r

)
cosϕ− vx

r2
sinϕ+

vy

r2
cosϕ

= − sinϕ

r

∂vx

∂r
+

cosϕ

r

∂vy

∂r

and

Dϕv
r = ∂ϕv

r + vrΓrrϕ + vϕΓrϕϕ

= ∂ϕv
r + rvϕ

=
∂

∂ϕ
(vx cosϕ+ vy sinϕ)− r

(
−v

x

r
sinϕ+

vy

r
cosϕ

)
= −vx sinϕ+

∂vx

∂ϕ
cosϕ+ vy cosϕ+

∂vy

∂ϕ
sinϕ+ vx sinϕ− vy cosϕ

=
∂vx

∂ϕ
cosϕ+

∂vy

∂ϕ
sinϕ

and finally,

Dϕv
ϕ = ∂ϕv

ϕ + vrΓϕrϕ + vϕΓϕϕϕ

= ∂ϕv
ϕ + vrΓϕrϕ

= ∂ϕv
ϕ +

1

r
vr

= ∂ϕ

(
−v

x

r
sinϕ+

vy

r
cosϕ

)
+

1

r
(vx cosϕ+ vy sinϕ)

= −1

r

∂vx

∂ϕ
sinϕ+

1

r

∂vy

∂ϕ
cosϕ− vx

r
cosϕ− vy

r
sinϕ+

1

r
vx cosϕ+

1

r
vy sinϕ

= −1

r

∂vx

∂ϕ
sinϕ+

1

r

∂vy

∂ϕ
cosϕ

2 Covariant derivatives

2.1 The Laplacian
Even in flat space, the covariant derivative is useful. For example, suppose we want to compute the Laplacian
in spherical coordinates. We know that the Laplacian may be written as the divergence of the gradient,

∇2f = ∇ ·∇f

In general coordinates, the divergence of a vector must be a proper contraction,

Dαv
α
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while the gradient of a function is a form,
Dαf = ∂αf

No connection is required for this because the function is a scalar – its value at a point does not change if
we change coordinates. To combine these, we need the metric to change the gradient to a vector,

Dαf = gαβDβf

and now it becomes possible to write the Laplacian,

DαD
αf = Dα

(
gαβDβf

)
In our example of polar coordinates, the metric is

gij =

(
1 0
0 r2

)
and its inverse is

gij =

(
1 0
0 1

r2

)
We have also found the components of the connection,

Γrϕϕ = −r

and

Γϕrϕ =
1

r

The Laplacian is therefore,

DαD
αf = Dα

(
gαβDβf

)
= ∂α

(
gαβDβf

)
+
(
gµβDβf

)
Γαµα

= +
(
gµβDβf

)
Γαµα

The first term expands as

∂α
(
gαβDβf

)
= ∂r

(
grβDβf

)
+ ∂ϕ

(
gϕβDβf

)
= ∂r (grrDrf + grϕDϕf) + ∂ϕ (gϕrDrf + gϕϕDϕf)

= ∂r (∂rf + 0 ·Dϕf) + ∂ϕ

(
0 · ∂rf +

1

r2
∂ϕf

)
=

∂2

∂r2
f +

1

r2
∂2

∂ϕ2
f

which we know to be correct.

2.2 The connection at a point
We have shown that the connection transforms as

Γ̄αλβ =
∂xρ

∂yλ
∂xν

∂yα
∂yβ

∂xµ

(
Γµρν −

∂xµ

∂yσ
∂2yσ

∂xν∂xρ

)
Now, we know that a manifold is a space which is Rn to lowest order in a sufficiently small neighborhood
of any point P. This means that, again in a sufficiently small neighborhood, we can choose Cartesian
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coordinates where the connection vanishes. There are deviations as we move away from P, but the fact
remains that there exists a coordinate system in which the connection vanishes at P.

We can show this explicitly by asking for a coordinate transformation from a general Γµρν to a set of new
coordinates where Γ̄αλβ is simpler. Imposing this condition gives

Γ̄αλβ =
∂xρ

∂yλ
∂xν

∂yα
∂yβ

∂xµ

(
Γµρν −

∂xµ

∂yσ
∂2yσ

∂xν∂xρ

)
and since the matrices

Jα β =
∂yα

∂xβ

J̄α β =
∂xα

∂yβ

are invertible, we may eliminate the leading factors to get

∂xµ

∂yσ
∂2yσ

∂xν∂xρ
= Γµρν

∂2yα

∂xµ∂xν
− ∂yα

∂xβ
Γβνµ = 0

Now expand yα, Γ̄αλβ and Γβνµ around the point P (with coordinates xα0 )

yα = xα0 + aαµ (xµ − xµ0 ) +
1

2
bαµν (xµ − xµ0 ) (xν − xν0) +

1

3!
cαµνσ (xµ − xµ0 ) (xν − xν0) (xσ − xσ0 ) . . .

