Examples of Tensors
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We will develop a number of tensors as we progress, but there are a few that we can describe immediately.
We look at two cases: (1) the spacetime tensor description of electromagnetism, and (2) energy-momentum
tensors.

1 Electromagnetism in special relativity

A complete treatment of this topic is readily available on wikipedia. The link is given in the Notes.
The 4-vector potential is built from the magnetic vector potential A and the electric potential ¢ as
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where the electric and magnetic fields are given by
E = -Vo——
B = VxA

In order for the spatial components to arise from the 4-dimensional description, we consider the magnetic
field in components:
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There is no 4-dimensional equivalent of the cross-product, because the 4-dimensional Levi Civita tensor,
€apuv, cannot turn the derivatives of a vector d,Ag, into another vector. Nonetheless, we can still write
OaAp — OgA,. In three dimensions, we can also write this by inverting the £¥/* above:

B! = 5ijk8jAk
EimnBl = simnaijkajAk
Blcimn = (85,68 — 6k 67)0;A;
= OnA, —0,An

This is the clue we need.
Define the Faraday tensor,
Faﬁ = 8aAﬂ — 85Aa

Then the spatial components, F;;, become
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For the remaining components, set « = 0. Then, noticing that
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we have
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and, from the antisymmetry, F;o = F; = §;; F7, showing that the electric and magnetic fields are both parts
of a single rank-2 tensor,
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where in the second form we have set ¢ = 1.
We may now write Maxwell’s equations in terms of these. Four equations follow as identities. Since we
have
Faﬁ = (9aA5 — 651401

it follows that taking a derivative and antisymmetrizing on all three indices gives zero:

OuFap = 0u0aAg —0,08A4
To antisymmetrize, notice that
1
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This simplification always occurs: when antisymmetrizing an expression, the number of terms is reduced if

part of the expression (in this case, F,,3 = —Fp,) is already antisymmetric. Writing this in terms of the
potential,
aﬂFag + 8QF5H + (?@Fua = 8#(9QAQ — aﬂaﬁAa + 8a85AM — 8a8HAg + 855HAQ — agaaAH
= (Ou0aAp = 0a0,Ap) + (09 Aa = 9,05 Aa) + (0a0sAu — 9p0aAy)
=0
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because partial derivatives commute Therefore, we have

This gives two of the Maxwell equations. To see this, first notice that because of the antisymmetry, u, a, 8
must all be different. This gives two cases. First let « = 0,3 =i, 4 = j and write out the components
0 = 8jF0i + aoFij + aiFjO

= —@EZ— + 80Bmsijm + BZEJ

Contracting with the 3-dimensional Levi-Civita tensor,
0 = €ijk (8ZE] — 8JE1) + a()Bm&‘ijk{:‘ijm
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The second case is when «, 3, i are all spatial,

0 = aiji + 6kFij + 6iij

= 6j (Bmf;'m}m‘) + Ok (Bm{;‘mij) + 0; (Bmf;‘mjk)

Contract this with 7%,
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We now have the two homogeneous Maxwell equations,
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written as a single 4-dimensional equation, d;,F,5 = 0.
For the remaining Maxwell equations, notice that we need the divergence of the electric field, V- E. Since
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we can write

so we guess that the object to consider is



Then the time component, o = 0, gives the divergence of E, while the spatial components, o« = i, become
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These give the inhomogeneous Maxwell equations if we define the 4-current,
J* = (pe,J)

so that A
ggFs = =2 o
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is equivalent to
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For the energy content of the electromagnetic field, see below.

2 Energy-momentum tensor

The energy-momentum tensor describes the energy content of a region of spacetime. Its non-relativistic
spatial part is the stress tensor from classical mechanics. Read in Schutz for more detail on these components.

kg c?

-5, while the T9% components give momentum flux density

The T° component is the energy density
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2.1 Electrodynamic energy-momentum

For the energy-momentum content of the electromagnetic field, we first consult Jackson, Section 6.7. Here
we find the energy density of the electromagnetic field in vacuum eq. 6.106,

u:%(EQ—i—Bz)

and the momentum density (proportional to the Poynting vector) eq. 6.118,
1
g = 7E x B
c
while the spatial components of the Maxwell stress tensor take the form
E(V-E)-Ex (VxE)

These are the parts of the full energy-momentum tensor,
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2.2 The energy-momentum tensor of a scalar field

For other field theories, there are similar expressions. For example, a Klein-Gordon (massive scalar) field
satisfies

The non-relativistic limit of this equation is the Schrodinger equation. The energy-momentum tensor for
this field is given by

1
T = 0%0%0 — 17 (0" p0,up)

where
9% = na,@aﬁ

2.3 The energy-momentum tensor of a perfect fluid

For cosmological models, we approximate the distribution of matter in universe as a fluid. A perfect fluid is
one with no viscosity or heat flow, and show in Chapter 4 or Schutz to have an energy-momentum tensor of
form
p
p
p

where the pressure p is spatially isotropic and the density is p. We may write this tensor in terms of the local
4-velocity u® = (¢, 0,0,0) of the matter and the metric. We can get the pressure pieces using the metric,
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but this gives the wrong expression for T°°. We fix this by adding
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Checking units, we see that pc? and p both have units of energy density:
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Adding the two expressions, we have
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2.4 General properties of the energy-momentum tensor

The energy momentum tensor for any matter will have two essential properties. The first is symmetry,
Tocﬂ _ Tﬁa

This follows from conservation of angular momentum, guaranteeing that a small volume element of the
material will not spontaneously start to rotate.

The second property is the conservation of energy and momentum, which may always be expressed as
the vanishing of the divergence of the tensor,

9, TP =0

To see how this implies conservation of energy, we integrate the S = 0 component of the 3-divergence over
an arbitrary spatial volume, V3, and use the divergence theorem,

/ TP = / n, T2
Vs S2=§V3

where n' is the outward normal to the 2-dimensional spatial boundary of V3. That integral gives the energy
flowing out across the boundary surface. When the 4-divergence of 7" vanishes, we have

O, T = —9,T°

and therefore,
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where E is the total energy in the volume V3. Therefore, the rate of change of energy in V3 equals the
negative of the rate at which energy flows across the boundary of V3,
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Similarly, the rate of change of momentum in a volume V3 is given by the spatial componenets, 3 = k,
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Again, the change in momentum of the volume is the integral of the momentum flux over the boundary.



