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We will develop a number of tensors as we progress, but there are a few that we can describe immediately.
We look at two cases: (1) the spacetime tensor description of electromagnetism, and (2) energy-momentum
tensors.

1 Electromagnetism in special relativity
A complete treatment of this topic is readily available on wikipedia. The link is given in the Notes.

The 4-vector potential is built from the magnetic vector potential A and the electric potential ϕ as

Aα =
(ϕ
c
,A
)

where the electric and magnetic fields are given by

E = −∇ϕ− ∂A
∂t

B = ∇×A

In order for the spatial components to arise from the 4-dimensional description, we consider the magnetic
field in components:

Bi = εij k
∂

∂xj
Ak

= εijk∂jAk

There is no 4-dimensional equivalent of the cross-product, because the 4-dimensional Levi Civita tensor,
εαβµν , cannot turn the derivatives of a vector ∂αAβ , into another vector. Nonetheless, we can still write
∂αAβ − ∂βAα. In three dimensions, we can also write this by inverting the εijk above:

Bi = εijk∂jAk

εimnB
i = εimnε

ijk∂jAk

Biεimn =
(
δjmδ

k
n − δkmδjn

)
∂jAk

= ∂mAn − ∂nAm
This is the clue we need.

Define the Faraday tensor,
Fαβ ≡ ∂αAβ − ∂βAα

Then the spatial components, Fij , become

Fjk = ∂jAk − ∂kAj
= Biεijk

=

 0 B3 −B2

−B3 0 B1

B2 −B1 0


1



For the remaining components, set α = 0. Then, noticing that

Aα = ηαβA
β

=
(
−ϕ
c
,A
)

we have

F0β = ∂0Aβ − ∂βA0

F00 = ∂0A0 − ∂0A0 = 0
F0i = ∂0Ai − ∂i (−ϕ)

=
1
c

∂

∂t
Ai − ∂i

(
−ϕ
c

)
= −Ei

and, from the antisymmetry, Fi0 = Ei = δijE
j , showing that the electric and magnetic fields are both parts

of a single rank-2 tensor,

Fαβ =


0 −E

1

c −E
2

c −E
3

c
E1

c 0 B3 −B2

E2

c −B3 0 B1

E3

c B2 −B1 0



=


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0


where in the second form we have set c = 1.

We may now write Maxwell’s equations in terms of these. Four equations follow as identities. Since we
have

Fαβ ≡ ∂αAβ − ∂βAα
it follows that taking a derivative and antisymmetrizing on all three indices gives zero:

∂µFαβ = ∂µ∂αAβ − ∂µ∂βAα

To antisymmetrize, notice that

∂[µFαβ] ≡
1
3!

(∂µFαβ + ∂αFβµ + ∂βFµα − ∂µFβα − ∂αFµβ − ∂βFαµ)

=
1
3!

((∂µFαβ − ∂µFβα) + (∂αFβµ − ∂αFµβ) + (∂βFµα − ∂βFαµ))

=
1
3

(∂µFαβ + ∂αFβµ + ∂βFµα)

This simplification always occurs: when antisymmetrizing an expression, the number of terms is reduced if
part of the expression (in this case, Fαβ = −Fβα) is already antisymmetric. Writing this in terms of the
potential,

∂µFαβ + ∂αFβµ + ∂βFµα = ∂µ∂αAβ − ∂µ∂βAα + ∂α∂βAµ − ∂α∂µAβ + ∂β∂µAα − ∂β∂αAµ
= (∂µ∂αAβ − ∂α∂µAβ) + (∂β∂µAα − ∂µ∂βAα) + (∂α∂βAµ − ∂β∂αAµ)
= 0
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because partial derivatives commute, ∂2Aβ

∂xµ∂xα = ∂2Aβ

∂xα∂xµ . Therefore, we have

∂[µFαβ] = 0

This gives two of the Maxwell equations. To see this, first notice that because of the antisymmetry, µ, α, β
must all be different. This gives two cases. First let α = 0, β = i, µ = j and write out the components

0 = ∂jF0i + ∂0Fij + ∂iFj0

= −∂jEi + ∂0B
mεijm + ∂iEj

Contracting with the 3-dimensional Levi-Civita tensor,

0 = εijk (∂iEj − ∂jEi) + ∂0B
mεijkεijm

= 2εijk∂iEj + ∂0B
m
(
2δkm

)
= 2

[
∇×E +

1
c

∂B
∂t

]k
The second case is when α, β, µ are all spatial,

0 = ∂jFki + ∂kFij + ∂iFjk

= ∂j (Bmεmki) + ∂k (Bmεmij) + ∂i (Bmεmjk)

Contract this with εijk,

0 = εijkεmki∂jB
m + εijkεmij∂kB

m + εijkεmjk∂iB
m

0 = 2δjm∂jB
m + 2δkm∂kB

m + 2δim∂iB
m

0 = 2 (∂mBm + ∂mB
m + ∂mB

m)
0 = 6 (∇ ·B)

We now have the two homogeneous Maxwell equations,

∇ ·B = 0

∇×E +
1
c

∂B
∂t

= 0

written as a single 4-dimensional equation, ∂[µFαβ] = 0.
For the remaining Maxwell equations, notice that we need the divergence of the electric field, ∇ ·E. Since