Γβνµ = Γβνµ (P) + (xρ − xρ0)
∂

∂xρ
Γβνµ (P) + . . .

Γ̄βνµ = Γ̄βνµ (P) + (xρ − xρ0)
∂

∂xρ
Γ̄βνµ (P) + . . .

We may choose teh constant coefficients in the expansion of yα
(
xβ
)
in any way we choose.

Writing out the lowest order terms,

bαµν − aαβΓβνµ (P) = Γ̄ανµ (P)

cαµνσ (xσ − xσ0 )− bαβσ (xσ − xσ0 ) Γβνµ (P)− aαβ (xσ − xσ0 )
∂

∂xσ
Γβνµ (P) = (xσ − xσ0 )

∂

∂xσ
Γ̄ανµ (P)

Choose bαµν = aαβΓβνµ (P). This makes the new connection vanish at xα = xα0 ,

Γ̄βνµ (P) = 0

At next order we have

cαµνσ (xσ − xσ0 )− aαρΓ
ρ
βσ (P) Γβνµ (P) (xσ − xσ0 )− aαρ (xσ − xσ0 )

∂

∂xσ
Γρνµ (P) = (xσ − xσ0 )

∂

∂xσ
Γ̄ανµ (P)

Since aαρ must be invertible, we multiply by its inverse, āλα, leaving

āλαc
α
µνσ − Γλβσ (P) Γβνµ (P)− ∂

∂xσ
Γλνµ (P) = āλα

∂

∂xσ
Γ̄ανµ (P)

Our only free choice here is āλαcαµνσ, but this must be totally symmetric in the three lower indices. We
therefore have only four independent choices for the lower three indices, and four for λ, giving a total of 16
constants. The remaining terms on the left include constants ∂

∂xσ Γλνµ (P). The symmetry on µν means that
Γλνµ (P) contains 40 constants, and the derivatives increase this to 160. Therefore, we do not have enough
choice left to eliminate the first derivatives of the new connection, so āλα

∂
∂xσ Γ̄ανµ (P) is in general nonzero.
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2.3 The covariant derivative of the metric
The covariant derivative is required to satisfy the product rule for differentiation. Therefore, if we differentiate
the inner product of two vectors, we have

Dα (gµνu
µvν) = uµvνDαgµν + gµνv

νDαu
µ + gµνu

µDαv
ν

and the question immediately arises: what is the covariant derivative of the metric, Dαgµν?

In flat space and Cartesian coordinates, the metric is the identiy matrix, gij = δij =

 1
. . .

1

,

and its derivatives are zero,
∂igjk = 0

This relationship is identical to
Digjk = 0

in Cartesian coordinates, but the second form is true independent of coordinate system. Therefore, in flat
space we expect the covariant derivative of the metric to vanish.

We have a similar result in curved space because curved manifolds are Euclidean in a neighborhood of a
point. In general, the covariant derivative of the metric is

Dαgµν = ∂αgµν − gβνΓβµα − gµβΓβνα

As we showed above, at any point P, there exists a change of coordinates

yα = xα0 + aαµ (xµ − xµ0 ) +
1

2
bαµν (xµ − xµ0 ) (xν − xν0) +

1

3!
cαµνσ (xµ − xµ0 ) (xν − xν0) (xσ − xσ0 ) . . .

where we may choose the coefficients bαµν so that the connection vanishes at P. This choice leaves the linear
coefficients, aαµ, free. In these new coordinates, the new metric at P is given by

gµν (y) =
∂xα

∂yµ
∂xβ

∂yν
gαβ

gµν (P) = āαµā
β
νgαβ (P)

and we may use the matrix āαµ to transform the original gαβ to orthonormal form, ηαβ . Then

Dαgµν (y) = ∂αηµν − gβνΓβµα (P)− gµβΓβνα (P)

= 0

Since this is a tensor equation, it must hold in every coordinate system, and we conclude

Dαgµν = 0

regardless of our choice of chart.

2.4 Connection in terms of the metric
The vanishing of the covariant derivative of the metric allows us to find an expression for the connection in
terms of the metric. Expanding the covariant derivative,

Dαgµν = ∂αgµν − gβνΓβµα − gµβΓβνα

= ∂αgµν − Γνµα − Γµνα
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where we define Γνµα ≡ gβνΓβµα. Equating to zero and moving the connection terms to the left, we have

Γµαν + Γαµν = ∂νgαµ

This relationship holds no matter what we name the indices, as long as we maintain the correspondence of
free indices across the whole equation. We may therefore equally well write

Γανµ + Γναµ = ∂µgνα

Γνµα + Γµνα = ∂αgµν

For any choice of α, µ, ν all three of these must hold. Combining the three equations, we add the first two
and subtract the third,

Γµαν + Γαµν + Γανµ + Γναµ − Γνµα − Γµνα = ∂νgαµ + ∂µgνα − ∂αgµν
(Γαµν + Γανµ) + (Γναµ − Γνµα) + (Γµαν − Γµνα) = gαµ,ν + gνα,µ − gµν,α

Now, because the connection is symmetric on the last two indices, Γαµν = Γανµ, the left side simplifies to

2Γαµν = gαµ,ν + gνα,µ − gµν,α

gβαΓαµν =
1

2
gβα (gαµ,ν + gνα,µ − gµν,α)

and therefore,

Γβµν =
1

2
gβα (gαµ,ν + gαν,µ − gµν,α)

This immensely simplifies computing the connection. For example, in polar coordinates the metric is

gij =

(
1 0
0 r2

)
so the only component with nonvanishing derivative is gϕϕ = r2. This means that gαµ,ν + gνα,µ − gµν,α will
vanish unless two of the indices are ϕ and one is r. There are only three ways to make this happen:

Γrϕϕ =
1

2
(grϕ,ϕ + grϕ,ϕ − gϕϕ,r)

=
1

2

(
−∂rr2

)
= −r

Γϕrϕ = Γϕϕr =
1

2
(gϕr,ϕ + gϕϕ,r − grϕ,ϕ)

=
1

2
(gϕϕ,r)

= r

Using the inverse

gij =

(
1 0
0 1

r2

)
we find the same result we struggled to get before,

Γrϕϕ = grrΓrϕϕ + grϕΓϕϕϕ

= −r
Γϕrϕ = Γϕϕr = gϕϕΓϕrϕ

=
1

r
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2.5 Conditions on the metric and curvature at a point
Now that we know that, if Dαgµν = 0, then the connection can be built out of first derivatives of the metric,
we can prove the results above in a more direct way. Consider a Taylor series for a coordinate transformation
of the metric. Expand the old coordinates in terms of the new, and the old and new metrics,

xα (y) = xα0 + aαµ (yµ − yµ0 ) +
1

2
bαµν (yµ − yµ0 ) (yν − yν0 ) +

1

3!
cαµνσ (yµ − yµ0 ) (yν − yν0 ) (yσ − yσ0 ) . . .

gαβ (x) = gαβ (P) + ∂µgαβ (P) (yµ − yµ0 ) +
1

2
∂ν∂µgαβ (P) (yµ − yµ0 ) (yν − yν0 ) + . . .

g̃αβ (y) = g̃αβ (P) + ∂µg̃αβ (P) (yµ − yµ0 ) +
1

2
∂ν∂µg̃αβ (P) (yµ − yµ0 ) (yν − yν0 ) + . . .

where the coefficients in yα are symmetric,

bαµν = bανµ

cαµνσ = cα(µνσ)

The coordinate transformation matrix is

∂xα

∂yβ
= aαβ + bαβµ (yµ − yµ0 ) +

1

2!
cαβνσ (yν − yν0 ) (yσ − yσ0 ) . . .

Then, expanding the new metric in terms of the old, we have

g̃αβ (y) = gαβ (x)
∂xα

∂yβ
∂xα

∂yβ

g̃µν (P) + ∂ρg̃µν (P) (yρ − yρ0)

+
1

2
∂ρ∂σ g̃µν (P) (yρ − yρ0) (yσ − yσ0 ) + . . . =

(
gαβ (P) + ∂ρgαβ (P) (yρ − yρ0) +

1

2
∂σ∂ρgαβ (P) (yρ − yρ0) (yσ − yσ0 ) + . . .

)
×
(
aαµ + bαµρ (yρ − yρ0) +

1

2!
cαµρσ (yρ − yρ0) (yσ − yσ0 ) . . .