Fαβ = ηαµFµνη
νβ

=


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0



−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



=


0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0


we can write

∇ ·E = ∂iF
0i

so we guess that the object to consider is
∂βF

αβ
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Then the time component, α = 0, gives the divergence of E, while the spatial components, α = i, become

∂βF
iβ = ∂0F

i0 + ∂jF
ij

=
1
c

∂

∂t

(
−1
c
Ei
)

+
∂

∂xj
εij kB

k

= − 1
c2
∂Ei

∂t
+ εij k

∂

∂xj
Bk

= − 1
c2
∂E
∂t

+ ∇×B

These give the inhomogeneous Maxwell equations if we define the 4-current,

Jα = (ρc,J)

so that
∂βF

αβ =
4π
c
Jα

is equivalent to

∇ ·E = 4πρ

∇×B− 1
c2
∂E
∂t

=
4π
c

J

For the energy content of the electromagnetic field, see below.

2 Energy-momentum tensor
The energy-momentum tensor describes the energy content of a region of spacetime. Its non-relativistic
spatial part is the stress tensor from classical mechanics. Read in Schutz for more detail on these components.
The T 00 component is the energy density kg c2

m3 , while the T 0i components give momentum flux density(
kgm
sec ×

1
m2 × 1

sec

)
.

2.1 Electrodynamic energy-momentum
For the energy-momentum content of the electromagnetic field, we first consult Jackson, Section 6.7. Here
we find the energy density of the electromagnetic field in vacuum eq. 6.106,

u =
1
2
(
E2 + B2

)
and the momentum density (proportional to the Poynting vector) eq. 6.118,

g =
1
c2

E×B

while the spatial components of the Maxwell stress tensor take the form

E (∇ ·E)−E× (∇×E)

These are the parts of the full energy-momentum tensor,

Tαβ = FαµF βµ −
1
4
ηαβ (FµνFµν)
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2.2 The energy-momentum tensor of a scalar field
For other field theories, there are similar expressions. For example, a Klein-Gordon (massive scalar) field
satisfies

− 1
c2
∂2ϕ

∂t2
+∇2ϕ =

m2c2

~2
ϕ

The non-relativistic limit of this equation is the Schrödinger equation. The energy-momentum tensor for
this field is given by

Tαβ = ∂αϕ∂βϕ− 1
4
ηαβ (∂µϕ∂µϕ)

where
∂α = ηαβ∂β

2.3 The energy-momentum tensor of a perfect fluid
For cosmological models, we approximate the distribution of matter in universe as a fluid. A perfect fluid is
one with no viscosity or heat flow, and show in Chapter 4 or Schutz to have an energy-momentum tensor of
form

Tαβ =


ρ

p
p

p


where the pressure p is spatially isotropic and the density is ρ. We may write this tensor in terms of the local
4-velocity uα = (c, 0, 0, 0) of the matter and the metric. We can get the pressure pieces using the metric,

pηαβ =


−p 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p


but this gives the wrong expression for T 00. We fix this by adding

(
ρ+

p

c2

)
uαuβ =


(
ρ+ p

c2

)
c2 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0


Checking units, we see that ρc2 and p both have units of energy density:[ p

c2

]
=

F

Ac2

=
kgm

s2m2

s2

m2

=
kg

m3

[ρ] =
kg

m3

Adding the two expressions, we have

Tαβ =
(
ρ+

p

c2

)
uαuβ + pηαβ

= (ρ+ p)uαuβ + pηαβ
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2.4 General properties of the energy-momentum tensor
The energy momentum tensor for any matter will have two essential properties. The first is symmetry,

Tαβ = T βα

This follows from conservation of angular momentum, guaranteeing that a small volume element of the
material will not spontaneously start to rotate.

The second property is the conservation of energy and momentum, which may always be expressed as
the vanishing of the divergence of the tensor,

∂αT
αβ = 0

To see how this implies conservation of energy, we integrate the β = 0 component of the 3-divergence over
an arbitrary spatial volume, V 3, and use the divergence theorem,

ˆ

V 3

∂iT
i0d3x =

ˆ

S2=δV 3

niT
i0d2x

where ni is the outward normal to the 2-dimensional spatial boundary of V 3. That integral gives the energy
flowing out across the boundary surface. When the 4-divergence of Tαβ vanishes, we have

∂iT
iβ = −∂0T

0β

and therefore,
ˆ

S2=δV 3

niT
i0d2x = −

ˆ

V 3

∂0T
00d3x

= − d

dt

ˆ

V 3

ρc2d3x

= −dE
dt

where E is the total energy in the volume V 3. Therefore, the rate of change of energy in V 3 equals the
negative of the rate at which energy flows across the boundary of V 3,

dE

dt
= −

ˆ

S2=δV 3

niT
i0d2x

Similarly, the rate of change of momentum in a volume V 3 is given by the spatial componenets, β = k,
ˆ

V 3

∂0T
0kd3x = −

ˆ

V 3

∂iT
ikd3x

d

dt

ˆ

V 3

T 0kd3x = −
ˆ

S2

niT
ikd2x

Again, the change in momentum of the volume is the integral of the momentum flux over the boundary.
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