)
×
(
aβν + bβνλ

(
yλ − yλ0

)
+

1

2!
cαβλτ

(
yλ − yλ0

)
(yτ − yτ0 ) . . .

)
Collect all zeroth order terms,

g̃µν (P) = gαβ (P) aαµa
β
ν

and first order terms,

∂ρg̃µν (P) (yρ − yρ0) = gαβ (P)
(
aαµb

β
νλ

(
yλ − yλ0

)
+ bαµρ (yρ − yρ0) aβν

)
+ ∂ρgαβ (P) (yρ − yρ0) aαµa

β
ν

∂ρg̃µν (P) = gαβ (P)
(
aαµb

β
νρ + bαµρa

β
ν

)
+ ∂ρgαβ (P) aαµa

β
ν

Finally, collect the second order terms,

1

2
∂ρ∂σ g̃µν (P) (yρ − yρ0) (yσ − yσ0 ) = gαβ (P)

(
1

2!
aαµc

β
νλτ

(
yλ − yλ0

)
(yτ − yτ0 )

+bαµρ (yρ − yρ0) bβνλ
(
yλ − yλ0

)
+

1

2!
cαµρσa

β
ν (yρ − yρ0) (yσ − yσ0 )

)
+∂ρgαβ (P) (yρ − yρ0)

(
aαµb

β
νλ

(
yλ − yλ0

)
+ aβνb

α
µρ (yρ − yρ0)

)
+

1

2
∂σ∂ρgαβ (P) (yρ − yρ0) (yσ − yσ0 ) aαµa

β
ν
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so that

1

2
∂ρ∂σ g̃µν (P) = gαβ (P)

(
1

2!
aαµc

β
νρσ + bαµρb

β
νσ +

1

2!
cαµρσa

β
ν

)
+∂ρgαβ (P)

(
aαµb

β
νσ + aβνb

α
µσ

)
+

1

2
aαµa

β
ν∂σ∂ρgαβ (P)

Now we ask how simple we can make the expansion of g̃µν . First, the transformation

g̃µν (P) = gαβ (P) aαµa
β
ν

where aαµ is arbitrary is a general linear transformation of the symmetric matrix gαβ (P), and this is sufficient
to make g̃µν (P) orthonormal,

g̃µν (P) = ηµν

This determines the coefficients aαµ up to a Lorentz transformation. For the next order, we have

∂ρg̃µν (P) = gαβ (P)
(
aαµb

β
νρ + bαµρa

β
ν

)
+ ∂ρgαβ (P) aαµa

β
ν

and the bαµρ have just enough freedom to make the right side vanish. To see this, define

Bµνρ ≡ gαβ (P) aαµb
β
νρ

and notice that since bβνρ is arbitrary, so is Bµνρ. Then the right side is

Bµνρ +Bνµρ + ∂ρgαβ (P) aαµa
β
ν

The sum
Bµνρ +Bνµρ

is symmetric on µν, but otherwise arbitrary, while the symmetry of the metric makes ∂ρgαβ (P) aαµa
β
ν

symmetric on µν as well. Therefore, we may choose Bµνρ to make the right side vanish, so that the new
metric has vanishing derivatives at P,

∂ρg̃µν (P) = 0

Now look at the second order equation. Defining Cµνρσ = gαβ (P) aαµc
β
νρσ, the right side is

1

2!
(Cµνρσ + Cνµρσ) + ∂ρgαβ (P)

(
aαµb

β
νσ + aβνb

α
µσ

)
+ bαµρb

β
νσ +

1

2
aαµa

β
ν∂σ∂ρgαβ (P)

The last term contains ∂σ∂ρgαβ (P). This is symmetric on ρσ and on αβ so the 10 components of the metric
each have 10 derivatives, giving 100 degrees of freedom. However, Cµνρσ is built from cβνρσ which is totally
symmetric on νρσ. This means that there are 4·5·6

1·2·3 = 20 independent ways to choose these three indices, for
each of the 4 values of β, giving only 80 degrees of freedom. In general, we cannot make this side vanish by
any choice of cβνρσ, and the second derivatives of the metric remain.

In conclusion, our coordinate choice can make the metric orthonormal and the first derivatives of the
metric vanish at P,

g̃µν (P) = ηµν

∂ρg̃µν (P) = 0

The second condition is equivalent to the vanishing of the Christoffel connection, since

Γβµν (P) =
1

2
ηβα (gαµ,ν (P) + gαν,µ (P)− gµν,α (P))

= 0

This reproduces the conclusions of the previous sections.
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